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C 1, b-Partial Regularity of p-Harmonic Maps
at the Free Boundary.

THOMAS MÜLLER (*)

Sunto. – Dimostriamo la C 1, b-regolarità parziale fino alla frontiera libera delle map-

pe p-armoniche che minimizzano la p-energia sNDuNp dx.

Summary. – We prove the partial C 1, b-regolarity up to the free boundary of the p-har-

monic maps which minimize the p-energy sNDuNp dx.

1. – Introduction.

Let B be the open unit ball in Rn and S%RN a (k21)-dimensional submani-
fold of RN without boundary of class C 1, s , 0EsE1, 1GkGN11. Assume
u�H 1, p (B , RN ) is a minimizer for the functional

F(u)4s
B

ggij i u g ab ¯u i

¯x a

¯u j

¯x b
hp/2

dx , with pD2(1)

in the class of all maps v�H 1, p (B , RN ) with v (¯B)%S , ( gij ) and (g ab ) are uni-
formly elliptic, g is in C 0, s (RN ) and bounded, and g is in C 0, s (B). Generally we
call a map u which is a critical point of F p-harmonic. Note that this definition
is slightly different from the usual one, but it agrees in the case g4 id , g4 id .
In Theorem 8.2 we show that u�C 1, b

loc (V 0 ) for some relatively open subset
V 0%B and some 0EbEs , if we assume that S is a linear subspace V . We can
assume this if we can localize in the image, i.e. for some q 8Dp , for Hn2q 8-al-
most all points x�¯B there exists a neighborhood U(x) such that u(U(x) ) lies
completely in a N-dimensional coordinate neighborhood of S . Furthermore we
show that Hn2q (B 0V 0 )40 for some q 8DqDp . In particular we therefore
show that the first derivatives of u are Hölder continuous in Hn2q-almost all
boundary points x�¯B . In the special case p4n we therefore get everywhere
regularity. Partial C 1, b-regularity in the interior has been proven indepen-
dently by FUSCO&HUTCHINSON in [3] and GIAQUINTA&MODICA in [5]. These

(*) This research was supported by a grant of the DFG-Graduiertenkolleg «Nichtli-
neare Differentialgleichungen».
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authors use a result of UHLENBECK [8] and get partial regularity for the first
derivatives of minima of (1). Crucial for the methods in [3] is an estimate from
[8] for solutions of

div (NDuNp22 Du)40 .(2)

This estimate says for B2r%V and x , y�Br :

NDu(x)2Du(y)NEc Qsup
B2r

NDuN
Nx2yNa

r a
.(3)

Now we describe the methods we use.
Since all estimates are local, it is enough to prove estimates on B 14]x�

B : xnD0(. Furthermore we assume that we can localize in the image, and
therefore we can assume that S is a (k21)-dimensional subspace of RN . By re-
flection we get an estimate similar to (3) at the free boundary. Therefore, we
are able to adapt the technique of FUSCO&HUTCHINSON to the situation at the
free boundary: first we derive a Caccioppoli inequality at the free boundary
for solutions of (2). This Caccioppoli inequality leads to the study of a suitable
decay function, similarly as in FUSCO&HUTCHINSON. More precisely, by com-
parison with the solution of a suitable linear free boundary value problem, we
get a decay relation at the free boundary for

W(r)4Nj r N
p22 s–

Br
1

NDu2j r N
2 dx1 s–

Br
1

NDu2j r N
p dx ,

where j r is the matrix which arises from Dur »4 s–
Br

1

Dudx by projecting the

tangential derivatives onto V and by projecting the normal derivative onto V» .
Using only the estimates (3), we get by a local comparison principle (cp. [4]

and [3]) partial a-Hölder continuity at the free boundary for all aE1 and a de-
cay estimate for

r p s–
Br

1

NDuNp dx .

Again by a comparison principle we finally get partial Hölder continuity of the
first derivatives at the free boundary. Since we are arguing with the functional
F and not with the Euler equations, we can only treat minimizers (cp. [3]).

