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Bollettino U. M. 1.
(8) 5-B (2002), 349-362

On the Curvature of Moduli Space
of Special Lagrangian Submanifolds.

ANTONELLA NANNICINI

Sunto. — Si studia il tensore curvatura della metrica Riemanniona definita in modo
naturale sullo spazio det moduli di una sottovarieta Lagrangiana speciale di una
varieta Calabi-Yau. St ottengono alcune proprietd interessanti, in particolare si
dimostra che la curvatura di Ricci € non negativa sotto una opportuna ipotesi che,
secondo una congettura di N. Hitchin, ¢ sempre verificata.

Summary. — In this paper we study the curvature tensor of the Riemannion metric de-
fined in a natural way on the moduli space of compact special Lagrangian sub-
manifolds of a Calabi-Yau manifold. We state some curvature properties and we
prove that the Ricci curvature is non negative under an assumption on the deter-
minant of g.

1. - Introduction.

Special Lagrangian submanifolds are a field of great interest in theoretical
physics and, specially after the pioneer work of Strominger, Yau and Zaslow,
[6], they have become a central object in string theory and mirror symme-
try.

In [3], McLean proved that the local moduli space, (L), of a compact spe-
cial Lagrangian submanifold L of a Calabi-Yau manifold is smooth, of real di-
mension equal to the first Betti number of L and the tangent space of (L) at
L is canonically identified to the space I('(L) of harmonic 1-forms on L. In
particular a natural Riemannian metrie, g, is defined on (L) induced by the
L? norm on harmonic forms, [2], [3], [6].

Let H'(L, R) be the first De Rham cohomology group of L and H (L, R)*
be the dual vector space, in [2], Hitchin proved that (9U(L), g) can be isometri-
cally embedded as a Lagrangian submanifold of H(L, R) x H(L, R)*, with
canonical symplectic and semi-Riemannian structures.

Using this approach we compute the full curvature tensor of g and we state
some curvature properties. In particular we prove that the Ricci curvature is
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non negative under an assumption on the determinant of g that Hitchin con-
jectured to be always true. Furthermore we obtain that the natural Kihler
metric on the local moduli space of special Lagrangian submanifolds with uni-
tary line bundles, introduced by Strominger, Yau and Zaslow, is Ricci flat if
and only if Hitchin’s embedding has d-closed mean curvature form.

2. — Preliminaries.

Let (X,J, g, 2) be an mn-dimensional complex Calabi-Yau manifold
equipped with a complex structure /, a Ricci flat Kihler metric g and a covari-
ant constant, nowhere vanishing, holomorphic (n, 0) — form @ satisfying:

T n(n—1) -1 n _
2 (et (_V) onT,
n.

1
@ 5

where (-, -) = g(-, J-) is the Kihler form.

Let ¢ : L — X be a compact special Lagrangian submanifold, that is an »-di-
mensional real submanifold such that * (@) =0 and ¢*(ImQ) = 0, in particu-
lar ¢*(MeQ) = vol (L), where NeR2 and Im2 are respectively the real and the
imaginary part of £ and vol (L) is the volum on L with respect to the restricted
metric g = ¢*(g).

R. C. McLean, in [3], proved the following:

THEOREM 1. — A normal vector field V to a compact special Lagrangion
submanifold L s the deformation vector field to a wmormal deformation
through special Lagrangion submanifolds if and only if the corresponding 1-
form (JV) is harmonic. Thus the Zariski tangent space at L to the moduli
space, IMU(L), of special Lagrangian submanifolds is naturally identified
with the space of harmonic 1-forms and, in contrast to the case of complex
submanifolds, there are mo obstructions in extending a first order special
Lagrangian deformation to an actual special Lagrangion deformation.

In particular IMU(L) carries a Riemannian metric g defined as in the
following:

(2) g(Xl, Xz) = f<01, 02>dV01(L)
L

where X, X, e T, (L) are identified with harmonic 1-forms 6., 8, and (-, )
is the pointwise inner product on 1-forms.
In [3], N. Hitchin proved the following:
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THEOREM 2. — The following facts hold:
(1) There exists a C* map F: N(L)—HY (L, R) x H' (L, R)*;

2) F*(G) =g, where G is the natural flat semi-Riemannian metric on
HYL,R)x HY(L, R)*;

(3) F embeds NU(L) as a w-Lagrangian submanifold, where w 1is the
natural symplectic structure on H'(L, R) X H (L, R)*; in particular local-
ly ML) is defined as the image of a section d¢ : H (L, R) > T*(H (L, R)),
for some C* map ¢ : H'(L, R) >R.

