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Bollettino U. M. I.
(8) 5-B (2002), 321-347

On the Existence of Shock Propagation
in a Flow Through Deformable Porous Media (*).

E. COMPARINI - M. UGHI

Sunto. – Consideriamo il flusso unidimensionale di un fluido incomprimibile in un
mezzo poroso deformabile, in cui la porosità e la conduttività idraulica dipendono
dall’intensità del flusso. Trascurando fenomeni di capillarità, una frontiera rego-
lare penetra nella zona asciutta (inizialmente occupante l’intero mezzo) dividen-
dola dalla zona bagnata. Assumendo che la pressione sul bordo sia una funzione
convessa, studiamo il problema della continuazione della soluzione nel caso di
eventuali singolarità interpretabili fisicamente come «collassi» locali del mezzo.
In particolare si danno condizioni sufficienti per garantire l’esistenza di una solu-
zione continua fino ad un tempo assegnato e si studia il comportamento della solu-
zione nel caso in cui appaiano singolarità, dimostrando un teorema di esistenza
locale e unicità della soluzione.

Summary. – We consider a one-dimensional incompressible flow through a porous me-
dium undergoing deformations such that the porosity and the hydraulic conductivi-
ty can be considered to be functions of the flux intensity. The medium is initially
dry and we neglect capillarity, so that a sharp wetting front proceeds into the me-
dium. We consider the open problem of the continuation of the solution in the case
of onset of singularities, which can be interpreted as a local collapse of the medium,
in the general case of convex boundary pressure. We study the behaviour of the
solution after the development of a singularity and we study the existence of the
solution after the time at which the shock line reaches the surface.

1. – Introduction.

In the recent papers [1], [3] a generalization of the classical Green-Ampt
model for the penetration of a wetting front in a dry porous medium [4] has
been considered. It has been assumed that the physical parameters k (hy-
draulic conductivity) and e (porosity) depend on the volumetric velocity q.
Thus the model takes into account the possibility of flow-induced deformations
on the microscopic scale. In summary the model gives rise to the following free

(*) Work partially supported by the Italian MURST National Project «Problemi
non lineari...».
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boundary problem

px42
q

k(q)
, in ]0ExEs(t), tD0(4D(t),(1.1)

qx1e 8 (q) qt40, in D(t),(1.2)

p(0 , t)4p0 (t)D0, tD0,(1.3)

p(s(t), t)40, tD0,(1.4)

s
.
4

q(s(t), t) )

e(q(s(t), t)
, tD0, s(0)40.(1.5)

where p is the pressure, p0 (t) is a given function, s(t) is the thickness of the
wet region.

In the Green-Ampt model e and k are positive constants while here we as-
sume that e and k are given functions of q satisfying some physically intuitive
conditions (see [3])

e�C 3 , e 8E0, e 9D0, eFe 0D0 ( qD0,(1.6)

k�C 3 , k 8G0, k 9F0, kFk0D0 ( qD0.(1.7)

From a mathematical point of view the problem (1.1)-(1.5) is a free bounda-
ry problem for a non-homogeneous reducible quasilinear hyperbolic system,
which is strictly hyperbolic in the assumption e 8E0 (see [5], [6], [11]). Let also
mention that p and q are already the Riemann invariant of the problem. The
domain ]0ExEs(t), tD0( is typical in the sense of Li Ta-Tsien (see [5]) be-
cause the characteristic starting from the origin do not enter in the domain
(s
.
D0, e 8E0), but the boundary conditions (1.3), (1.4) are not typical.

However in the mentioned paper [3], local existence and uniqueness of a
classical solution are proved, but the possibility of the developement of singu-
larities of the solution is envisaged, which can be interpreted as a local col-
lapse of the medium. In such a case it is an open question if and how the sol-
ution can be continued after the onset of the above mentioned singularities.

In the paper [1] global existence of a classical solution has been proved for
p0 (t) concave. Moreover an example has been studied under the assumption
that p0 (t) has a piecewise constant increasing derivative. In this case it has
been proved that an infinite sequence of shocks exists, starting from the time
at which p

.
0 jumps. These shocks travel from the free boundary x4s(t) to-

wards the surface x40.
This type of qualitative behaviour of the solution is not unusual for this

kind of hyperbolic problems, see e.g. [6], [7].
Here we want to consider more generally the case of p0 (t) convex.
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In Sect. 2 we give conditions on p
..

0 (t) which guarantee existence without
shocks up to a general time T. A study of the solution after the shock develops
is given is Sect. 3 up to the time Tk at which the shock line reaches the surface
x40. The last two sections are devoted to the study of the local existence and
uniqueness of the solution after Tk .

2. – Nonshock condition.

Let us assume that p0 (t) is a given function such that

p0�C 2 , p0 (0)40, p
.

0 (0 )D0, p
..

0 (t)F0

In [3] the local in time existence was proved up to a sufficiently small time T0 ,
moreover it was shown that q is bounded

q *EqEQ(t)(2.1)

where

q *: F(q *)4 p
.

0 (0 ), Q(t): F(Q(t) )4 p
.

0 (t), F(q)4
q 2

e(q) k(q)
(2.2)

(Remark that Q(t) is increasing).
From now on we will use the notation

q0 (t)4q(0 , t), qs (t)4q(s(t), t).

Condition (2.1) implies the a priori boundeness of both q0 and qs .
As for q 80 (t) and q 8s (t) for 0E tET0 we have (see [10])

0Eq 80 EL0 , 0Eq 8s EL0(2.3)

where

L04 sup
tET0 , q *EqEQ(t)

p
..

