bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Ćwiszewski, Aleksander and Kryszewski, Wojciech:
Approximate smoothings of locally Lipschitz functionals
Bollettino dell'Unione Matematica Italiana Serie 8 5-B (2002), fasc. n.2, p. 289-320, Unione Matematica Italiana (English)
pdf (366 Kb), djvu (419 Kb). | MR1911193 | Zbl 1177.49028

Sunto

L'articolo tratta il problema dell'approssimazione di funzionali localmente Lipschitziani. Viene proposto un concetto di approssimazione che si basa sull'idea dell'approssimazione in grafico del gradiente generalizzato. Si prova l'esistenza di tali approssimazioni per funzionali localmente Lipschitziani definiti in domini aperti di $\mathbb{R}^{N}$. Infine, si presenta un procedimento di approssimazione normale regolare di insiemi regolari (introdotti in [13]).
Referenze Bibliografiche
[1] J.-P. AUBIN, Optima and equilibria, Springer-Verlag, Berlin, Heidelberg 1993. | MR 1217485 | Zbl 0781.90012
[2] J.-P. AUBIN-I. EKELAND, Applied Nonlinear Analysis, Wiley, New York 1986. | MR 749753 | Zbl 0641.47066
[3] J.-P. AUBIN-H. FRANKOWSKA, Set-valued Analysis, Birkhäuser, Boston 1991. | MR 1048347 | Zbl 0713.49021
[4] R. BADER-W. KRYSZEWSKI, On the solution sets of differential inclusions and the periodic problem, Set-valued an 9, no. 3 (2001), 289-313. | MR 1863363 | Zbl 0991.34011
[5] J. BENOIST, Approximation and regularization of arbitrary sets in finite dimension, Set Valued Anal., 2 (1994), 95-115. | MR 1285823 | Zbl 0803.49017
[6] J.-M. BONISEAU-B. CORNET, Fixed point theorem and Morse's lemma for Lipschitzian functions, J. Math. Anal. Appl., 146 (1990), 318-322. | MR 1043103 | Zbl 0721.47039
[7] J. M. BORWEIN-Q. J. ZHU, Multifunctional and functional analytic techniques in nonsmooth analysis, in Nonlinear Analysis, Differential Equations and Control (F. H. Clarke and R. J. Stern, eds.), Kluwer Acad. Publ. (1999), 61-157. | MR 1695006 | Zbl 0983.49011
[8] A. CELLINA, Approximation of set-valued functions and fixed point theorems, Ann. Mat. Pura Appl., 82 (1969), 17-24. | MR 263046 | Zbl 0187.07701
[9] F. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley, New York 1983. | MR 709590 | Zbl 0582.49001
[10] F. H. CLARKE-YU. S. LEDYAEV-R. J. STERN, Complements, approximations, smoothings and invariance properties, J. Convex Anal., 4 (1997), 189-219. | MR 1613455 | Zbl 0905.49010
[11] B. CORNET-M.-O. CZARNECKI, Représentations lisses de sous-ensemble épi-lipschitziens de $\mathbb{R}^n$, C. R. Acad. Paris Sèr. I, 325 (1997), 475-480. | MR 1692310 | Zbl 0893.49012
[12] B. CORNET-M.-O. CZARNECKI, Smooth normal approximations of epi-Lipschitzian subsets of $\mathbb{R}^N$, to appear in SIAM J. Control Opt. | MR 1675157 | Zbl 0945.49014
[13] A. ĆWISZEWSKI-W. KRYSZEWSKI, Equilibria of Set-Valued Maps: a variational approach, Nonlinear Anal., 48 (2002), 707-746. | MR 1868111 | Zbl 1030.49021
[14] A. ĆWISZEWSKI-W. KRYSZEWSKI, Partial differential equations with discontinuous nonlinearities – approximation approach, in preparation.
[15] R. E. EDWARDS, Functional analysis, Theory and applications, Holt, Rinehart and Winston, New York 1965. | MR 221256 | Zbl 0182.16101
[16] L. C. EVANS, Partial differential equations, Graduate Studies in Math., Vol. 19, American Math. Soc. 1998. | Zbl 0902.35002
[17] L. GÓRNIEWICZ, Topological approach to differential inclusions, Topological Methods in Differential Equations and Inclusions, (eds. A. Granas, M. Frigon), NATO ASI Series, Kluwer Acad. Publ. 1995, 129-190. | MR 1368672 | Zbl 0834.34022
[18] H. HARTMAN, Ordinary differential equations, Birkhäuser, Boston 1982. | MR 658490 | Zbl 0476.34002
[19] W. KRYSZEWSKI, Graph-approximation of set-valued maps on noncompact domains, Topology and Appl., 83 (1998), 1-21. | MR 1601626 | Zbl 0933.54023
[20] W. KRYSZEWSKI, Graph approximation of set-valued maps. A survey, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis 2, J. P. Schauder Center for Nonlinear Studies Publ., Toruń 1998, 223-235. | Zbl 1086.54500
[21] W. KRYSZEWSKI, Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń 1997.
[22] R. NARASIMHAN, Analysis on Complex Manifolds, Masson & Cie (Paris), North Holland, Amsterdam 1968. | Zbl 0188.25803
[23] S. PLASKACZ, Periodic solutions of differential inclusions on compact subsets of $\mathbb{R}^n$, J. Math. Anal. Appl., 148 (1990), 202-212. | MR 1052055 | Zbl 0705.34040
[24] R. T. ROCKAFELLAR, Clarke's tangent cones and boundaries of closed sets in Rn, Nonlinear Anal., 3 (1979), 145-154. | MR 520481 | Zbl 0443.26010
[25] J. SCHWARTZ, Nonlinear functional analysis, Gordon & Breach, New York 1969. | Zbl 0203.14501
[26] J. WARGA, Derivate containers, inverse functions, and controllability, in Calculus of Variations and Control Theory, D. L. Russell, ed., Academic Press, New York 1976, 13-46. | MR 427561 | Zbl 0355.26004
[27] J. WARGA, Optimal Control of Differential and Functional Equations; Chap. XI (Russian Translation) Nauka, Moscow 1978. | Zbl 0253.49001
[28] J. WARGA, Fat homeomorphisms and unbounded derivare containers, J. Math. Anal. Appl., 81 (1981), 545-560. | MR 622836 | Zbl 0476.26006
[29] M. WILLEM, Minimax Theorems, Birkhäuser, Boston 1996. | MR 1400007 | Zbl 0856.49001
[30] H. WHITNEY, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89. | MR 1501735 | Zbl 0008.24902

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali