
BOLLETTINO
UNIONE MATEMATICA ITALIANA

Maurizio Negri

An algebraic completeness proof for Kleene’s
3-valued logic

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 5-B (2002),
n.2, p. 447–467.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_2_447_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_2002_8_5B_2_447_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2002.



Bollettino U. M. I.
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An Algebraic Completeness Proof for Kleene’s
3-Valued Logic.

MAURIZIO NEGRI

Sunto. – La logica trivalente di Kleene è presentata in un linguaggio che comprende,
oltre alle costanti booleane, anche un simbolo per il valore di verità intermedio n .
Parallelamente si sviluppa la semantica utilizzando la classe delle DMF-algebre al
posto della classe più estesa costituita dalle algebra di De Morgan. Si introduce
quindi un calcolo di sequenti che viene dimostrato completo rispetto alla semanti-
ca trivalente. La dimostrazione di completezza è fondata su una versione del teore-
ma dell’ideale primo tipica delle DMF-algebre. La dimostrazione è interamente al-
gebrica solo per quanto riguarda il teorema di completezza debole. La dimostrazio-
ne della versione forte del teorema di completezza utilizza metodi topologici, in
particolare il teorema di Tychonoff sul prodotto di spazi compatti.

Summary. – We introduce Kleene’s 3-valued logic in a language containing, besides
the Boolean connectives, a constant n for the undefined truth value, so in develo-
ping semantics we can switch from the usual treatment based on DM-algebras to the
narrower class of DMF-algebras (De Morgan algebras with a single fixed point for
negation). A sequent calculus for Kleene’s logic is introduced and proved complete
with respect to threevalent semantics. The completeness proof is based on a version
of the prime ideal theorem that is typical of DMF-algebras. Only for the weak com-
pleteness theorem the proof is fully algebrical, because in the proof of strong com-
pleteness we have been compelled to use topological methods (Tychonoff theorem on
the product of compact spaces).

1. – Introduction.

Kleene’s 3-valued logic is usually developed in a language based on a set
K(BA)4]R , S , T , 0 , 1( of connectives, considering constants as 0-ary
connectives. As a consequence of this linguistic choice, formulas must take
values in algebras of type K(BA) and a natural choice is the class of (normal)
De Morgan algebras (see, for instance, [4] [par. 7.1] and [2] [ch. 8]). We recall
that a De Morgan algebra is a distributive lattice with 0 and 1 equipped with
an unary operation T satisfying the double negation law TTx4x and De
Morgan laws T(xRy)4TxSTy and T(xSy)4TxRTy . This amounts
to say that T is an involution and a dual automorphism. In this work we deve-
lop 3-valued logic in a language based on a set K(DMF)4]R , S ,
T , 0 , 1 , n( of connectives and consequently we choose DMF-algebras, i.e.
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De Morgan algebras with a single fixed point for negation, as domains of truth
values. On the linguistic side, a name for the intermediate truth value n is now
available, what is needed to make indeterminacy expressible; axioms for n ma-
ke also available weakened forms of deduction theorem and of modus ponens
(see the end of paragraph 3). On the semantic side, the class of truth values
domains is now restricted, because every DMF-algebra is obviously a DM-al-
gebra, but not every DM-algebra can be expanded to a DMF-algebra. (For in-
stance, every Boolean algebra is a DM-algebra, but there is no Boolean alge-
bra with an element x such that Tx4x .)

In the following paragraph the semantics of 3-valued logic is presented
and contrasted with classical semantics; the role of Boolean algebra and fields
of sets is now taken by DMF-algebras and fields of partial sets. In the third
paragraph we introduce a sequent calculus for 3-valued logic that will be pro-
ved complete in the last paragraph. The fourth paragraph is devoted to prove
a version of the prime ideal theorem for DMF-algebras that will be the main
tool in the completeness proof. It should be noted that only the proof of the
weak completeness theorem of 3-valued logic is of a fully algebraic character,
because the proof of the full completeness theorem depends essentially on a
topological argument based on Tychonoff theorem.

2. – Semantics: 2-valued vs. 3-valued.

Let Fm be the algebra of formulas of L4ENK(BA), where E4]pi : i�v(

is the set of propositional variables; Fm is free in the class of all structures of
type K(BA), having E as a set of free generators. Classical (2-valued) semantics
can be seen as a morphism M from Fm to an algebra whose elements are to be
considered as meanings of formulas: M being a morphism guarantees that the
meaning of a complex formula can be computed from the meaning of its subfor-
mulas. We choose as a codomain of M the field of sets

P(2v )4 (P(2v ), O , N , 2 , ¯ , 2v )
and we define M : FmK P(2v ) as the (unique) morphism induced by g : EK

P(2v ), where g(pi )4]s�2v : s(i)41(. Then we have

M(aRb)4M(a)OM(b) ,
M(aSb)4M(a)NM(b) ,

M(Ta)42M(a) ,

M(0)4¯ ,
M(1)42v .

We say that s is a model of a iff s�M(a) and write sN4a . So the meaning of a
formula a is the set of its models and a model of a is an element of its
meaning.
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Classical semantics is usually presented through the concept of «truth with
respect to an assignment». An assignment is a function n : EK2 and every as-
signment n induces a morphism Valn : FmK2: we say that a is true with re-
spect to n iff Valn (a)41. These different approaches to classical semantics
can be related as follows. First we observe that there is an obvious bijection
between E and v : so we can associate to n the sequence sn such that sn (i)4pi ,
and to s the assignment n s such that n s (pi )4s(i), for all i�v . Then we can ea-
sily prove that

s�M(a) iff Valn s
(a)41 .

So the meaning of a can be defined from the concept of truth with respect to n .
But we can also prove that

Valn (a)41 iff sn�M(a) ,
so the truth of a with respect to n can be defined from the concept of
meaning.