0

H 8 (q)
,(2.4)

and

H(q)4F(q)1G(q),(2.5)

G given by

G 8 (q)42
1

e 8 (q)

d

dq
g q

k(q)
h , G(0)40.

The solution can be continued after T0 solving the first order problem (1.2)
with datum qs (t) on s(t) for 0E tET0 .
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This is possible because the characteristics starting from the free bound-
ary are stright lines whose equation is the following:

t4e 8 (qs (t) )(x2s(t) )1t , 0EtET0 .(2.6)

Since e 8E0 the above characteristics enter the domain D(t) so we can pre-
scribe on x4s(t) the known function qs (t) in 0E tET0 , and solve equation
(1.2) in D(t) locally after T0 (remark that since equation (1.2) is homogeneous q
is constant along the characteristics).

The time at which the above characteristic reaches the surface x40 is
given by u

u42e 8 (qs (t) ) s(t)1tDt .(2.7)

By classical theory [2] we have

q0 (u)4qs (t),(2.8)

hence

.
`
/
`
´

q 80 (u)4q 8s (t)
1
du

dt

du

dt
42e 9 q 8s s2e 8s

.
11 N

t
.

(2.9)

If there are no shocks up to time

T14T02e 8 (qs (T0 ) ) s(T0 ),(2.10)

then

du

dt
FdD0.

This gives immediately an upper bound for q 8s . In fact we have

q 8s G
12e 8s

.
2d

e 9 s
, 0E tET1 .(2.11)

On the other hand if there are no shocks before T1 , see [3], we have the follow-
ing relation between qs and q0

H(qs )4 p
.

01G(q0 )(2.12)

so that

H 8 (qs ) q 8s 4 p
..

01G 8 (q0 ) q 80 .(2.13)
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Equation (2.12) is obtained in [3] integrating (1.1) in x between 0 and s(t),
taking into account the boundary values of p(t) ((1.3), (1.4)) and then differen-
tiating with respect to t the integral relation thus obtained and using the free
boundary condition (1.5).

Since q0 (t) is defined locally after T0 by (2.7) and (2.8), then qs (t) is defined
in the same time interval by (2.12) and so is s(t) through (1.5). Therefore a clas-
sical solution is continued after T0 as long as no shock forms inside the domain
D(t).

In terms of pressure, if we have no shocks up to T1 then we must have
assumed

p
..

0 (t)G (12e 8s
.
2d)

H 8 (qs )

e 9 (qs ) s
2G 8 (q0 ) q 80 , tET1 .(2.14)

This can be generalized to any TD0 in the sense that, if there are no
shocks before T , (2.11) has to hold for tET. We remark that condition (2.11)
holds for small T; precisely, since the existence is guaranteed up to T0 (see
[3]), then in particular (2.11) holds for t 0E tET0 , where t 0 is defined by

T042e 8 (qs (t 0 ) ) s(t 0 )1t 0 .(2.15)

We are now able to prove a theorem which gives a necessary and sufficient
condition of existence of a unique classical solution up to a time T.

THEOREM 2.1. – Necessary condition: for any TD0, if

p
..

0D
12e 8 (Q(T) ) Q(T) /e(q *)

inf
q *EqEQ

e 9 (q) t 0 q * /e(q *)
sup

q *EqEQ
H 8 ,

then at least one shock occurred before T.

Sufficient condition: If d 2

dz 2 g z

k
hF0, then (TD0 there exists a constant

C(T) such that if p
..

0 (t)EC(T), 0G tGT , then there is no shock up to T. Here
Q(t) is given in (2.2).

PROOF. – The proof of the necessary condition is obvious from (2.14) and
(2.15).

As for the sufficient condition, from (2.3) (2.4) we have that if p
..

0EC
then

0Eq 8s EaC , a4 sup
q *EqEQ(t)

1

H 8 (q)
, 0E tET0 .
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So clearly for C small enough condition (2.11) holds with d41. Let us denote by

g(T)4 inf
0E tET , q *EqEQ

2
e 8s

.

e 9 s
4

2e 8 (Q) Q/e(Q)

sup
q *EqEQ

e 9 (q) Tq * /e(q *)
.(2.16)

We only need CEg/a. Then for T0E tET1 , if CEg/a

q 80 (t)E
L0

dt/dt
EL0GaC

(since dt/dtF1 by the choice of C).
Then from (2.13) we have

q 8s (t)EC(a1Ka), T0E tET1 ,(2.17)

where K4 sup
G 8 (q0 )

H 8 (qs )
.

If Ca(11K)Eg then we have again that du

dt
F1 for T0EtET1 ,

hence

q 80 (t)GCa(11K)

for T1E tET2 , where T242e 8 (qs (T1 ) ) s(T1 )1T1 .
Let us define the sequence

Ti1142e 8 (qs (Ti ) ) s(Ti )1Ti , i40, 1 , R(2.18)

T0 given in [3].
Repeating the previous argument after n steps we have

q 80 (t)ECag !
j40

n22

K j1K n21h , Tn21E tETn ,(2.19)

so that

q 8s (t)ECag !
j40

n21

K j1K nh4Cag 12K n

12K
1K nh , Tn21E tETn .(2.20)

In Prop. 2.1 below we will prove that in our assumptions KE1.
Then the generic inequalities which guarantees that there is no shock is

satisfied if

q 8s ECag 12K n

12K
1K nhECag 1

12K
11hEg .(2.21)

So to prove the sufficient condition it is sufficient to take

CE
g

a g11 1

12K
h . r(2.22)
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PROPOSITION 2.1. – If d 2

dz 2 g z

k
hF0 then

KE
1

11e1 s
E1,

where e14Ne 8 (Q(T) )N , s4
q *

e(q *)
.

