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Bollettino U. M. 1.
(8) 5-B (2002), 279-287

Some Properties of Neutral Differential
Systems Equations (¥).

BoZENA MIHALIKOVA

Sunto. — Nel lavoro vengono esaminate le caratteristiche oscillatoriche delle soluzioni
dei sistemi di equazioni differenziali di tipo meutro.

Summary. - We study oscillatory properties of solutions of the system of differential
equations of meutral type.

In this paper we consider systems of neutral differential equations of the
form:

(@) —pray(E—711) = a,(B) fi(2(go()))
(X2 (8) — paa(t — 72))" = ag(?) fola;(g1(2)))

oy

The following conditions are assumed to hold without further mention:
(a) p;, i, 1=1, 2 are positive numbers, 0 <p; <1, i=1, 2;

(b) a;eC(R., R,), 1=1, 2 are not identically zero on any subinterval
[T, )c[0, ») and

©

fal(s) ds = «;
(¢) g;eC(R,, R,) is a nondecreasing function, tlirn gi(t)y=0,1=1,2
and ¢, (t) <t, go(t) + 75 <t o

(d) f;eC(R, R) is a nondecreasing function, fj(u)u >0 for u=0
and

tim e 7
u—0 u

>0, 1=1, 2.

(*) The paper has been supported by the grand Vega no. 1/7466/20.
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For any «x;(t) we define u;(t) by
(2) /M/l(t)le(t)_plﬂﬁ(t_fz), 2=1,2

For ¢, =0 we define
t = mm{t -7 tlg;gi(t), 1=1, 2}.

A vector function x = (a;, ;) is defined to be a solution of the system (1) if
there exists a t, = 0 such that x is continuous on [¢;, «), u;(t), 1 =1, 2 are con-
tinuously differentiable on [{,, ) and x satisfies system (1) on [{;, ).

As it is customery, we restrict our attention to those solution x = («;, x») of
the system (1) which satisfy

sup { |2 (t)| + |a2(t)|:t=T} >0 for any T=0

(the so-called proper solution). Such a solution is defined to be nonoscillatory
if there exists a Ty = 0 such that its every component is different from zero for
all £ =7T,. Otherwise a solution x is defined to be oscillatory.

Surveying the rapidly expanding literature devoted to the study of oscilla-
tory and asymptotic properties of neutral differential equations, one finds that
few papers concern systems of neutral equations (for example [4]). In this pa-
per we give theorems on the relation between boundedness and oscillation of
components of solutions for the system (1). These criteria extend those intro-
duced in [5, 6].

We start with a preliminary analysis of the asymptotie behavior of possible
nonoscillatory solution of (1).

Let x = (x;, x3) be a nonoscillatory solution of the system (1). Then from
1), u;(t),i =1, 2 are eventually monotone, so that u;(¢) have to be of constant
sign. Therefore, either

3 (W) w;(t) >0, 1e{l,2}
or
4) (W) w;(t) <0, 1e{l,2}

for all sufficiently large t. Denote by N * [or N ~] the set of components of all
nonoscillatory solutions (x;, ;) of system (1) such that (3) [or (4)] is
satisfied.

LEMMA 1. - Let x;e N *, ie {1, 2}. Then for every T = t, and every integer
n >0 there exists T, =T such that t —nt; =T, 1=1, 2 and

5) EIOIE iﬂ pi st — ) | -
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Proor. — Using the relation
w; () = w;(t) + pw;(t —7;)
repeatedly, we find
|2 (t) | = 'Eopi"|ui(t —jr) | +p! G-+ 1) T)| = Eopi"|u7;(t —jTi) |
j= j=
for t=T, as claimed. =

LEMMA 2. — Let x;e N ~,1e {1, 2}. Then for every T = t, and every integer
n >0 there exists T, =T such that

Z |u(t+]rl|)