Now we can define the concept of logical consequence setting aN4b iff
M(a)’M(b). The case of an infinte set of premisses can be handled as follows:
first we extend M to set of formulas setting M(S)41]M(s) : s�S(, then we
say that SN4a iff M(S)’M(a). It can be easily proved from the equations abo-
ve that M(a)’M(b) iff for all n , Valn (a)GValn (b) and M(S)’M(a) iff for all
n , R]Valn (s) : s�S(GValn (a), thus showing that logical consequence can be
equivalently defined in terms of meaning and in terms of truth assignments.
We say that a is a tautology iff 1N4a , that amounts to say that a tautology is a
consequence of the empty set of assumptions, as M(¯)41¯42v4M(1).

Classical semantics can be generalized to Boolean semantics by substitu-
ting 2 with any Boolean algebra A. Then we can define the concepts of mea-
ning M A and logical consequence N4A relativized to A and we can prove that,
for any Boolean algebra A, aN4b iff aN4A b , showing that classical logic is equi-
valent to Boolean logic.

In Kleene’s 3-valued logic the role of Boolean algebra is played by DMF-
algebra (see [5] and [6]). We remember that a DMF-algebra is a De Morgan
algebra with a single fixed point for negation. We generally think DMF-alge-
bras as structures of type K(DMF) satisfying the following set of equational
axioms: axioms for De Morgan algebras, normality axiom xRTxGySTy
and the fixed point axiom Tn4n . We denote with 3 both the set ]0, n , 1(
and the DMF-algebra having 3 as domain, whose operations are defined by
Kleene’s strong tables. (If we give 3 the partial order 0GnG1, then Kleene’s
connectives R and S agree with inf and sup, while negation is the involution
T140, T041, Tn4n .)

From any set X we can form the set D(X) of all partial sets on X (see [6]). A
partial set on X is a couple (A , B) with A , B’X and AOB4¯ , A representing
the positive cases and B the negative cases of a partial property (i.e. a property
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undefined for elements of X2ANB). We denote with D(X) the DMF-algebra
whose operations and constants are as follows:

(A , B)R (A 8 , B 8 )4 (AOA 8 , BNB 8 ) ,

(A , B)S (A 8 , B 8 )4 (ANA 8 , BOB 8 ) ,

T(A , B)4 (B , A) ,

04 (X , ¯) ,

14 (¯ , X) ,

n4 (¯ , ¯) .

We introduce a partial order relation on partial sets setting (A , B)G (A 8 , B 8 )
iff (A , B)R (A 8 , B 8 , )4 (A , B). So we have (A , B)G (A 8 , B 8 ) iff A’A 8 and
B 8’B . Any subalgebra A of D(X) is called a field of partial sets on X .

Now we can develope 3-valued semantics along the same way followed with
2-valued semantics, keeping in mind that the roles played by 2 and P(2v ) are
to be taken by 3 and D(3v ). Let Fm be the algebra of formulas from L 4EN
K(DMF), we define the meaning of formulas as the morphism M : FmK

D(3v ) induced by g : EK D(3v ), where

g(pi )4 (]s�3v : si41(, ]s�3v : si40() .

Then we have

M(aRb)4M(a)RM(b)4 (M(a)0OM(b)0 , M(a)1NM(b)1 ) ,

M(aSb)4M(a)SM(b)4 (M(a)0NM(b)0 , M(a)1OM(b)1 ) ,

M(Ta)4TM(a)4 (M(a)1 , M(a)0 ) ,

M(0)4 (¯ , 3v ) ,

M(1)4 (3v , ¯) ,

M(n)4 (¯ , ¯) .

So the meaning of a in 3-valued semantics is a partial set M(a) on 3v . Ele-
ments of M(a)0 and of M(a)1 are respectively said positive and negative mo-
dels of a .

We can also introduce 3-valued semantics through the concept of truth
with respect to an assignment n : EK3. Every such n can be extended to an
unique morphism Valn : FmK3 and we’ll say that a is true in n if Valn (a)41,
false if Valn (a)40, undefined if Valn (a)4n . As in classical semantics these
two approaches can be proved to be equivalent. Firstly we observe that there
is a bijection between assignments in E v and sequences in 3v , associating to n
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the sequence sn such that sn (i)4n(i) and associating to s the assignment n s

such that n s (pi )4s(i). Then we can easily prove by induction on a the follo-
wing theorems.

THEOREM 1. – M(a)4 (]s�3v : Valn s
(a)41(, ]s�3v : Valn s

(a)40().
When a is a variable we have:

M(pi )4(]s : s(i)41(, ]s : s(i)40()4(]s : Valn s (pi)41(, ]s : Valn s (pi)40() .

When a is bRg we have M(bRg)4M(b)RM(g)4 (M(b)0O
M(g)0 , M(b)1NM(g)1 ). By inductive hypothesis

M(b)0OM(g)04]s : Valn s (b)41(O ]s : Valn s (g)41(

4]s : Valn s (bRg)41(

and

M(b)0NM(g)04]s : Valn s (b)40(O ]s : Valn s (g)40(

4]s : Valn s (bRg)40( .

The other cases are proved in the same way.

THEOREM 2. – Valn (a)4
.
/
´

1

0

n

if

if

sn�M(a)0 ,

sn�M(a)1 ,

otherwise .

When a is a variable, Valn (pi )41 iff n(pi )41 iff sn (i)41 iff sn�M(pi )0 . In
the same way Valn (pi )40 iff sn�M(pi )1 and Valn (pi )4n iff sn�M(pi )0 and
sn�M(pi )1 . When a is bRg we have Valn (bRg)41 iff Valn (b)41 and
Valn (g)41 iff sn�M(b)0 and sn�M(g)0 iff sn�M(b)0OM(g)0 iff sn�M(bRg)0 ;
in the same way Valn (bRg)40 iff Valn (b)40 or Valn (g)40 iff sn�M(b)1 or
sn�M(g)1 iff sn�M(b)1NM(g)1 iff sn�M(bRg)1 . If Valn (bRg)4n then sn�
M(bRg)0 and sn�M(bRg)1 , because we have just proved that sn�M(bRg)0

implies Valn (bRg)41 and sn�M(bRg)1 implies Valn (bRg)40. In the
other direction, if sn�M(bRg)0 and sn�M(bRg)1 then Valn (bRg) must be n
because it is different from 1 and 0 and the codomain of Valn is 3 . An analogous
proof can be given for the remaining connectives.