PROOF. – From (2.2), (2.5) we have

G 8 (q0 )

H 8 (qs )
4

2
1

e 8 (q0 )

d

dz
g z

k
h N

q0

2
1

e 8 (qs )
y d

dz
g z

k
h N

qs

2
e 8 (qs ) s

.
(t)

k(qs )
z (12e 8 (qs ) s

.
(t) )

.(2.23)

We have that

d

dz
g z

k
h N

qs

4
d

dz
g z

k
h N

q0

1
d 2

dz 2 g z

k
h N

q× (qs2q0 ),(2.24)

with q×� (q0 , qs ).

So, assuming d 2

dz 2 g z

k
hF0, and noting that

e 8 (qs )

e 8 (q0 )
E1, being q0Eqs , we

obtain

G 8 (q0 )

H 8 (qs )
G

1

12e 8 (qs ) s
. G

1

11e1 s
. r(2.25)

REMARK 2.1. – Suppose that there has been no shocks up to time T×. If there
are not to be shocks for T×E tET , then (2.14) has to hold for T×E tET. Since
s(t) is increasing, this allows to improve the limiting constant in the necessary
condition of Theorem 2.1.

REMARK 2.2. – The condition d 2

dz 2 g z

k
hF0 is satisfied for slowly varying k ,

which is in agreement with fisical intuition. Infact

d 2

dz 2 g z

k
h4 2zkk 922kk 812zk 82

k 3
.

So it is nonnegative for z� [q *, Q(T) ] if k 9 is small enough.
If Q(T)KQ an example is k4k01cq 2m with mE1.
Also the assumption on the «smallness» of the data is not unusual for this

kind of hyperbolic problem (see e.g. [6]).
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3. – Qualitative description of the solution after a shock, «Entropy»
solution.

If p
.

0 grows fast enough (see Sec. 2) then a shock starts at some time Tc .
In Appendix 1 we will give a qualitative description of the possible

shocks.
According to Theorem 2.1 it is possible to have data allowing many shocks

at different times. However, for the sake of simplicity, we assume that p0 (t) is
such that only one shock is formed in

S c4 (xc , Tc ), 0ExcEs(Tc ), TcDT0 .

This means that q(x , Tc ) is such that only one shock line, which we will denote
by x4S(t), exists locally after Tc . According to the classical theory of scalar
conservation laws in one space variable (see e.g. [2])we have now to solve
equation (1.2) in the class of piecewise continuous and smooth functions (see
[6], [7]) which jump across the shock line. Such a solution q(x , t) which we will
call «Classical Entropy Solution» (C.E.S. for brevity hereafter) is well defined
and unique provided that S(t) is defined through the Rankine-Hugoniot jump
condition:

S
.
(t)4

ql (t)2qr (t)

e(ql (t) )2e(qr (t) )
, S(Tc )4xc ,(3.1)

where the subscripts l and r denote the limit from the left and from the right
respectively of q(x , t) across x4S(t).

Moreover the entropy condition must be satisfied, i.e. in our case the
following

e 8 (ql )E
1

S
.
(t)

Ee 8 (qr ).(3.2)

Therefore we will define locally after Tc a solution of the free boundary pro-
blem (1.1)-(1.5) in the following way

DEFINITION 3.1. – Given hD0, a pair (q(x , t), s(t) ) of piecewise C 1 func-
tions is a solution of Problem (1.1)-(1.5) in Dh

14]0ExEs(t), TcEtETc1h( if

i) q(x , t) is a C.E.S. in Dh
1 ,

ii) p0 (t)4 s
0

s(t)
q(x , t)

k(q(x , t) )
dx ,

iii) (1.5) holds for TcE tETc1h.

REMARK 3.1. – Of course a C.E.S. is also an Integral Entropy Solution in a
more usual sense (see again [2]), obtained multiplying by a suitable test func-
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tion and integrating. We think however that the previous definition (more in
the style of [5], [7]) gives a better insight in the qualitative behaviour of the
solution of (1.1)-(1.5) after Tc , which is our goal. We refer also to the work of
[11], App.B, for a definition of weak or integral entropy solution of a free
boundary problem. However let us remark that in our case we know a priori
that the characteristics starting on the free boundary enter the domain Dh

1 , so
there are no problems in prescribing data there (which is a main question for
general bounded domains as in [11]).

We can state the following

THEOREM 3.1. – Let p0 (t) be such that only one shock is formed in S c . Then
a unique solution in the sense of Def. 3.1 exists up to time Tk when S(t) reach-
es x40.

PROOF. – We remark that up to Tc there exists a unique classical solution of
our problem, so that s(t) and qs are known up to Tc , q0 (t) is known almost up to
a time, say u c , that is greater than Tc , and both q0 and qs are increasing with t.
As a consequence the functions ql (t) and qr (t) in (3.1), given by

.
/
´

ql (t)4qs (t l ), t42e 8 (qs (t l ) )(S(t)2s(t l ) )1t l ,

qr (t)4qs (t r ), t42e 8 (qs (t r ) )(S(t)2s(t r ) )1t r ,
(3.3)

are known up to time tcDTc , given by tc42e 8 (qs (Tc ) )(S(tc )2s(Tc ) )1Tc, i.e.
the time in which the characteristic starting from s(Tc ), Tc ) reaches S. S(t) on
its turn is given by (3.1) and is a decreasing function because qlEqr . Moreover
the entropy condition (3.2) is satisfied for the same reason.