Using this approach we are able to compute the full curvature tensor of g
and to state some interesting curvature properties.

3. — The geometry of V x V*,

In this section we illustrate general geometric properties of the product
V x V* where V is a finite dimensional vector space and V* is its dual space. In
the applications V will be the first De Rham cohomology group H'(L; R) of
the compact special Lagrangian submanifold L.

3.1. Semi-Riemannian structure.

Let V be a m-dimensional real vector space and let V* be the dual vector
space, a non degenerate scalar product, G, of positivity index = negativity in-
dex=m is canonically defined on V X V* by posing:

@) G((”)(“’)) = L) + atw)
al \p 2

Vv, weV,Va, feV*.

G defines a natural flat semi-Riemannian metric on the manifold V x V*.
Let 8 ={Xj, ..., X,,} be a basis of V and let $* = {X7*, ..., X;¥} be the dual
basis, let {ay, ..., ., Y1, ---, Y} be coordinates on V x V* with respect to
the basis defined by $B and $B*, independently of the chosen basis B, the met-
ric G has the following expression:

@ G- %(daci ®dy; + dy; @ du,)

where here, as in the following, we use Einstein’s convention on repeated
indices.
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3.2. Symplectic structure.

A natural structure of symplectic vector space is defined on VxV* by:

5) () = L) — aw
o((n):(5)) =3 -

o defines a natural almost symplectic structure on the manifold V' x V*; in co-
ordinates, as before, w has the following expression:

1
(6) o= E(dx,; Qdy; — dy; @ dx;) = da; \ dy;

in particular dw =0, then (VX V* w) is a symplectic manifold.
3.3. Kdhler structure.

Let us suppose now that V is endowed with an euclidean scalar product, g,
then V X V* becomes an hermitian vector space; namely, denoted by b : V—
V*and f=b"': V*—V the musical isomorphisms induced by g, we can define
a complex structure J, on V x V* by:

v - ﬁ(a)
® 2e) =G )
a b(v)
It is easily seen that:
oy, Jy) =, )
® (-, ;) >0
G/, Jy) = —G(, ).
In particular let g = g;; dar; ® da; be a Riemannian metric on the manifold V and

let T(V x V*) be the tangent bundle of V X V*; we define J, e End (T(V x
V*)) in the following way:

where g¥= (g 71);.
From (8) we have immediately that J, is a calibrated almost complex struc-
ture on (VX V*, w), in the sense of [1], then G(-, -) = (-, J,;°) is a Riemanni-
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an metric on the manifold V X V* and in coordinates we have the following
expression:

—~ 1 .
(10) Gg = E(gij dxl®d90] + gl] d?h@dy])
(VxV*, J,, G;) is an almost Kéhler manifold.

Let N(J)(, ) =[J, J, 1= [, Iy 1= J [, 1= [+, -] be the Nijenhuis
tensor of J,, direct computation shows the following expression:

( i a0
N(J,) 9 , 9\ _ (% _ % Jg(i)

9 0 [ 3g; 3g,,\ 9
(1) N (—, =)= ﬁ(ﬂ_ 91)__
dw;  Jy; ox,  dx; | 9y,

s 8 Cagagt\ 8

NUD (= — =(gwi_gﬂi)_

oYi 9y S, 3, | o

\

We get:

PRrROPOSITION 3. — The following facts are equivalent:
(a) J, is an integrable almost complex structure on V X V*;

) Vi, l,r=1, ..., m hold:

99u _ O

ox, ox; ’
(c) 3peC*(V, R) such that YVi,j=1, ..., m 1is:
3%¢

9i= Ox; du; ’

d) X,Y,Z2)—=(Lxg)Y, Z) is a symmetric 3-tensor on V, where Lxg
means Lie derivative of g along X;

(e) (VxV*,J, G;) is a Kdhler manifold.
PrROOF. — (a) < (b): From (11) it follows immediately that if N(J,) =0
then (b) is satisfied; conversely let us suppose that (b) holds, we need to prove
. jl . il
that ng‘% =g”ai Yi,7,l=1, ..., m, we have:
ox, oux,
s ag 7 ag ! i ag 7 gr ag ! ag 7 — _yJr agi’”