We introduce the concept of logical consequence in 3-valued logic setting
aN4b iff M(a)GM(b), i.e. M(a)0’M(b)0 and M(b)1’M(a)1 . In the case of an
infinite set of premisses firstly we extend M to set of formulas setting

M(S)4R]M(s) : s�S(4 (1]M(s)0 : s�S(, 0]M(s)1 : s�S() .

The following theorem shows that logical consequence can be equivalently de-
fined in terms of meaning of formulas and in terms of truth assignments.
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THEOREM 3. – M(S)GM(a) iff for all n : EK3, R]Valn (s) : s�S(G

Valn (a).

Assume M(S)GM(a). Case 1), R]Valn (s) : s�S(40, there is nothing to
prove. Case 2), R]Valn (s) : s�S(41, then Valn (s)41 for all s�S . By theo-
rem 2 sn�M(s)0 for all s�S , so sn� 1]M(s)0 : s�S(. From our hypothesis
1]M(s)0 : s�S(’M(a)0 , so sn�M(a)0 and Valn (a)41 by theorem 2, remem-
bering that n4n sn

. Case 3), R]Valn (s) : s�S(4n then, for all s�S ,
Valn (s)� ]n , 1(. We can limit ourselves to prove that Valn (a) is different
from 0 . If Valn (a)40 then sn�M(a)1 by theorem 2. But from our hypothesis
M(a)1’0]M(s)1 : s�S(, so sn�M(s)1 for some s�S . Then Valn (s)40, by
theorem 2, which is absurd.

In the other direction, we firstly show that 1]M(s)0 : s�S(’M(a)0 . If
s�1]M(s)0 : s�S( then s�M(s)0 for all s�S . By theorem 2 Valn s

(s)41 for
all s�S , so R]Valn s

(s) : s�S(41 and Valn s
(a)41, from our hypothesis. So

s�M(a)0 follows from theorem 2, remembering that s4sn s
. Then we show

that M(a)1’0]M(s)1 : s�S(. Suppose s�M(a)1 , then by theorem 2
Valn s

(a)40 and from our hypothesis R]Valn s
(s) : s�S(40. Then

Valn s
(s)40 for some s�S . As sn s

4s , from theorem 2 we have s�M(s)1 and
s�0]M(s)1 : s�S(.

In particular we have aN4b iff for all n : EK3, Valn (a)GValn (b). We note
that Blamey’s definition of logical consequence, aN4b b iff for all n : EK3,
Valn (a)41 implies Valn (b)41 and Valn (b)40 implies Valn (a)40 (see [1] [p.
5]), is equivalent to ours. Obviously aN4b implies aN4b b . Conversely, if
Valn (a)41 then Valn (b)41 by aN4b b . If Valn (a)4n then Valn (b)� ]n , 1(,
because Valn (b)40 implies Valn (a)40 by aN4b b .

The following points of difference between classical and 3-valued seman-
tics deserve some attention. We can define tautologies as formulas a satisfying
1N4a , i.e. (3v , ¯)GM(a), but tautologies in 3-valued logic are not very intere-
sting. In fact every tautology must contain a constant 0 or 1 . For suppose the-
re is neither 0 nor 1 in a , then Valn (a)4n when n(i)4n for all i�v , so sn�
M(a)0 and a is not a tautology. In particular tertium non datur (tnd) is not a
tautology because M(piSTpi ) is (M(pi )0NM(pi )1 , ¯), but M(pi )0NM(pi )1c

3v . (Consider s such that s(i)4n for all i .) So 1N
cpiSTpi and dually piR

Tpi Nc0. Other differences can be found in the relations between N4 and K. If
we define aKb as TaSb , the classical equivalence

SN ]a(N4b iff SN4aKb

is no more true. The implication from left to right, generally known as deduc-
tion theorem, doesn’t hold because pi N4pi and ¯NcpiKpi . In fact M(¯)4
(3v , ¯), but M(TpiSpi )c (3v , ¯), as shown above. The implication from right
to left, known as modus ponens, doesn’t hold because Tpi N4piK0, and



AN ALGEBRAIC COMPLETENESS PROOF FOR KLEENE’S 3-VALUED LOGIC 453

]Tpi , pi(Nc0. In fact

M(TpiS0)4 (M(pi )1 , M(pi )0 )S (¯ , 3v )4 (M(pi )1 , M(pi )0 )4M(Tpi ) ,

but M(Tpi )RM(pi )4 (¯ , M(pi )0NM(pi )1 )GO (¯ , 3v ).
Finally we can develope DMF-valued semantics by substituting 3 with any

DMF-algebra A, as we did with classical logic by substituting 2 with any Boo-
lean logic A, and in full analogy with classical logic we can prove that 3-valued
logic is equivalent to DMF-valued logic.

For every DMF-algebra A we consider the morphism M A : FmK D(A v )
induced by gA : EK D(A v ), where

gA (pi )4 (]s�A v : si41(, ]s�A v : si40() .