In the special cases k41 and k4N11 the above boundary value problem
(1) reduces to a Dirichlet problem with zero boundary values and the Neu-
mann problem resp. Among other things these cases have already been treat-
ed by HAMBURGER in [7]. However, in the case of the general free boundary
value problem as above, the choice of test functions is restricted further, so we
need different methods. In [2], DUZAAR&GASTEL show partial Hölder continu-
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ity up to the free boundary for p-harmonic maps between manifolds, which are
solutions to a free boundary value problem as above and which are locally min-
imizing. This result justifies our assumption that S is a linear subspace.

Our results are of interest especially in the case p4n , if we look at the ge-
ometric free boundary value problem for n-harmonic maps. For example, if we
try to find «nice» maps between B%RN and suitable domains in RN by mini-
mizing the energy, we would get regularity up to the boundary. Secondly, it is
a natural continuation of the results of DUZAAR&GASTEL.

We make the following general agreements about the notation we use: c is
always a universal constant which depends only on the data and which may
change from line to line. Dependence on any other quantities will be noted
explicitly.

The Greek indices a , b , g , R have values in ]1, R , n(, the Latin indices
i , j , k , R have values in ]1, R , N(. We use the convention of summation.
Finally v n is the volume of the n-dimensional unit ball.

I would like to thank Professor Kuwert for calling my attention to this
problem, and for continual support and various helpful ideas.

2. – Linear free boundary value problems.

In this section we will prove some fundamental properties of linear free
boundary value problems. First we give some Poincaré inequalities, which we
will use later. Always let pD1.

Notation:

V

Br

A 1

B

Ir

I

»4

»4

»4

»4

»4

»4

]x�RN : xk4R4xN40( ,

]x�Rn : VxVEr( ,

]x�A : xnD0( for A%%Rn ,

B1 ,

BrO ]xn40( ,

I1 .

Furthermore let

ux0 , r »4 s–
Br

1 (x0 )

udx ,

ux0 , r
! »4prV (ux0 , r ) ,

ux0 , r
» »4prV» (ux0 , r ) ,

where prV and prV» are the orthogonal projections onto V and V» respectively.
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With Theorem 5.15 from [1], we get

LEMMA 2.1. – Let u�H 1, p (BR
1 , RN ) with u(IR )%V . Then we have

R 2p s–
BR

1

Nu(x)2u !
0, R N

p dxGc s–
BR

1

NDuNp dx . r

Let

H»4]WNB1 : W�H 1, 2
0 (B , RN ), W(I)%V( .

Furthermore let u�H 1, 2 (B 1 ) be a solution of the free boundary prob-
lem

s
B1

A ab
ij

¯u i

¯x a

¯W j

¯x b
dx40 (W�H(4)

u(I)%V ,(5)

where A ab
ij is elliptic in the sense that !

a , b , i , j
A ab

ij j a
i j b

j FlVjV2 . Furthermore,
NA ab

ij NGM .
A standard difference-quotient method adapted to the free boundary situ-

ation gives

LEMMA 2.2. – Let u be a solution of (4) and (5), x0�I , B2r (x0 )%%B . Then
there exists a c4c(l , M , n , N , k , r) such that the estimate

VD k uVL 2 (Br
1 )GcVDuVL 2 (B1

2r )

holds. r

LEMMA 2.3. – Let u be a solution of (4) and (5) and W�H with A4

supp (W)%%B . Then the following natural boundary condition holds:

s
I

A ab
ij

¯u i

¯x a
n b W jdx42s

I

A an
ij

¯u i

¯x a
W jdx40 .

Here n is the exterior unit normal vector to B 1 .

PROOF. – By Lemma 2.2 and a covering argument we see that u�
H 2, 2 (A 1 ). Therefore we can integrate by parts:

s
B1

A ab
ij

¯u i

¯x a

¯W j

¯x b
dx42s

B1

A ab
ij

¯2 u i

¯x a ¯x b
W jdx

1s
I

A ab
ij

¯u i

¯x a
n b W jdx .
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Because of the equation, the first term on the right hand side vanish-
es. r

LEMMA 2.4. – Let u be a solution of (4) and (5), x0�I , B2r (x0 )%%B und v�
V . Then there exists a constant c4c(l , M) such that the Caccioppoli
inequality

s
Br

1

NDuN2 dxG
c

r 2
s

B2r
1

Nu2vN2 dx

holds.