= jT_ <= . = (- =1
a0 aw UM G T e T o o,

g gil
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and, by (b):
99 7 ir 9Gir il 99 7 9 ” il
S S =79 9 =7 =9 g
896;,, 890;,, 896;,, 890;,,
(b) = (c):let 6, =g;;dux;, 0;1s a closed 1-form on V' if and only if (b) holds,

Ow -
but df; =0 if and only if I¢;eC*(V, R) such that 6;=dg;, or gi]:%,
. . 7,

Vi,j=1, ..., m, from g; = g;; it follows that the 1-form ¥ = ¢;dx; is closed,
then ¢; = j—¢, for some ¢p € C*(V, R);
"

A 9 9\ _ 9.
() = (@) (Looe) (20 =) = 22
(a) = (e) as the Kihler form of ('}Vg is w and dw =0, then (VX V*, J,, G;])
is Kéhler if and only if J, is integrable. =

Remark that metrics satisfying (¢) are called metrics of Hessian type,
[4].
3.4. Curvature computation.

From now on we suppose that g is a Riemannian metric on V of Hessian

type. First of all we need some formulas:

LEmMmA 4. - Vi, k=1, ..., m the following formula holds:

aZgik B aghk agil _

13

aZghk B agh'r agik
ox;, O, dx; oy, oy, Ox; dx, Ox,

(12) g hr

3 ik ) hkc
9" _ g i °Y , then:
ox, ox;

d ( hr agik) d ( i 99" )
9 = 9 )
oxy, ox, ox;, ox;

aghr agzk N . aZgik i aghk N agli aghk

Proor. — From Proposition 3 we get: ¢

or:

dx;, ox, ox;, o, B ox;, Ox; dx, o,

thus the proof is complete. =
The following Lemma is an exercise:

LEMMA 5. — The derivative of the determinant of a square matrix g, of or-
der m 1is the sum of m terms, d,, ..., d,,, where d; is the determinant of the
matrixc obtained by g substituting the i-eme colummn with its derivative.
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COROLLARY 6. — Vk =1, ..., m the following formulas hold:

;995 _ Olndetg

13
( ) 3xk aﬂ?k
dg" . Olndetg
14 = gk 9
(1) ow; g ox,

7

Proor. — Let us denote by g1y, ---, g the columns of the matrix g and by

9grij) the algebraic complement of g;;, we have:

ddet 99 9, _99;
g E det (9(1), . o yoees (m)) E (= DW d d etgun=9 e detg,
8ack i=1 8ack 3

thus (13) is proved.
(14) follows from:

% _ Olndety %9y _ dgw g 5%k __, 99"

In the following we denote y; = x; ; ,,,, @; = @G, V the Levi-Civita connection
of G, f}}Y Cristoffel’s symbols of G and R(X,Y) = [Vy, V41— ﬁ[X, y) the Rie-
mann curvature tensor of 7, moreover we assume that italic letters ¢, 7, k, ...
run from 1 to m, and greek letters «, 3, y, ... run from 1 to 2m.

Direct computation gives:

~. 1 . agﬂ
L == 1l_’
7 Zg 3ack
- 1 , dg7*
T iim=——g ,
j+mk+m 2 3901

1 g
]mﬂ— 291‘1%,

k

FLer ]Li::ik-#m T;L:erk:O;

and, posed:

R(X,, Xp) X, = RaﬂyXé,
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we get:

_ %" 3gu 997 % .
dx; Ay,  Om; Oy )

13 ( ‘99/)— 1 59”395 _ 1 99;r 397"
amkT ox; 9 ox;, 4 Odx, 3w, 4 Ox, Ox;
1 a2gik N 1 agzk agrs 1 agil agkr .
2° Owjox, 4 Ow, Ox, 4 Ox, S
~]'+m 3 1 ~ agir agjk N agjr agik
1+mj+mk+m T T
4 Ow; Ox, Ow; Ox,

)

Dj _ pjtm _
R{iker_ 1i+m k+m_0'

In particular the Ricci tensor is given by:
’E B 1(821ndetg i 9k alndetg)
”“ AUEE dx, o,
(15) 3 Ei k+m = 0 ;
1 li( 4 9%Indet g N dgtr 81ndetg) _gligh R,

Ri m m=9"
L ke Zg g ox; dx, ox; ox,

and the sealar curvature of G is:

*Indetg Jlndetg dlndetg
89@ 39@ axi aﬂ’}] '

(16) S =gi"(

From previous computation we get immediately the following:

PROPOSITIE)VN 7. — If g is a Riemannian metric on V of Hessian type then
(VxV* J,, G, ts a Ricci flat Kdihler manifold if and only iof Vi, k=
1, ..., m holds:

*Indetg . 3gy dlndetg 0
Ou; Oy, ox; o,

4. — Moduli space of special Lagrangian submanifolds.