Then we can define the concept of logical consequence relativized to A setting
aN4A b iff M A (a)GM A (b). In order to prove the equivalence between 3-
valued consequence N4 and A-valued consequence N4A we have to state rela-
tions between 3 -valued semantics, given by M , and A-valued semantics, given
by M A . Firstly we note that D(3v ), the codomain of M , is just the closed inter-
val [(¯ , 3v ), (3v , ¯) ] taken in D(A v ), the codomain of M A . We recall that in
any lattice A, given a and b such that aGb , the closed inteval [a , b] is a su-
blattice. If A is bounded then [a , b] is no more a sublattice, because 0 and 1 ge-
nerally don’t belong to [a , b], but when A is distributive we can define a mor-
phism of bounded lattices fa

b from A onto [a , b] setting fa
b (x)4 (xSa)Rb . If

A is a DMF-algebra and b4Ta then fa
b is a morphism of DMF-algebras (see

[5] [par. 3]). In particular we can set a4 (¯ , 3v ) and b4 (3v , ¯) and consider
the morphism fa

b from D(A v ) to D(3v ). It can be easily verified that

fa
b (X , Y)4 ( (XN¯)O3v , (YO3v )N¯)

4 (XO3v , YO3v ) .

THEOREM 4. – If M A (a)GM A (b) then M(a)GM(b).

Firstly we prove that M4 fa
b
i M A , when a4 (¯ , 3v ) and b4 (3v , ¯). As

fa
b
i M A is a morphism, we can limit ourselves to prove that fa

b
i M A and M

agree on the generators of Fm . This is proved by observing that

fa
b (M A (pi ) )4 (]s�A v : si41(O3v , ]s�A v : si40(O3v )

4 (]s�3v : si41(, ]s�3v : si40()

4M(pi ) .

Then M A (a)GM A (b) implies fa
b (M A (a) )G fa

b (M A (b) ) and M(a)GM(b).
In order to prove the converse we associate to every s�A v the sequence
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s *�3v defined as follows:

si*4
.
/
´

0

1

n

if si40

if si41

otherwise .

LEMMA 5. – For any s�A v and any formula a , s�M A (a)0 iff s *�M(a)0

and s�M A (a)1 iff s *�M(a)1 .

By induction on a . Let a4pi . Then s�M A (pi )0 iff si41 iff si*41 iff s *�
M(a)0 . In the same way s�M A (pi )1 iff si40 iff si*40 iff s *�M(a)1 . We con-
sider only the case of a4bRg , as the other cases follow in the same way. On
one side we have s�M A (bRg)0 iff s� (M A (b)RM A (g) )0 iff s�M A (b)0O
M A (g)0 iff s *�M(b)0OM(g)0 iff s *� (M(b)RM(g) )0 iff s *�M(bRg)0 . On
the other side, s�M A (bRg)1 iff s� (M A (b)RM A (g) )1 iff s�M A (b)1N
M A (g)1 iff s *�M(b)1NM(g)1 iff s *� (M(b)RM(g) )1 iff s *�M(bRg)1 .

THEOREM 6. – If M(a)GM(b) then M A (a)GM A (b).

Let s�A v . Then s�M A (a)0 and, by the lemma above, s *�M(a)0 . By
hypothesis M(a)0’M(b)0 so s *�M(b)0 and s�M A (b)0 , by the lemma above.
This proves that M A (a)0’M A (b)0 . In the same way we can prove that
M A (b)1’M A (a)1 and then M A (a)GM A (b).

3. – Calculi of sequents.

A sequent is an ordered pair (G ; a) where G’Fm and a�Fm . If we denote
with Sq the set of all sequents, the product P(Fm)3Fm , then every logical
consequence relation N4 is a subset of Sq . Our task is to describe the relations
N4 introduced in the preceding paragraph in purely syntactical terms, so we
introduce the concept of sequent calculus. We say that a n-ary rule, nD0, is a
subset r of Sq n3Sq . A sequent calculus is an ordered pair S4 (B , R), where
B’Sq and R4]r i : i�I(, where every r i is a n-ary rule for some n�v .
Every ordered pair ((s 0 , R , s n21 ), s) in r is said to be an application of r ,
where (s 0 , R , s n21 ) are the premisses and s the conclusion of the applica-
tion. Every application of r can be represented with

s 0 , R , s n21

s
.

Given a sequent calculus S , we can inductively define the set of theorems of S
as the least subset of Sq containing B and closed with respect to rules in R .
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When (G ; a) is a theorem of S we write G l2S a , or simply G l2a if S is clear
from the context. Only finitary rules are admitted, so every theorem has a fini-
tary construction process, starting from axioms and growing through a finite
number of applications of rules: such a process is called a proof of the theorem
and is generally (but not necessarily) represented in tree form. Let N4 be a
given relation of logical consequence. We say that a sequent calculus is sound
if G l2a implies GN4a and complete if GN4a implies G l2a . Then our task may
be newly formulated as follows: to define a sound and complete calculus for
the consequence relations of the preceding paragraph.

Given a calculus S and a set of formulas S , we define a relation R on Fm
setting aRb iff S , a l2b . (As usual, we often write S , a instead of SN ]a(.) If
we assume as axioms in S all sequents (G ; a), with a�G , called identity
axioms, then R can be proved reflexive. If we assume as a rule of S

(G ; a) (D , a ; b)

(G , D ; b)

the cut rule, then R can be proved transitive. We say that two formulas a and
b are syntactically equivalent with respect to S iff aRb and bRa iff S , a l2b
and S , b l2a . We write afS b to denote syntactical equivalence between a
and b with respect to S : as R is a preorder, fS is an equivalence. It can be ea-
sily verified that fS is also a congruence with respect to R , so we can extend R
to a relation G between equivalence classes modulo fS setting NaNGNbN iff
aRb iff S , a l2b . The set Fm/fS with the partial order G is the Lindenbaum
algebra of S . We denote with Fm/fS both the set of equivalence classes and
the Lindenbaum algebra. When S4¯ we denote with f the relation fS and
call Fm/f the Lindenbaum algebra of logic. Which axioms are true in the
Lindenbaum algebra depends strictly on the axioms and rules in S . We shall
define three different calculi, SDL , SBA and SDMF : the first gives place to boun-
ded distributive lattices, the second to Boolean algebras, the third to DMF-al-
gebras. Axioms and rules of SDL are as follows:

l identity axioms: G l2a , where a�G ,

l empty set axiom: ¯ l21,

l maximum axiom: a l21,

l minimum axiom: 0 l2a ,

l cut rule,

l first rule of introduction of R in the antecedent or R l20 ,

(G , a 0 ; b)