PROOF. – We use in (4) the test function W»4 (u2v) h 2 , where supp (h)%
B2r (x0 ), hf1 on Br (x0 ). We get

04 s
B1

A ab
ij

¯u i

¯x a

¯u j

¯x b
h 2 dx12 s

B1

A ab
ij

¯u i

¯x a
(u2v) j ¯h

¯x b
hdx ,

and therefore

ls
B1

h 2 NDuN2 dxGcs
B1

NDhN2 Nu2vN2 dx . r

Using Lemma 2.2 and arguing similarly as in the proof of Theorem 2.1 in
[4] we get

LEMMA 2.5. – Let u be a solution of (4) and (5), x0�I , Br (x0 )%%B . Then
there exists a constant c which depends only on the data, such that the
estimate

s–
B1

r (x0 )

NDuN2 dxGc s–
B1

r (x0 )

NDuN2 dx (rGr

holds. r

Using Caccioppoli inequality (2.4) and Poincaré inequality we get

LEMMA 2.6. – Let u be a solution of (4) and (5), x0�I , Br (x0 )%%B . Then
there exists a constant c which depends only on the data, such that

s–
Br

1 (x0 )

Nu2u !
x0 , r N

2 dxGcg r

r
h2

s–
Br

1 (x0 )

Nu2u !
x0 , r N

2 dx (rGr .
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PROOF. – First let rGr/2 . Then

r22 s–
Br

1 (x0 )

Nu2u !
x0 , r N

2 dxGc s–
Br

1 (x0 )

NDuN2 dx

Gcg r

r
hn

s–
Br/2

1 (x0 )

NDuN2 dx

Gcg r

r
hn

r 22 s–
B1

r (x0 )

Nu2u !
x0 , r N

2 dx .

The first inequality follows from Lemma 2.1, the second from Lemma 2.5, and
the third one from lemma 2.4 if we set v4u !

x0 , r . This proves the claim for rG
r/2 . The claim for rDr/2 follows trivially. r

All tangential derivatives, i.e. ¯u

¯x a
, aEn , also solve the free boundary

value problem (4) and (5). Therefore we infer immediately

COROLLARY 2.1. – Let u be a solution of (4) and (5), x0�I , Br (x0 )%%B . Then
we have for all rGr with a constant c which depends only on the data

s–
Br

1(x0)

!
aEn

N ¯u

¯x a
2g ¯u

¯x a h!
x0 , r

N
2
dxGcg r

r
h2

s–
Br

1 (x0 )

!
aEn

N ¯u

¯x a
2g ¯u

¯x a h!
x0,r
N

2
dx . r

In the following, we consider only A ab
ij with a special structure, namely

A ab
ij 4j i

a j j
b1 idfB ab

ij ,

and

j n�V » .

A short calculation together with Lemma 2.3 shows

LEMMA 2.7. – Let u be a solution of (4) and (5), and W�H with supp (W)%%
B . Then

s–
I
o ¯u

¯x n
, Wp dx40 . r

Therefore we can show:
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THEOREM 2.1. – Let u be a solution of (4) and (5) with A ab
ij 4B ab

ij , and
x0�I , Br (x0 )%%B . Then for all rGr

s–
Br

1 (x0 )

!
aEn

N ¯u

¯x a
2g ¯u

¯x a h!
x0 , r

N
2
1N ¯u

¯x n
2g ¯u

¯x n h»
x0 , r

N
2
dxG

cg r

r
h2

s–
Br

1 (x0 )

!
aEn

N ¯u

¯x a
2g ¯u

¯x a h!
x0 , r

N
2
1N ¯u

¯x n
2g ¯u

¯x n h»
x0 , r

N
2
dx ,

with a constant c which depends only on the data.

PROOF. – First let rGr/2 . We use Lemma 2.1 and get

r22 s
B1

r (x0 )
N ¯u

¯x n
2g ¯u

¯x n h»
x0 , r

N2 dxGc s
B1

r (x0 )
N ¯

¯x n
DuN

2
dx

4c s
B1

r (x0 )
N ¯

¯x n

¯u

¯x n N
2
1!

aEn
N ¯

¯x n

¯u

¯x a N
2
dx .