Let us go back to the case in which we are interested: using notations of
section 2, let ¢ : L — X be a compact special Lagrangian submanifold of a com-
plex Calabi-Yau manifold X, let I(L) be the local moduli space, let
F:M(L)—H L, R)x H'(L, R)* and let ¢ : H'(L, R) >R as in theorem
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2. Let m = dimg H'(L, R), posing V=H'(L, R) we can apply the results of
section 3, in particular we have that (H(L, R) x H'(L, R)*, G) is a flat semi-
Riemannian manifold and (H (L, R) x HY(L, R)*, w) is a symplectic mani-
fold, moreover in coordinates (L) is defined by:

_ 99
8901-

am Yi

the tangent space T(INU(L)) is spanned by:

) 52 o
(18) Xi:—+—¢— i,j=1,...,m
and:
% ¢
19 G o) = G = ——2—
(19) (G o))y = 9y 52,5,

thus (H'(L, R) x H'(L, R)*, J,, G,) is a Kihler manifold.

Let us denote J,X; = N;, then N; = — 2

3 + gijai’ and J,N; = —X;; we get
immediately: i Y

LEmmaA 8. — Vi,5=1, ..., m, the following facts hold:
1) @(Xi, Nj) =0,
) @(Ni; N;’) = 9>
3) GX;, N;) =0,
4) G(N;, N;) = —gy,
(5) w(N;, N;) =0.

In particular iN 15 ---, N, } span the normal bundle of JU(L), (T(M(L))*,
with respect to G, and with respect to G.

4.1. Extrinsic geometry.

In this section we will study the extrinsic geometry of the Riemannian
manifold (NU(L), g) embedded isometrically in the Kihler manifold
(HY(L, R) x HY(L, R)*, J,, G,) first, and in the flat semi-Riemannian mani-
fold (HY(L, R) x HY(L, R)*, G) after.

Let us denote by V the Levi-Civita connection of g on JU(L), then by using
the notations of previous sections we get:

= _ ki agl] 0

2 V. X+ N,
8901 3ack X !
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where:

1 99;j
N=—-—g" =L
! 29 8901

r

the second fundamental form of g with respect to G:, at the point p e ML) is
then given by:

B: T,9L) x T, ML) — (T, IMN(L))*
B(X;, X;) = Ny

and the corresponding shape operator with respect to a normal vector N is
Sy: TyNU(L) — T,N(L) defined by:

Gy(Sy(X), V) = G,BX, Y), N);

in particular the mean curvature vector, H@g , is given by

o 1 agrk
Gy 2 axk 7
or:
1 dln det
(20) Hch= ——gm MNT.

2 8.%‘k

From (20) we get immediately the following:

PROPOSITION 9. — (ML), 9) —(H (L, R) x H'(L, R)*, G,) is minimal if
and only if det g is constant; moreover if (L), 9) is manimal then the
Kihler manifold (H'(L, R) x H'(L, R)*, J,, G,) is Ricci flat.

Let bg,: T(HY(L, R) x Hl(LLR)*)ﬁT*(HI(L, R) x H'(L, R)*) be the
musical isomorphism induced by G, starting from Hg, we can define the mean
curvature form, n,, in the following way:

21) 1, =be,(J,Hg,),
we have:
1 9ln det
n, X =~ =4
(22) 2 ox;
ng(Ni) = 0 .

We get the following:
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PRrOPOSITION 10. — (H'(L, R) x H (L, R)*, G,) is Ricci flat if and only if
1, is d-closed.

PRrROOF. — Let us compute dy:

dng(Aijﬁ Xk) =X]77g(Xk) _ang(Xv]) =0 ;

1 ®lndetg (2% 3 )
! ox; dy,

d”g()(ja Nk): _Nkng(Xy)_ng([)(]’ Nk]): -
2 3xk3x]

1 { 3%In det 39 dln det ~
_2< g _ 9, 901\ = By

axk 3967 a.%'l 39070
dny(Nj, N,) =0;
thus we get the statement. =

We remark that in [5] is proved that the mean curvature form of a La-
grangian submanifold is d-closed if the ambient space is Ricci flat.