(G , a 0Ra 1 ; b)
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l second rule of introduction of R in the antecedent or R l21 ,

(G , a 1 ; b)

(G , a 0Ra 1 ; b)

l rule of introduction of R in the consequent or l2R ,

(G ; a) (G ; b)

(G ; aRb)

l rule of introduction of S in the antecedent or S l2,

(G , a 0 ; b) (G , a 1 ; b)

(G , a 0Sa 1 ; b)

l first rule of introduction of S in the consequent or l2S0 ,

(G ; a 0 )

(G ; a 0Sa 1 )

l second rule of introduction of S in the consequent or l2S1 ,

(G ; a 1 )

(G ; a 0Sa 1 )
.

In the following lemmas some basic properties of l2DL are collected.

LEMMA 7. – In S(DL) we have:

1) aRb l2a and aRb l2b ,

2) a l2aSb and b l2aSb .

1) Immediate from identity axioms and rules R l20 and R l21 . 2) Immedia-
te from identity axioms and rules l2S0 and l2S0 .

LEMMA 8. – In S(DL) monotony rule holds:

(G ; a)

(G , D ; a)

From cut rule and identity axioms we have

(G ; a) (D , a ; a)

(G , D ; a)
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LEMMA 9. – In S(DL) the following rule holds:

(G , a , b ; g)

(G , aRb ; g)

From R l21and R l20 we have

(G , a , b ; g)

(G , a , aRb ; g)

G , aRb , aRb l2g

that is what we need, because G , aRb , aRb is the same as G , aRb .

THEOREM 10. – For every set of formulas S , if fS is the equivalence gene-
rated by l2DL then Fm/fS is a bounded distributive lattice.

We know that Fm/fS is a partial order when NaNGNbN is defined as
S , a l2b . We introduce in Fm/fS two operation inf and sup as follows:
inf (NaN , NbN)4NaRbN and sup (NaN , NbN)4NaSbN . In the first place we
have NaRbNGNaN , NbN because from lemma 3 and monotony rule we have
S , aRb l2a and S , aRb l2b . Then for all NgN , if NgNGNaN and NgNGNbN
then NgNGNaRbN , because from S , g l2a and S , g l2b , with an application of
l2R we have S , g l2aRb . In the second place we have sup (NaN , NbN)4NaS
bN because NaN , NbNGNaSbN follows from S , a l2aSb and S , b l2aSb ,
which is easily proved by lemma 3 and monotony rule. Then for all NgN , if
NaN , NbNGNgN then NaSbNGNgN , because S , aSb l2g follows from S , a l2
g and S , b l2g with an application of S l2. From now on we shall write R in-
stead of inf and S instead of sup.

The lattice Fm/fS is bounded because from the maximum axiom and the
monotony rule we have S , a l21 and so NaNGN1N for all a . In the same way,
from the minimum axiom we have S , 0 l2a and so N0NGNaN . In order to prove
distributivity, we can limit ourselves to show that NaNS (NbNRNgN)4 (NaNS
NbN)R (NaNSNgN). If we denote with P 0 the proof tree

S , a l2aSb

S , bRg l2b b l2aSb

S , bRg l2aSb

S , aS (bRg) l2aSb

and with P 1 the proof tree

S , a l2aSg

S , bRg l2g g l2aSg

S , bRg l2aSg

S , aS (bRg) l2aSg
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then with an application of l2R we have

P 0 P 1

S , aS (bRg) l2 (aSb)R (aSg)
.

If we denote with J 0 the proof tree

S , aSb , a l2a

S , aSb , a l2aS (bRg)

and with J 1 the proof tree

S , g , a l2a

S , g , b l2b S , g , b l2g

S , g , b l2bRg

S , g , a l2aS (bRg) S , g . b l2aS (bRg)

S , g , aSb l2aS (bRg)

then with an application of S l2 we have

J 0 J 1

S , (aSb), (aSg) l2aS (bRg)

S , (aSb)R (aSg) l2aS (bRg)

where the last line follows from lemma 9.
From S(DL) we obtain S(BA) by adjoining the following axioms:

l tertium non datur or tnd axiom: 1 l2aSTa ,

l contradiction axiom: aRTa l20.

An easy argument by induction shows that S(BA) is sound with respect to
the relation N4 of classical logic.

THEOREM 11. – For every set of formulas S , if fS is the equivalence gene-
rated by l2BA then Fm/fS is a Boolean algebra in which NaN4N1N iff
S l2a .

By the preceding theorem we know that Fm/fS is a bounded distributive
lattice, so we need only to prove that NTaN is the complement of NaN , i.e.
NaNSNTaN4N1N and NaNRNTaN4N0N . By monotony and maximum axiom
we have S , aSTa l21 and by monotony and tnd we have S , 1 l2aSTa , so
aSTafS 1. In the same way we can prove that aRTafS 0.
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From the hypothesis S l2a we have S , 1 l2a by monotony; on the other si-
de we have

S , a l2a a l21

S , a l21

by identity axioms, maximum axioms and cut rule, so NaN4N1N . Now suppose
NaN4N1N , then afS b and S , 1 l2a . By the empty set axiom ¯ l21 and an ap-
plication of the cut rule we have S l2a .

From S(DL) we obtain S(DMF) by adjoining the following axioms and
rules:

l first double negation axiom: TTa l2a ,

l second double negation axiom: a l2TTa ,

l first undefined element axiom: n l2Tn ,

l second undefined element axiom Tn l2n ,

l normality axiom: aRTa l2bSTb .

l contraposition rule:

a ; b

Tb ; Ta

An easy argument by induction shows that S(DMF) is sound when N4 is the
logical consequence of 3-valued logic.