J
1

(6) |:(0) | =

Proor. — Using the relation
901(1; + Ti) - 'le(t + 'L'i)
Di

x;(t) =

repeatedly, we find

|a;(t+ (m+1)7;)| 2 |u(t+jt )| ﬁ: |u; (t + j7;) |

n+1 4
i p’L j=1 pi]

|; (1) | =

LEMMA 3. — Let ;e N, ie{1,2} and 0 <p;<1 Then limwu;(t)=0
lim (1) =0, ie {1, 2}. e

Proor. — Without loss of generality we assume that a;(f) > 0, u,(t) <0 for
t =1, Using (2) we obtain
a;(t) < pia;(t —7;) <pfa(t—27;) <...<pia;(t—nt;)

for t =ty +nt;, 1 =1, 2, which implies that tlim x;(t) = 0. Consequently we get
tlim w; () =0. = -

THEOREM 1. — Assume that (a)-(d) hold and 0<p, <1, i=1,2. Let
there exist integer numbers n =0, m =0 such that

(7)  lim sup faQ(s)fal(v) dvds >

t=® g 0]

1- 1-
plﬂ pzﬂlimsup lim sup ——.
1-p" 1-pg" u—0 filu) v—0  fo(v)
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Then every solution of (1) with a bounded first component is oscillatory
or x;(t), 1 =1, 2 tend monotonically to zero as t— .

ProoF. — Let x = (x;, x2) be a nonoscillatory solution of (1) with the boun-
ded first component. Without loss of generality we may assume that x;(f) >0,
21(g1(t)) >0 for t =T.

1. Assume first that x; e N* for t =T (2, > 0,u, > 0).

a) Let e N ™ and x,(f) >0, x2(go(£)) >0 for t = ¢, = T. From the se-
cond equation of (1) we get that u, (%) is an increasing function, therefore there
exists t; = ¢, such that u,(g,(t)) =c¢ >0 for ¢t =¢,. Taking into account Lem-
ma 1 (for ¢ =2, n = 0) we obtain x,(g»(t)) = us(gs(t)) >c, t =1, = t;. Using (d)
and integrating the first equation of (1) we have

t
® w () — () = (@) [ ar(s) ds.
ta

From (4) and (b) for t— o« we obtain hm %, (t) = o which contradicts the
boundedness of x;.

b) Let x,e Nt and x,(t) <0, 2:(g-(t)) <0 for t =ty = T. From the se-
cond equation of (1) we have that u,(¢) is an increasing function, u, (%) is the
decreasing function and therefore exist lim u,(t) =c¢=0 and hm U (t) =d <
0. We shall show that c=0, d =0. o

Let d <0. Then

03 (g2 (1) = U (g (1)) + paa(go(t) — 72) <up(ge(t)) <d
(g2 (D)) Sfi(d) <0 for t=1t=t,.

Integrating the first equation of (1) taking into account (b), (9) we get
tlim u,(t) = — o, which contradicts u,(t) >0 for ¢ =t,.

Let ¢ > 0. Then there exists a ¢; = ¢, such that for t = ¢,

©)

() =u @) +pra;E—71) >u(() >c¢>0
and in view of system (1) we have

(10) /Mz,(t) >f.2(C) G/z(t), t= tz = tl'

_ i
Multiplying (10) by A(t) = [a,(s) ds and integrating from t; to ¢ we get
t3

Us ( )
(11) A(t) g () — SuPtf (741(75) uy (83)) >fz((7)faz(3)fa1(?f) dvds.
<s< 1
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We obtain from (11) for t— o that

©

fa2(s)f@1(7)) dvds < o,
t3 t3
which implies that

o

lim faZ(s) fal(v) dvds =0

A0 n

This contradicts the assumption (7). Therefore tlim u, (t) =

Taking into account the monotonicity of u;, #, and Lemma 1 we get

w0 (t) <luy(t), 22 (g2 (1)) < lus(g2(2))