Of course after Tc we have to change the relation between q0 and qs . Pro-
ceeding in the same way as for (2.12) and looking for a solution with only one
shock we arrive at the following:

H(qs )4 p
.

0 (t)1G(qr )2G(ql )1G(q0 )2S
.
(t) kg q

k
h

l

2g q

k
h

r
l .(3.4)

Although more complicated than (2.12), (3.3) defines uniquely qs (t) in term of
q0 (t) and p

.
0 (t) locally after Tc , since everything is known there but qs (t). The

free boundary x4s(t) is then defined by (1.5) and it is C 1 in Tc since q(x , t) is
continuous in (s(Tc ), Tc ) (see (3.3)). Moreover, since e is a convex C 2 function
(see [2] Thm 3 Sect. 3.4) equation (1.2) can be solved classically along the cha-
racteristics starting on x4s(t) locally after Tc , provided no new shock lines
start in the domain of influence of the free boundary data.

The situation does not change as long as S(t)D0, but due to the bounds on
q (see (2.1),(2.2)) and to the entropy condition (3.2) the shock line will reach
the fixed boundary x40 in a finite time Tk , which can be estimated. r



E. COMPARINI - M. UGHI330

REMARK 3.2. – As we showed in [1] through an example, no new shock line
starts if p

.
0 (t) is slowly varying after Tc . One could precise the condition on the

pressure needed to ensure that no new shocks appear after Tc , following a
method similar to the one of Section 2 (with (2.12) substituted by (3.4)), but it
would be too technical.

We have seen that between Tc and Tk we have a solution which is classical
for 0ExES(t) and S(t)ExEs(t) and has a jump on S. Also the porosity has
a jump at S(t) which implies a local collapse of the medium there.

At time Tk the discontinuity of q along S becomes a discontinuity of q0 .
Then istantaneously we must have a discontinuity of qs . In fact if we assume
that qs is continuous in Tk , then (2.12) should hold for tDTk . Then

H(qs (Tk ) )4 p
.

0 (Tk )1G(q0 (T 1
k ) ).

On the other hand from (3.4) (for tETk) we have

H(qs (Tk ) )4 p
.

0 (Tk )1G(q0 (T 1
k ) )2S

.
(Tk ) y q0 (T 2

k )

K(q0 (T 2
k ) )

2
q0 (T 1

k )

K(q0 (T 1
k ) )
z

and this gives a contradiction since the last term in the above equality is dif-

ferent from zero gsince S
.
(Tk )4

q0 (T 2
k )2q0 (T 1

k )

e(q0 (T 2
k ) )2e(q0 (T 1

k ) )
, q0 (T 1

k )Dq0 (T 2
k )h .

Since qs has to be discontinuous in Tk , a new shock line (which we will de-
note again with x4S(t)) has to form in (s(Tk ), Tk ) ). Even if p

.
0 is slowly vary-

ing so to have a solution with only one shock after Tk , we cannot repeat now
the argument used in Theorem 3.1 because qr (t) is no more given by qs (t) for
tETk . A similar problem appeared in the case of p

.
0 piecewise constant (see

[1]). It was shown there that after Tk a solution with one shock exists up to the
time when the new shock line reaches the fixed boundary and then one has a
new jump in qs . Hence in that case the unique jump in p

.
0 trigges an infinite se-

quence of solutions with one shock. A similar behaviour happens in the present
more general case; a unique shock in Tc generates a global in time solution
with a sequence of shocks (see fig. 1). The main point is to prove the local exis-
tence after Tk of a solution in the sense of Def. 3.1.

To give a better idea of the proof in the next section we will simulate a simi-
lar situation imposing a jump of p

.
0 in Tk . Infact this gives an instantaneous

jump in qs (with qs (T 1
k )Dqs (T 2

k )) and a fixed point argument is needed to
show that the solution can be continued after Tk .

This case has its own interest since it considers the case of a discontinuous
p
.

0 , thus generalizing the «explicit» example given in [1]. In Section 5 we will
return to the case of a smooth p

.
0 and prove local existence after Tk with a simi-

lar method as the one of Sect. 4 and with suitable assumptions on the data. Let
us remark here that the free boundary x4s(t) will be globally piecewise C 1.
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Figure 1. – Propagation of the shock.

4. – Fixed point.

We assume in this section that k is slowly varying so that d 2

dz 2 g z

k
hF0 (see

Remark 2.2).
As for p0 (t) for the sake of simplicity we assume

p
.

0 (t)4
.
/
´

p
.

0
2 , tETk ,

p
.

0
1 (t), tDTk ,

(4.1)

where p
.

0
1 (t) is increasing, p

.
0
2 is a given constant. and p

.
0
1 (Tk )D p

.
0
2 (Tk ).

This implies that for tETk q is the solution of the classical Green-Ampt
model, so that

q4F 21 (p
.

0
2 )4 q04const

(F defined in (2.2)).
Then we have a shock line starting from (s(Tk ), Tk ), infact we can deter-
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mine qs (Tk
1 )4qs

1 from (3.4) which in this case becomes

p
.

0
1 (Tk )4F(qs

1 )1 f (qs
1 )(4.2)

where

f (z)4
q02z

e(q0 )2e(z)
g q0

k(q0 )
2

z

k(z)
h .(4.3)

From Lemma 2.1 of [1] we have that there exists a unique qs
1 satisfying (4.2)

and

q0Eqs
1EF 21 (p

.
0
1 (Tk ) )4Q(Tk ) .(4.4)

We will prove the following

THEOREM 4.1. – Under assumptions (1.6), (1.7) and (4.1) there exists a
unique solution in the sense of Def. 3.1 for the problem (1.1)-(1.5) for t in a
small interval after Tk .