THEOREM 12. – For every set of formulas S , if f is the equivalence genera-
ted by l2DMF then Fm/f is a DMF-algebra.

We know that Fm/f is a bounded distributive lattice by the above theo-
rem. By contraposition rule, afb implies TbfTa , so we can introduce an
operation TNaN4NTaN in Fm/f. We show that DMF-algebras axioms hold
in Fm/f. From the double negation axioms we have NaN4TTNaN . From the
undefined element axioms we have NnN4TNnN . From the normality axiom we
have NaNRTNaNGNbNSTNbN . We prove the first De Morgan law T(NaNR
NbN)4TNaNSTNbN as follows. We denote with P 0 the proof tree

Ta l2TaSTb

T(TaSTb) l2TTa TTa l2a

T(TaSTb) l2a
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and with P 1 an analogous proof tree for T(TaSTb) l2b . Then we
have

P 0 , P 1

T(TaSTb) l2aRb

T(aRb) l2TT(TaSTb) TT(TaSTb) l2TaSTb

(aRb) l2TaSTb

In the other direction we have

aRb l2a aRb l2b

Ta l2T(aRb) Tb l2T(aRb)

TaSTb l2T(aRb)

The other De Morgan law can be proved in the same way.
We don’t introduce the Lindenbaum algebra Fm/fS in correspondence of

S(DMF), because fS is not generally a T-congruence. Let S4]pi(, we have
S , pi l21 ,by the maximum axiom and monotony, and S , 1 l2pi , by the identity
axiom, so pifS 1. If we had also TpifS 0, then we could prove S , Tpi l20, i.e.
pi , Tpi l20, in S(DMF), but this is impossible because S(DMF) is sound with
respect to the relation N4 of 3-valued logic and pi , Tpi Nc0 (as we have seen in
the preceding paragraph). For the same reason the generalized contraposition
rule

(G , a ; b)

(G , Tb ; Ta)

is not a derived rule of S(DMF).
Finally we observe that a weak form of deduction theorem and of modus

ponens holds in S(DMF). In fact, S , a l2b implies S , n l2TaSb because

S , a l2b

S , a l2TaSb Ta l2TaSb

n l2aSTa S , aSTa l2TaSb

S , n l2TaSb
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and S l2TaSb implies S , a l2bSn because

S , a , Ta l2n S , a , b l2b

S , a , Ta l2bSn S , a , b l2bSn

S l2TaSb S , a , TaSb l2bSn

S , a l2bSn

4. – Prime pairs and morphisms onto 3.

The main tool in the proof of completeness theorem for 3-valued logic is
given by a modified version of the prime ideal theorem in DMF-algebras. We
recall that an ideal I is prime iff it is proper and xRy�I implies x�I or y�I .
Duallly, a filter F is prime iff it is a proper filter and xSy�I implies x�I or
y�I . There is a bijection between prime ideals and prime filters, because an
ideal is prime iff its complement is a prime filter. We assume the following for-
mulation of the prime ideal theorem (see [3] [theorem 9.13]).

THEOREM 13. – If A is a distributive lattice and I and F are respectively
an ideal and a filter in A such that IOF4¯ , then

1) there is a prime ideal J such that I’J and JOF4¯ ,

2) there is a prime filter G such that F’G and GOI4¯ .

COROLLARY 14. – If x and y are points of a distributive lattice A and xGO y ,
then there is a prime ideal I in A such that y�I and x�I , and there is a pri-
me filter F in A such that x�F and yGO F .

Let xI be the ideal ]a�A : aGx( and yH be the filter ]a�A : yGa(.
They have no common element, because xGO y , so by the prime ideal theorem
there is a prime ideal I such that yI’I and IOxH4¯ , and there is a prime
filter F such that xH’F FOyI4¯ .

There is a tight connection between prime ideals and epimorphisms
f : A K2. On one side we observe that, if f is an epimorphism, then the set
If4f21]0( is a prime ideal in A. On the other side we can define, for every
prime ideal I in A, a function f I from A to 2 as follows:

f I (a)4
.
/
´

0

1

if a�I

if a�I .

Then we can easily prove the following result (see [3] [ex. 9.2]).
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THEOREM 15. – If A is a bounded lattice and I is a prime ideal in A, then
f I : A K2 is a morphism of bounded lattices, and if A is a Boolean algebra
then f I is a Boolean morphism.

A dual proposition holds for filters.
Now we prove similar results for DMF-algebras, where the role of a single

prime ideal I (or filter F) separating points xGO y is kept by a couple (I , F),
with IOF4¯ and F4TI , and where the role of morphisms f I : A K2 is
taken by f I : A K3. We recall some results obtained in [5]. There we have
shown (T. 4.2) that if A is a bounded distributive lattice and I and F are re-
spectively an ideal and a filter in A, then the relation afb iff there are i�I
and f�F such that (aS i)R f4 (bS i)R f is a congruence on A. Then we have
shown (T. 4.2) that the quotient A /I , F is a bounded lattice that is not trivial iff
IOF4¯ . If A is a De Morgan algebra, I is an ideal in A and F4TI , where
TI4]Ti : i�I(, then f is also a T-congruence and A /I , TI is a De Morgan
algebra (T.5.2). This result can be immediately extended to DMF-algebras, so
for every couple (I , TI) in a DMF-algebra A there is a homomorphism from
A to the DMF-algebra A /I , TI that is not trivial iff IOTI4¯ . We observe
that in a DMF-algebra the last condition is equivalent to n�I . In fact, n�I
implies Tn�2I , but n4Tn so IOTIc¯ . In the other direction, if x�IO
TI then from x�TI we have x4Ti , for some i�I , and from x�I we have
iS2i�I . As in DMF-algebras nG iSTi , we have n�I. In the following we
shall consider only A /I , TI with I prime. If I is prime so is also TI (T. 5.1) and
the zero and unit of A /I , TI are respectively I and TI (T. 5.5). The following
theorem is analogous to the corollary of the prime ideal theorem.