(12)
x1(g1(2) = kuy (g1 (1)),

m m

for t =T (T sufficiently large), where [ = Z pd, k= Z pi. Integrating the

first equation of (1) from ¢ to s, s =t and usmg monotomclty of f; and (12) we
obtain

Uy (1) = uy(s) — inf JMZ’LLZ(S) fal(z) dz
t

tsvss lup g (V)

J1(lug (g2 () S .
f — ) luy dvd
t<v<s Juy(gy(v)) thZ(Z)tfal(v) vdz

l ( S z
> ng DRSO tf la) folar (91 ) tf 0 (0) dodz

(g ) o
> téggs%ﬁ(lml(gl(s))) ltfaz(z)tfal(v) dvdz.

Hence for t =g,(s) <s we get

13 Lz g A0e@O) EEGOD [0 g
kl g1(s) <v<s lu2(g2(v)) kul(QZ(s)) 91(8) g1(s)

which contradiets (7).

c) Let xoe N 7, xy(t) <0. The system (1) implies that u,(t) is an increa-
sing function and there exists tlim uy(t) = a >0, which is contrary Lem-

ma 3.
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d) Let x,e N~ and a5(t) >0 for £ ={,. In view of (¢), Lemma2 (n=1)
and monotonicity of u, we obtain

1
(14)  x3(g2(t)) > — p—uz(gz(t) +79) > —u(g2(t) + 72) > —un(t),
2

for t?tlzto.

Integrating the first equation of (1) from ¢, to ¢ we have

— Uy (S
(15) u(t) —uy(¢;) = inf M a1 (s)(—uy(s)) ds.
t1sss<t (_’Z/Lz(S)) "
We see that u; >0, u/ >0 for t =%, =t, so therefore u,(g,(¢)) =c¢>0 and
Jo(u(g1(1))) = fo(e). Using this fact and integrating the second equation of (1)
from s to ¢, s =1, we get

t
(16) —us(8) = ua(t) — us() = £u(e) [ ax(2) dlz.

Combining (16), (15) we have

ORI gfst%fz( )f az<z>f a,(s)) ds dz.

We can proceed analogously as for the case b) the inequality (11) to get a
contradiction.

2. Assume that x;e N~ for t=t,. Then by Lemma3 lim x;(f) =0
Tim uy () = =
a) Let xoe N, x,(t) >0, x,(g2(¢)) >0 for t = ¢, = ¢,. Then we can pro-
ceed the same way as for the case 1a) to get (8) which is contradicts the nega-
tivity of u;.

b) Let x,(t) <0 and x5 N * or x5 N ~. From system (1) we have that
U, is a decreasing function and therefore exists hm () = @ <0, which is con-
trary to Lemma 3.

c¢) Let x,e N7, a5(t) > 0. In this case by Lemma 3 lim 22(t) = 0. The
system (1) has a nonoscillatory solution with the property hm x,(t) =
hm 2o (t) = [ |

LEMMA 4. — Assume that p; =1, ie {1, 2}.
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a) Let x;e N~ and x;(t) u; (t) >0 fort =t,,i1e {1, 2}. Then lim u;(t) =
0,ie{1,2}. o

b) The system (1) has mo solution with components x;eN ",
.')Cl(t) ui,(t) < 0, e {1, 2}

ProOF. — a) We assume that x;(t) > 0, u;(t) <0 and u; (t) > 0 for t = ¢,. The
proof in the case x;(t) <0 is analogous. Then exists tlim u;(t) = ¢ < 0. We sup-
pose that ¢<0. So there exists ¢, =%, such that ¢ <u,;(t) <c¢/2<0. Thus using (2)

c<ux;(t)—x;(t—1;) < g for t =t;.