PROOF. – We use a fixed point argument. We proceed in a different way
than in [3], since we assume qs (t) instead of q0 (t) given. This seems to us more
close to the physical situation.

For a fixed TD0 we introduce the set

X(T , L1 )4mqs (t)�C(Tk , Tk1T), qs (Tk )4qs
1 ,

0E q0EqsEQ(t), 0E
qs (t2 )2qs (t1 )

t22 t1

GL1 for t2D t1n
where T , L1 are to be determined later and

q04F 21 (p
.

0
2 ), Q(t)4F 21 (p

.
0
1 (t) ),(4.5)

and qs
1 defined in (4.2).

For a qs selected in X(T , L1 ) we find s(t) as

s(t)4s(Tk )1s
Tk

t

qs (t)

e(qs (t) )
dt , TkE tETk1T .(4.6)

Then we solve the first order equation in the domain 0ExEs(t), tDTk

with data qs on x4s(t) and q0 on t4Tk , 0ExEs(Tk ). This problem has a



ON THE EXISTENCE OF SHOCK PROPAGATION ETC. 333

unique entropy solution (see previous section)

q4
.
/
´

q0 , 0GxES(t),

qs (t), S(t)ExEs(t), TkE tET1Tk ,
(4.7)

where t is given by

t4e 8 (qs (t) )(x2s(t) )1t ,

and S(t) is solution of the following equation:

S
.
(t)4

q02qr (t)

e(q0 )2e(qr (t) )
, S(Tk )4s(Tk ),(4.8)

qr (t)4qs (t)(4.9)

where

t4e 8 (qs (t) )(S(t)2s(t) )1t .(4.10)

Now we define qAs (t) by solving the equation

H(qAs (t) )4 p
.

0 (t)1G(qr (t) )2 f (qr (t) )(4.11)

with G , H defined in (2.5), f in (4.3). The relation (4.11) is simply relation (3.4)
in the present case (q04ql ).

Then (4.11) defines the mapping

Rqs4 qAs , R : XKC(Tk , Tk1T).

We want to prove that for suitable T and L1 , R is a contraction.
Then we we have first to prove the claim

q0E qAsEQ(t).(4.12)

From (4.11) and from (4.5) we have

F(qAs )1G(qAs )GF(Q(t) )1G(qr (t) )EF(Q(t) )1G(Q(t) )

hence qAsEQ(t).
The lower estimate comes from the fact that, from (4.11) at t4Tk , we have

qAs (Tk )4qs
1 and from the estimate qA8sF0, that we are going to prove.

Let us prove that

0G qA8sGL1 ,(4.13)
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for suitable L1 , T To get the lower estimate formally we differentiate (4.11)
obtaining

H 8 (qAs ) qA8s4 p
..

0 (t)1 (G 82 f 8 )(qr (t) ) q 8r(4.14)

From (2.5) and (4.3) we obtain

(4.15) (G 82f 8 )(z)4g12 e 8 (z)

e 8 (z)
hg2 1

e 8 (z)

d

dz
g z

k
hhy12 e 8 (z)

e 8 (z )

d

dz
g z

k
h N

z×

d

dz
g z

k
h z ,

with z, z× suitable values in (q0 , z), zD q0 .
Since zE z× and e 8 increasing, we have

0E
e 8 (z)

e 8 (z)
E1.

Moreover, since d 2

dz 2 g z

k
hD0 and z×Ez

0E

d

dz
g z

k
h N

z×

d

dz
g z

k
h E1.

Then

0E (G 82 f 8 )(z)E2
1

e 8 (z)

d

dz
g z

k
h4G 8 (z) .(4.16)

Recalling that qr (t)4qs (t) (see (4.9) (4.10)) we have

qr8 (t)4
qs8 (t)

dt

dt

(4.17)

where

dt

dt
4

12e 8 (qs (t) s
.
(t)1e 9 (qs (t) ) qs8 (t)(S(t)2s(t) )

12e 8 (qs (t) ) S
.
(t)

.(4.18)

We remark that

0E12e 8 (qs (t) ) S
.
(t)412

e 8 (qs (t)

e 8 (q)
E1,(4.19)
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with q� (q0 , qs (t) ), and that

2e 8 (qs (t) ) s
.
(t)1e 9 (qs (t) ) q 8s (t)(S(t)2s(t) )D0,

for T sufficiently small such that

TE
Ne 8 (Q)Nq0 /e(q0 )

E2g Q

e(Q)
1

1

Ne 8 (Q)N
h L1

,(4.20)

where E24 sup
q

e 9 (q), and Q4 sup
TkE tE2Tk

Q(t).

For T satisfaying (4.20) we have that (see (4.18) and (4.19))

dt

dt
F1 .(4.21)

Therefore q 8r F0 and consequently from (4.14) (remarking that H 8F0) we
have qA8sF0.

Let us prove the upper estimate of the claim, that is qA8sGL1 . From (4.21)
and (4.17) we have that

q 8r G
L1

dt

dt

EL1 .

Taking into account (4.16), in order to estimate qA8s we need to estimate the
following

0E
(G 82 f 8 )(qr )

H 8 (qAs )
q 8r E

21/e 8 (qr ) d

dz
g z

k
h N

qr

2
(12e 8 (qAs ) s

.
)

e 8 (qAs )
k2 e 8 (qAs ) s

.

k
1

d

dz
g z

k
h N

qAs

l L1 .(4.22)

We can express the quantities in (4.22) as

e 8 (qAs )4e 8 (qr )1e 9 (q×)(qAs2qr ).