THEOREM 16. – If A is a DMF-algebra and aGO b , then there is a pair
(I , F) such that:

1) I is a prime ideal in A and F is a prime filter in A, with
IOF4¯ ,

2) F42I ,

3) a�I and b�I or a�F and b�F .

If aGO b then aHObI4¯ . By corollary 14, there is a prime ideal I such
that bI’I and IOaH4¯ . So b�I and a�I . If n�I then IOTI4¯ by the
remark above, TI is a prime filter and so (I , TI) is the couple we are looking
for. If n�I we distinguish two cases.

Case 1, n�bI. Then nGb and so n�aH because aGO b . By 14 there is a
prime filter F such that aH’F and FObI4¯ . Then a�F and b�F . We ha-
ve also n�F , because n�F implies b�F and from the hypothesis n�bI we
could derive FObIc¯ , that is absurd. So from n�F we have TFOF4¯ .
As TF is a prime ideal, (TF , F) is the required couple.
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Case 2, n�I2bI. By 14 there is a prime filter F such that aH’F and
FObI4¯ . If n�F still holds, then (TF , F) is the required couple. So we
suppose n�F . As a and n belong to F , also aRn belongs to F . Then we have
aRnGO b , because from aRnGb we could infer b�F , but FObI4¯ . By 14
there is a prime ideal J such that bI’J and JO (aRn)H4¯ . Then we have
b�J and a�J . In fact, from a�J we could derive aRn�J , but JO (aR
n)H4¯ . Finally n�J , because n�J implies aRn�J . So (J , TJ) is the re-
quired couple.

The next result illustrates the relations between morphisms f : A K3 and
couples (I , TI) where I is a prime ideal in A. For every morphism f : A K3
we define the ideal If4f21]0( and the filter Ff4f21]0(. We can easily
prove that both If and Ff are prime and Ff42If . Summing up, for every
morphism f : A K3 there is a couple (If , TIf ) in which If is a prime ideal,
TIf is a prime filter and IfOTIf4¯ .

Now we suppose that A is a DMF-algebra and I a prime ideal in A such
that n�I : we define f I : AK3 setting

f I (a)4
.
/
´

0

1

n

if

if

if

a�I ,

a�TI ,

a�A2 (INTI).

The following theorem is analogous to 15.

THEOREM 17. – If A is a DMF-algebra and I is a prime ideal in A such
that n�I , then f I : A K3 is a morphism of DMF-algebras.

Obviously f I(0)40, f I(1)41 and f I(n)4n , because n�I and n�TI .
We show that f I preserves R . If f I (xRy)40 then xRy�I and x�I or

y�I , because I is prime. So f I (x)40 or f I (y)40 and then f I (x)Rf I (y)4
0. If f I (xRy)41 then xRy�TI and both x and y belongs to TI , because
TI is a filter. Then f I (x)4f I (y)41 and f I (x)Rf I (y)41. Finally we sup-
pose f I (xRy)4n , then xRy�I e xRy�TI . As I is an ideal, we have x�I
and y�I , otherwise we could derive xRy�I . As TI is a filter, we have x�TI
or y�TI , otherwise we could derive xRy�TI . We can distinguish the follo-
wing three cases. Case 1, x and y belong to A2 (INTI). Then f I (x)4
f I (y)4n and so f I (x)Rf I (y)4n . Case 2, x belongs to A2 (INTI) and y
belongs to TI . Then f I (x)4n , f I (y)41 and so f I (x)Rf I (y)4n . Case 3, y
belongs to A2 (INTI) and x belongs to TI . Then f I (x)41, f I (y)4n and
so f I (x)Rf I (y)4n .

In the same way we can verify that f I preserves S .
Finally we verify that f I preserves T . If f I (Tx)40 then Tx�I and so

x�TI and f I (x)41, i.e. f I (Tx)4Tf I (x). If f I (Tx)41 then Tx�2I
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and then x�I and f I (x)40, i.e. f I (Tx)4Tf I (x). If f I (Tx)4n then
Tx�I and Tx�TI , so x�I and x�TI . Then f I (x)4n . As n42n we have
f I (Tx)4Tf I (x).

5. – Completeness and compactness.

Now we are in a good position to prove the completeness of S(DMF) with
respect to the relation N4 of 3-valued logic. The proof closely parallels the com-
pleteness proof for classical logic, as far as weak completeness is concerned.
For the full completeness result we need a topological detour through the
compactness of the space of models.

We shortly recall the lines of the completeness proof for classical logic. We
have to prove that SN4a implies S l2a , when N4 is the consequence relation of
classical logic and l2 is the proof relation generated by S(BA). If we prove that
S , jN4a implies S , j l2a , then the result follows. In fact, when j is 1 , we have
on the semantic side S , 1N4a iff SN4a . On the syntactic side, from S , 1 l2a
and the empty set axiom ¯ l21 we derive S l2a by cut, and from S l2a we deri-
ve S , 1 l2a by monotony. Now suppose S , jN4a and S , jN24 a , then in the Lin-
denbaum algebra of S we have NjNGO NaN and by the corollary to the prime
ideal theorem there is a prime ideal I such that NaN�I and NjN�I . By theo-
rem 15 there is a Boolean morphism f I from Fm/fS to 2 . Then we can define
a classical evaluation n : EK2 setting n(pi )4f I (Npi N). Every n induces an
unique morphism Valn from the algebra of formulas Fm to 2 . For every g ,
Valn (g)4f(NgN) because Valn and f I i NN agree on the generators E of Fm .
From NaN�I and the definition of f I we have f I (NaN)40 and Valn (a)40.
From NjN�I and the definition of f I we have f I (NjN)41 and Valn (j)41. As
S l2s for all s�S , we have NsN4N1N by theorem 11 and so Valn (s)4
f(NsN)41. Summing up, we have a valuation n making true j and all s�S and
making false a , so S , jNca . The same kind of proof gives the following weak
completeness theorem for 3-valued logic.