The extrinsic geometry of (M(L), g) —>(H (L, R) x H*(L, R)*, G) is
quite similar: let V be the Levi-Civita connection of the semi-Riemannian met-
ric Gz, then we have:

Vi X; = Vy X + N

where
— 199;( 3 d
Nj= - % (— _gkl—) = —Ny;
2 3xk 8yk axl
— w 9 ) .
denote N, = —¢g™ — + ——, then the mean curvature vector H is given by:

ox Yy,
HG = _H(’;‘g,

hence we get:

ProprosITION 11. — The following facts are equivalent:
(1) det g is constant;
) (MUL), g) —HYL, R) x HY(L, R)*, G:,) s minimal;
(8) (ML), g) —(H (L, R) x HY(L, R)*, G) is minimal.

Before closing this section, we introduce a tensor that will be useful
for curvature: let pe IU(L), define & : T,INU(L) X T,N(L) X T,IN(L) =R
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by:
WX;, X, X)) = — o(X;, Vi X)),
the following hold:
Lo 12. = h(X;, X, X) = L (L 9)(X;, Xp).
ProoF. — From the definition of & it follows that
WX, X, X) = — Gy(J,(X), Yy X)) = — G(N;, Ny) =

1, 9 1 9
g 2= »T—————L . =
2 alg > ar, 2( x, 9(X;, X)

COROLLARY. — 13. — h is a symmetric 3-tensor on INUL).

4.2. Curvature.

Let us denote by R the Riemann curvature tensor of the metric g on (L),
using the isometric embedding (M(L), ¢) —(H*(L, R) x H*(L, R)*, G), as
G is flat, by Gauss equation, we get:

GRX,VZ,T)=-G®BY, T),BX, Z)) + GBX, ), BY, 2)),

V X, Y, Z, T vector fields tangent to IU(L); in particular direct computation
shows that:

Ry =GNy, Ny) — G(Ny, Njy) = g“‘( 2 S 2Gu ]’“)

47 \ 6w, ox, ou, ox,
then the Ricci tensor of g has the following expression:

1 ( 39" 3gs  3g" 39jk)

Ri :Rii-: —
S R A o

The following Lemma provides us useful formulas for the Ricci tensor and the
scalar curvature, S, of the metric g:

LEMMA 14. — The following formulas hold:

Ry = —Gy(Hg, N,) hj, + hl; i,

S=-G/(Hg, Hg) + hyy b ™.
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Proor. — From previous expression of the Rieci tensor, using (13) and (14),
we get:

Rik = -

w99y Olndetg - 3g. Y

=—G(Hg, N,) hj; + hshi;
x; ox, ox; oxy, 96 g lk

1
4
moreover:

S—gtR, - _lgik dlndetg dlndetg 1 ikailj 99
4 a.’)ﬁi axk 4 8961- (9901

2l 1 o8 agm i agk ~ .
= —Gg(HG';Iy HG;)*F Zg ]gvl%g k@_ﬂ; — _Gg(H@,, Hgg)_{_hkljh]lk' -

From previous Lemma we get the main result:

PrOPOSITION 15. — If det g is constant then the Ricci tensor of g is non
negative, moreover the scalar curvature is zevo if and only if (M(L), g) is to-
tally geodesic with respect to G, or, equivalently, with respect to G.

Proor. — If det g is constant then Hg =0, and from previous Lemma we
get Ry, = hli b, where hl = g% Iy, this provides the first statement; moreover
is S = lyyjh 7" = [|1|[?, where ||k|| means norm of the tensor & with respect to g,
then S =0, and S =0 if and only if 2 =0, or B=0. =

We remark that, via Proposition 3 of [2], the minimality of (JU(L), g) is
equivalent to be special Lagrangian in Hitchin’s sense.

Before closing, we also remark that Propositions 3 and 7 describe the dif-
ferential geometry of the local moduli space of special Lagrangian submani-
folds with flat unitary line bundles, introduced by Strominger, Yau and Za-
slov, [6]; more precisely, J, is the natural Kéhler structure and, under the con-
dition det g constant, G:] is the natural Calabi-Yau metrie, as obtained in [2].
Moreover Proposition 10 can be restate as in the following:

PROPOSITION 16. — The natural Kdhler structure on the local moduli space
of special Lagrangian submanifolds with unitary line bundles is Calabi-Yau
if and only if the mean curvature form of Hitchin’s embedding is d-
closed.

Note Added. Recently D. Matessi (Math. DG/0011061) proved that
Hitchin’s conjecture about the constancy of the determinant of g is not true if
the dimension of the special lagrangian submanifold L is 3.
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