We have that, if qAsDqr , then Ne 8 (qAs )NENe 8 (qr )N; if qAsEqr , then NqAs2qrNE

(qr2q0 )GL1 T .
Henceforth in any case

Ne 8 (qAs )NGNe 8 (qr )N1E2 L1 T .(4.23)
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Moreover

d

dz
g z

k
h N

qr

4
d

dz
g z

k
h N

qAs
1

d 2

dz 2 g z

k
h N

q× (qr2qAs ),

where q× stays between qr and qAs .
Proceeding as above we have

d

dz
g z

k
h N

qr

G
d

dz
g z

k
h N

qAs
1D2 L1 T(4.24)

with D24 sup
q

d 2

dq 2 g q

k(q)
h .

Substituting in (4.22) we have

(G 82 f 8 )(qr ) q 8r
H 8 (qAs )

GC2 L1 (11C3 L1 T)(11C4 L1 T)(4.25)

where

C24
1

12e 8 (Q) q0 /e(q0 )
E1, C34

E2

Ne 8 (Q)N
, C44

D2

d

dz
g z

k
h N

q0

.(4.26)

For T sufficiently small, since C2E1, we have still

C2 (11C3 L1 T)(11C4 L1 T)E1.(4.27)

Eventually the claim is proved choosing L1 so that

0E sup
p
..

0

H 8
GL1 [12C2 (11C3 L1 T)(11C4 L1 T) ](4.28)

which is possible for T satisfying (4.27).
The two Claims prove that R maps the closed, convex and compact set X

into itself.
In order to prove the continuity of R in the chosen topology, we consider

two elements q 1
s , q 2

s in X , and we estimate, for any tET (shifting the origin of
time to Tk), the difference

qA1
s2qA2

s4H 21 (p
.

01G(q 1
r )2 f (q 1

r ) )2H 21 (p
.

01G(q 2
r )2 f (q 2

r ) ),(4.29)

which is in turn estimated in terms of the difference

q 1
r 2q 2

r 4q 1
s (t 1 )2q 2

s (t 2 ),(4.30)



ON THE EXISTENCE OF SHOCK PROPAGATION ETC. 337

with

t i4 t2e 8 (q i
r )(S i (t)2Si (t) )(4.31)

and Si (t)4si (t i (t) ), i41, 2 .
From (4.31) we have

(4.32) t 12t 24e 8 (q 2
r )(S 22S2 )2e 8 (q 1

r )(S 12S1 )4

4e 9 (q×)(q 2
r 2q 1

r )(S 22S2 )1e 8 (q 1
r )[ (S 22S 1 )1 (S12S2 ) ],

where

(S 22S2 )(t)4 (S
.

22S
.

2 )(j) tE0,(4.33)

(S 22S 1 )(t)4 (S
.

22S
.

1 )(j) t ,(4.34)

(S12S2 )(t)4 s
.

1 (t)(t 12t 2 )1s
0

t 2

(s
.

12s
.

2 )(t) dt ,(4.35)

with

q0

e(q0 )
ES

.
iE

Q

e(Q)
,

1

e 8 (Q)
ES

.
iE

1

e 8 (q0 )
, i41, 2 .

Now, recalling the expression of S
.

i (t), we can estimate the difference S
.

22S
.

1

in (4.34) in terms of q 1
r 2q 2

r , obtaining

S
.

12S
.

24
(q02q 1

r ) e 8 (q)2 (e(q0 )2e(q 1
r ) )

(e(q0 )2e(q 1
r ) )(e(q0 )2e(q 2

r ) )
(q 1

r 2q 2
r ).(4.36)

From the above estimates, (4.32) gives

Nt 12t 2NG
1

12e 8 (q 1
r ) s

.
1 (t)

[C5 TVq 1
r 2q 2

r V1C6 TVq 1
s 2q 2

s V](4.37)

with

C54 sup
q

e 9 (q) y Q

e(Q)
1

1

Ne 8 (Q)N
1

Q2q0

Ne 8 (Q)N2 (q 1
s 2q0 )

z ,

and

C64Ne 8 (q0 )N
Ne 8 (q0 )NQ1e(q0 )

[e(Q) ]2
.
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Remarking that (4.30) can be espressed as

q 1
r 2q 2

r 4 (q 1
s )8 (t)(t 12t 2 )1 (q 1

s 2q 2
s )(t 2 ) ,

we have from (4.37)

Vq 1
r 2q 2

r VG
11C7 T

12C8 T
Vq 1

s 2q 2
s V(4.38)

where

C74
L1 C6

11Ne 8 (Q)N Q

e(Q)

, C84
L1 C5

11Ne 8 (Q)N Q

e(Q)

,

under the assumption

TE
1

C8

,(4.39)

that guarantees the positivity of the constant in (4.38).
Coming back to (4.29) we have

VqA1
s2qA2

s VG sup
q

G 82 f 8

H 8
Vq 1

r 2q 2
r V ,(4.40)

which, recalling (4.25) and (4.38), finally gives

VqA1
s2qA2

s VGC9
11C7 T

12C8 T
Vq 1

s 2q 2
s V ,(4.41)

with C9E1 given by (4.29).
From (4.41) we have that the operator R is a contraction if

TE
12C9

C9 (C71C8 )
. r(4.42)

5. – Generalization.

In this section we want to extend the results of existence and uniqueness of
the solution proved in previous section (see Thm 4.1) to the case of a shock line
starting at (s(Tk ), Tk ) ), due to a discontinuity of q0 (Tk ).