THEOREM 18. – If N4 is the consequence relation of 3-valued logic and l2 is
the proof relation generated by S(DMF), then aN4b implies a l2b .

If aN24 b then NaNGO NbN in the Lindenbaum algebra of logic Fm/f. By
theorem 16 there is a couple (I , F) in Fm/f such that NaN�I and NbN�I or
NaN�F and NbN�F . By the same theorem I and F are prime, F4TI and IO
F4¯ , so n�I . (If n�I then Tn�F , but n4Tn so n�F and IOFc¯ .) By
theorem 17 there is a morphism f from Fm/f to 3 such that: for all x�I ,
f(x)40, for all x�F , f(x)41 and for all x�INF , f(x)4n . Then we can
define a valuation n : EK3 setting n(pi )4f(Npi N). As Valn and f i N N agree
on the generators E of Fm , for every formula j we have Valn (j)4f(NjN). Now
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we can distinguish two cases. Case 1, NaN�I and NbN�I , then Valn (a)�
]n , 1( and Valn (b)40, so Valn (a)GO Valn (b). Case 2, NaN�F and NbN�F ,
then Valn (a)41 and Valn (b)� ]0, n(, so Valn (a)GO Valn (b). In both cases
aN
cb .

COROLLARY 19. – a 0 , R , a n21 N4b implies a 0 , R , a n21 l2b .

If a 0 , R , a n21 N4b then a 0RRRa n21 N4b and a 0RRRa n21 l2b by
the above theorem. Now we observe that by the identity axioms
a 0 , R , a n21 l2a i , for all iEn , so with n applications of rule l2R we have
a 0 , R , a n21 l2a 0RRRa n21 . Finally we get a 0 , R , a n21 l2b by cut.

Before proving the full completeness theorem, we must take a closer look
at the space of models. We denote with (3 , R) the topological space in which
34]0, n , 1( and R is the discrete topology over 3 . We denote with (3v , R*)
the product space where R* is the topology induced by the projections p i . A
subbase for R* is given by S 4]p i

21 (A) : A�R , i�v(. By Tychonoff theorem
(3, R*) is a compact space, as a product of compact spaces.

LEMMA 20. – For every a�Fm , M(a)0 and M(a)1 are clopen in R*.

M(pi )04]s�3v : s(i)41(4p i
21 (]1(), so M(pi )0�R* because ]1(�R .

2M(pi )04]s�3v : s(i)40 or s(i)4n(4p i
21 (]0, n(), so 2M(pi )0�R*

because ]0, n(�R .
M(pi )14]s�3v : s(i)40(4p i

21 (]0(), so M(pi )1�R* because ]0(�R .
2M(pi )14]s�3v : s(i)41 or s(i)4n(4p i

21 (]1, n(), so 2M(pi )1�R*
because ]1, n(�R .

Let a4bRg , then M(a)04M(b)0OM(g)0 and by inductive hypothesis
M(b)0 and M(g)0 are clopen so M(a)0 is a clopen too. In the same way we show
that M(a)14M(b)1NM(g)1 is clopen. If a4bSg then the same kind of proof
shows that M(a)0 and M(a)1 are clopen. If a4Tb then M(Tb)04M(b)1 and
M(Tb)14M(b)0 , where M(b)0 and M(b)1 are clopens by inductive hypothesis.
Finally, if a41 then M(a)043v and M(a)14¯ , and both 3v and ¯ are clopens
in R*. The same proof works when a40 and a4n .

THEOREM 21. – If N4 is the consequence relation of 3-valued logic, then SN4

a implies S 8 N4a for some finite subset S 8’S .

By hypothesis M(S)GM(a), then R]M(s) : s�S(GM(a). So we have

1]M(s)0 : s�S(’M(a)0(1)

and

M(a)1’0]M(s)1 : s�S( .(2)
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From 1 we have 2M(a)0’0]2M(s)0 : s�S(. By the lemma above, 2M(a)0 is
closed and ]2M(s)0 : s�S( is an open cover. As (3v , R*) is compact and
every closed subset of a compact space is compact, 2M(a)0 is compact too, so
there are s 1

0 , R , s n
0 in S such that 2M(a)0’2M(s 1

0 )0NRN2M(s n
0 )0

and

M(s 1
0 )0OROM(s n

0 )0’M(a)0 .(3)

From 2 and the preceding lemma we have an open cover ]M(s)1 : s�S( of a
closed set M(a)1 , so by the compactness of (3v , R*) there are s 1

1 , R , s m
1 in S

such that

M(a)1’M(s 1
1 )1NRNM(s m

1 )1 .(4)

From 3 we have

M(s 1
0 )0OROM(s n

0 )0OM(s 1
1 )0OROM(s m

1 )0’M(a)0

and from 4 we have

M(a)1’M(s 1
0 )1NRNM(s n

0 )1NM(s 1
1 )1NRNM(s m

1 )1 .

This proves that S 8 N4a when S 84]s 1
0 , R , s n ,

0 s 1
1 , R , s m

1 (.
Now we can easily derive the full completeness theorem.

THEOREM 22. – If N4 is the consequence relation of 3-valued logic and l2 is
the proof relation generated by S(DMF), then SN4a implies S l2a .

If SN4a then s 0 , R , s n21 N4a for some s 0 , R , s n21 in S , by the prece-
ding theorem. Then s 0RRRs n21 N4a and so s 0RRRs n21 l2a by the
weak completeness theorem. Now S l2s i for all iEn , by identity axioms, and
S l2s 0RRRs n21 by n applications of rule l2R , so we get S l2a by
cut.
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