Consequently

c c c

@) <x;t—t)+ = <2—+u;,(t—-271;) <...<n— +x;(t —nr;),

2 2 2

for t =t, + nt;. Chose a sequence {t,} such that t, =t; + nr;. Then
c

x;(t +nry) < nE + x;(t;)

and therefore lim «x;(t,) = —o. This is a contradiction with positivity of

a;(f). =

b) We suppose contrary. Let the system have a solution «,(t) >0,
x;e N~ and u; (t) <0 for ¢t = ;. The system (1) implies that x,(t) <0, x,e N ~
and w5 (£) > 0. Then there exist tlim () =a<0, tlim us(t) = b >0 and there

exists ¢, =1, such that a<wu,(#)<a/2<0, 0<b/2<u,(t)<b. Thus using (2)

a<ac1(t)—x1(t—r1)<%<0

b
0< E <x2(t)_.’)€2(t_72) <b
Consequently
a
xl(t) <n5 + xl(t_nfl)

1)
b
() > nE + x5(t — nT5).
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Chose sequences {t,}, {t.} such that t, = t; + nry, t,f = t; + nr, we get from
the (17) that x,(t,) = — o, 25(t,¥) — o, n— oo, which is a contradiction with
positivity of x; and negativity of v, =

THEOREM 2. — Assume that (a)—(d) hold and p; =1, 1 =1, 2. Let there exist
nteger numbers n>0, m >0 such that

(18) lim sup faz(s) f a,(v) dvds > —hm sup —— lim sup ——
t— o 0) g1(8) nm u—0 ﬁ(u) =0 fé(v)

Then every solution of (1) with a bounded first component is either oscillato-
ry or u;(t), 1=1, 2 tend monotonicaly to zero as t— oo.

PrROOF. — Assume that x = (x;, &) is a nonoscillatory solution of (1) with
the positive bounded first component. We can proceed exactly as in the proof
of Theorem 1. We shall discuss the possibilities 1a-d, 2a-c.

The proofs of cases 1a), 1d), 2a) are the same. In the case 1b) we are led to
(12) with the constant k =n, [ =m and so to (13) with these new constants,
which contradicts the assumption.

Lemma 4 implies that the cases 1¢), 2b) are impossible. In the case 2¢) from
Lemma 4 we see that that system (1) has a nonoscillatory solution with the
property tlingoui(t) =0,7=1,2. =

THEOREM 3. — Assume that (a)—(d) hold and 0 <p; <1, 1 =1, 2. Further
assume that

19)  lim sup f a5 (s) f a;(v) dvds >

= g )

1—p)(1—py) i li
(1=p)( —py) im sup - 7 (u) im sup ——= % (v)

Then every solution of (1) with a bounded first component is either oscillato-
ry or x;(t),1 =1, 2 tend monotonicaly to zero for t— .

t s
ProOOF. — Denote a = lim sup f as(s) f a,(v) dvds. Let integers n, m be
t— o gi(t) g1(8)
chosen such that 1 1

1- 1-
a > ?1 P2 lim sup lim s
1- panrl 1- p2m+1 u—0 fl(u) v—>0 fg(?})

Then the assertion of this theorem follows immediately from Theo-
reml. =
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THEOREM 4. — Assume that (a)—(d), hold and p;=1, 1 =1, 2. Further as-
sume that

t s
lim sup f a5 (s) f a,(v) dvds > 0.
1) 1)
Thus every solution of (1) with a bounded first component is either oscillato-
ry or u;(t), 1 =1, 2 tend monotonicaly to zero as t— .

REMARK 1. — For the case p; =0, i =1, 2 in the paper [6] and for the case
p2 = 0 in the paper [5] it is shown that condition (19) is sufficiently for the oscil-
lation all solutions with a bounded first component.

REMARK 2. - If a;(f) =1, fi(u) =u, 1 =1, 2, p, = 0 the system (1) is equiva-
lent to the differential equation

(x(t)) — pa(t — 7)) — a(t) x(g(t)) = 0.
Theorem 1,2 give results for this equation in paper [2].
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