We assume that p0 (t) is continuous and such that only one shock is formed
in S c and that the shock line reaches x40 at t4Tk , so that the discontinuity
of q becomes a discontinuity of q0 (Tk ) and instantaneously a discontinuity of
qs (Tk ).
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Let us assume moreover that

0Eqx (x , Tk )EL0(5.1)

with L0 sufficiently small.
We remark that this hypothesis is consistent with the assumption we have

done that only one shock is present between Tc and Tk , see Sect. 2.
We start determining q 1

s that in this case is the unique solution of

.
/
´

p
.

0 (Tk )4F(q 1
s )2G(q 1

0 )1G(q 2
s )1F(q 2

s , q 1
s ),

p
.

0 (Tk )4H(q 2
s )2G(q 1

0 )1F(q 2
0 , q 1

0 ),
(5.2)

with

F(q 2 , q 1 )4
q 22q 1

e(q 2 )2e(q 1 )
yg q

k
h22g q

k
h1z .(5.3)

Equations (5.2) have been obtained from (1.5) at T 1
k and T 2

k respecti-
vely.

The proof of the theorem of existence and uniqueness of the solution of
problem (1.1)-(1.5) can be obtained following a fixed point argument as in pre-
vious section remarking that the mapping Rqs4 qAs is defined now by

H(qAs (t) )4 p
.

0 (t)1G(q0 )2G(ql )1G(qr )2F(ql , qr ).(5.4)

Remarking that G(q0 )2G(ql )E0 because of the assumption (5.1) and
G 8D0, and that F(ql , qr )D0, from (5.4) we immediately obtain

qAsEQ(t)4F 21 (p
.

0 (t) ).

Differentiating (5.4) we have

(5.5) qA8s4
1

H 8 (qAs )
kp..01G 8 (q0 ) q 80 1gG 8 (qr )2

¯F

¯qr
h q 8r 2gG 8 (ql )2

¯F

¯ql
h q 8l l .

Then we need an estimate of the last term in (5.5). We have

(5.6) gG 81
¯F

¯ql
h (ql )42

e 8 (ql )

[e 8 (q) ]2

d

dz
g z

k
h N

q×

g12 e 8 (q)

e 8 (ql )
hu12

e 8 (q)

e 8 (ql )

d

dz
g z

k
h N

ql

d

dz
g z

k
hN

q×

v ,

with q, q× suitable values in (ql , qr ).
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From the hypotheses on e and on k we have, recalling the expression of
H 8 (qAs )

(5.7) 0E
gG 81

¯F

¯ql
h (ql )

H 8 (qAs )
E

2
e 8 (ql )

[e 8 (q) ]2

d

dz
g z

k
h N

q

2
12e 8 (qAs ) s

.

e 8 (qAs )
y d

dz
g z

k
h N

qAs

2
e 8 (qAs ) s

.

k(qAs )
z
G

[11C3 (Q2q0 ) ](11C3 L1 T) C2 (11C4 L1 T)4C9 [11C3 (Q2q0 ) ],

with C2 , C3 , C4 defined in (4.26), q0 denoting q(0 , T 1
k ), and C9E1 (see

4.27).
Let us remark that the coefficients of q 80 and q 8l are bounded and q 80 and q 8l

are bounded by L0 , so in order to ensure q 8s F0, we assume L0 to be such
that

L0G inf
t

p
..

0

C9 [11C3 (Q2q0 ) ]
.

Then we can choose L1 such that

0E
1

H 8 (qAs )
kp..01G 8 (q0 ) q 80 2gG 8 (ql )2

¯F

¯ql
h q 8l lGL1 (12C9 ) ,(5.8)

and consequently, remarking that the term qAs
1

H 8 (qAs )
gG 8 (qr )2 ¯F

¯qr
h q 8r satis-

fies again (4.25), we have for T sufficiently small

0G qA8sGL1 .

The proof of the continuity of the operator R follows as before estimating
the difference qA1

s2qA2
s , that now implies, besides the term G(q 1

r )2G(q 2
r ), the

estimates of G(q 1
l )2G(q 2

l ) and F(q 1
l , q 1

r )2F(q 2
l , q 2

r ).
Proceeding as in the previous section we obtain

q 1
l 2q 2

l 4q(h 1 , 0 )2q(h 2 , 0 ),(5.9)

with h i given by

t4e 8 (q(h i , 0 ) )(S i (t)2h i ).(5.10)

Using the above definition of h i we have

h 22h 14
e 8 (q(h 1 , 0 )

e 9 (q)(S 22h 2 )2e 8 (q(h 1 , 0 ) )
(S

.
22S

.
1 ) t ,(5.11)
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where the difference S
.

22S
.

1 can be estimated as in (4.36)

(5.12) S
.

12S
.

24
(q 1

l 2q 2
l )[ (e(q 2

l )2e(q 2
r ) )2 (e 8 (ql )(q 2

l 2q 2
r ) ]

(e(q 1
l )2e(q 1

r ) )(e(q 2
l )2e(q 2

r ) )
2

(q 1
r 2q 2

r )[ (e(q 2
l )2e(q 2

r ) )2 (e 8 (qr )(q 2
l 2q 2

r ) ]

(e(q 1
l )2e(q 1

r ) )(e(q 2
l )2e(q 2

r ) )
.

From (5.9) we obtain then

Vq 1
l 2q 2

l VG
C10

12C11 T
Vq 1

r 2q 2
r VT ,(5.13)

where C10 and C11 can be computed using (5.11), (5.12).
We remark that C11 is multiplied by T , so that estimate (6.13) makes sense

assumed

TE
1

C11

.(5.14)

Now let us consider the difference

(5.15) F (q 1
l , q 1

r )2F(q 2
l , q 2

r )4 (S
.

12S
.

2 ) y q 1
l

k(q 1
l )

2
q 1

r

k(q 1
r )
z1

S
.

2k d

dz
g q

k
h N

ql

(q 1
l 2q 2

l )2
d

dz
g q

k
h N

qr

(q 1
r 2q 2

r )l ,

where again S
.

12S
.

2 is given by (5.12), so that

NF(q 1
l , q 1

r )2F(q 2
l , q 2

r )NGC12 Nq 1
l 2q 2

l N1C13 Nq 1
r 2q 2

r N ,(5.16)

where C12 and C13 are obtained from (5.12) and (5.15).
We remark also that the difference q 1

r 2q 2
r can be expressed in terms of

q 1
s 2q 2

s as we did in Sect. 4, recalling that the difference t 12t 2 now depends
on q 1

l 2q 2
l too, that in its turn is estimated by Vq 1

r 2q 2
r V multiplied by T , so that

the constants C7 , C9 in (4.38) have to be modified.
Finally we have

VqA1
s2qA2

s VGC9
11C7 T

12C8 T
g11 C10 T

12C11 T
h Vq 1

s 2q 2
s V ,(5.17)
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where

C94C9y11 11C3 (Q2q0 )

12C11 T
C10 TzE1,

and Q defined as in the previous section.
This proves the contractivity of the operator R for T sufficiently small and

hence the existence of a solution in the sense of Def. 3.1 locally after Tk .

A.1. – Qualitative description of the possible shocks.

If p
.

0 grows fast enough (see Sect. 2) then a shock starts at the point S c

given by

S c4 (xc , Tc ), 0ExcEs(Tc ), TcD0,(A.1)

where x4xc , t4Tc is the cusp of the envelope of the characteristics obtained
assuming given qs (t) on s(t), for t4t .

The parametric equations of the envelope are (see classical theory [2])

.
`
/
`
´

x4s(t)1
e 8 qs2e

ee 9 q 8s
N

t

t4e 8
e 8 qs2e

ee 9 q 8s
N

t
1t

(A.2)

Differentiating (A.2) we have

.
`
/
`
´

dx

dt
4

2qs

e N
t
1

e2e 8 qs

(ee 9 q 8s )2
(ee 9 q 8s )8 Nt ,

dt

dt
4e 8

dx

dt
N

t
.

(A.3)

From (A.3) we have that the envelope has either two branches, if dx

dt
and

consequently dt

dt
becomes zero at the cusp, or one branch if dx

dt
does not van-

ish. Moreover being dt

dx
4e 8E0 the branches are decreasing and, since

d 2 t

dx 2
4e 9 q 8s

dt

dx
,(A.4)

the concavity depends on the sign of dx

dt
.
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Figure 2. – Instantaneous shock.

REMARK 5.1. – Let us remark that the condition (2.11) given in Sect. 2 is
equivalent to have xE0 in (A.2) so that the envelope lies outside our domain.
From (A.2) we have that anyhow xEs(t) and tDt .

Let us consider a finite interval (t 1 , t 2 ) with t 1Dt 0 , defined in Sect. 2,
and assume that the characteristics in this interval form a shock.

We can divide the possible shocks in four different classes, according with [9]:

1) instantaneous shock: all characteristics meet in S c ,

2) «fast» shock: dx

dt
E0, S c belongs to the characteristic starting from

(s(t 1 ), t 1 ),

3) «slow» shock: dx

dt
D0, S c belongs to the characteristic starting from

(s(t 2 ), t 2 ),

4) shock with two branches: xc is the maximum of x(t) and Tc is the mini-
mum of t(t) (see A.2).
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Figure 3. – «Fast» shock.

1 . I n s t a n t a n e o u s s h o c k

The generic characteristic passing through S c is

Tc2t

xc2s(t)
4e 8 (qs (t) ), t 1EtEt 2 ,(A.5)

with

xc4s(t 1 )1
Tc2t 1

e 8 (qs (t 1 ) )
.

Let us define the «base» function Eb (see [9]) as follows

Eb (t)4e 8 (qs (t) ).(A.6)
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Figure 4. – «Slow» shock.

We have that

Eb (t)E0,

E 8b (t)4
1

xc2s
g211s

. Tc2t

xc2s
h42

s
..

e

(xc2s) q 8s
D0,

(A.7) E 9b (t)4
1

xc2s
ys

.. Tc2t

xc2s
12 s

. s
..

e

(xc2s) q 8s
z4

2
q 8s E 8b

e s
.. (s

..
Eb12 s

.
E 8b )D0.

The function Eb can be used as reference function in order to characterize
the other classes of shocks.
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2 . « f a s t » s h o c k

Let us define again the function

E(t)4e 8 (qs (t) ).(A.8)

The condition dx

dt
E0 characterizing this case through (A.3) can be expressed

in the form

E 9E2
q 8s E 8

e s
.. (s

..
E12 s

.
E 8 ).(A.9)

Let us remark that if we consider the equality in (A.9) then Eb is a solution of
the differential equation, while E , with 0ExcEs(Tc), TcD0, is a subsolution.

Figure 5. – Two branches shock.

3 . « s l o w » s h o c k

Defining again E(t) through (A.8) the condition dx

dt
D0 is expressed by

E 9D2
q 8s E 8

e s
.. (s

..
E12 s

.
E 8 ).(A.10)
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4 . t w o b r a n c h e s s h o c k

In this case we have a maximum for the function x(t) obtained imposing
dx

dt
40; this gives the condition

E 9 (Tc )42
q 8s E 8

e s
.. (s

..
E12 s

.
E 8 )NTc

.(A.11)
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