Since ¯u

¯x a
, for aEn , solves (4) and (5) we get with Lemma 2.5 and the Cac-

cioppoli inequality Lemma 2.4

s
B1

r (x0 )

!
aEn

N ¯

¯x n

¯u

¯x a N
2
dxGcg r

r
hn

s
B1

r/2 (x0 )

!
aEn

ND
¯u

¯x a N
2
dx

Gcg r

r
hn

r 22 s
Br

1 (x0 )

!
aEn

N ¯u

¯x a
2g ¯u

¯x a h!
x0 , r

N
2
dx .

Using the equality it follows for all rGr/2

r22 s
B1

r (x0)
N ¯u

¯x n
2g ¯u

¯x n h»
x0, r

N
2
dxGcg r

r
hn

r 22 s
Br

1(x0)

!
aEn

N ¯u

¯x a
2g ¯u

¯x a h!
x0, r
N

2
dx .

Together with Corollary 2.1 this shows the assertion for rGr/2 . For rFr/2
the assertion follows trivially. r

3. – Reflection of the Solution.

For u�H 1, p (V), 2EpGn we consider the functional

F 0 (u , V) »4s
V

g!
i , a

¯u i

¯x a

¯u i

¯x a hp/2

dx .
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The Euler equations of F 0 are

04s
V

!
i , a

NDuNp22 ¯u i

¯x a

¯W i

¯x a
dx (W�H 1, p

0 (V) .

Now we consider the following free boundary problem for F 0 :
Let

HV »4]WNB1 : W�H 1, p
0 (B), W(I)%V(

and let u be a solution of

s
B1

!
i , a

NDuNp22 ¯u i

¯x a

¯W i

¯x a
dx40 (W�HV(6)

u(I)%V .(7)

We want to extend this solution by reflection to a solution of

s
B

!
i , a

NDuNp22 ¯u i

¯x a

¯W i

¯x a
dx40 (W�H 1, p

0 (V) .

We define the reflection s V : RNKRN at V by

s V »42 Q !
j41

k21

az , ej b ej2z .

Arguing similarly as in the proof of Lemma 9.12 in [6], we can show

LEMMA 3.1. – Let u�H 1, p (B 1 ) be a solution of (6) and (7). Then

U(x , xn ) »4
.
/
´

u(x , xn ) ,

s V u(x , 2xn ) ,

xnF0, (x , xn )�B

xnG0, (x , xn )�B .

solves the equation

s
B

!
i , a

NDUNp22 ¯U i

¯x a

¯W i

¯x a
dx40 (W�H 1, p

0 (B) . r

Now let g�RN3N and g�Rn3n symmetric matrices such that for some
0EL�R

NjN2Ggij j i j jGLNjN2 (j�RN ,(8)

NhN2Gg ab h a h bGLNhN2 (h�Rn .(9)
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Then we look at the free boundary value problem

s
B1

!
i , a

(NDuN2
g , g )p/221 gij g ab ¯u i

¯x a

¯W j

¯x b
dx40 (W�HV

u(I)%V .

Here for j�RnN we write NjN2
g , g4j i

a j j
b g ab gij . Moreover let G»4 ( gij ) and

G»4 (g ab ).
We define

uA »4kGu ,

WA »4kGW ,

VA »4kGV .

VA is a (k21)-dimensional subspace of RN and uA(I)4kGu(I)%VA. Let O be an
orthogonal transformation with OVA4V.

We define

Pg »4 (O i G 1/2 ) ,(10)

v»4OuA ;

Finally let

w (y) »4v (G21/2 y)(11)

on BA1 »4G 1/2 B 1 and IA »4G 1/2 I .
Then w solves the free boundary value problem

s–
B
A1

!
i , a

(NDwN2 )p/221 d ij d ab ¯w i

¯x a

¯W j

¯x b
dx40 (W�HAV

w (IA)%V ,

with HAV »4]WNBA1 : W(IA)%V , W�H 1, p
0 (BA, RN )(.

Now we can apply Lemma 3.1 together with Theorem 2.1 from [3]. We
conclude
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LEMMA 3.2. – Let w as in (11). Then for all Br (x0 )%%BA, x0�I we
have

(i) sup
B1

r/2

NDwNpGc s–
Br

1

NDwNp dx ,

(ii) NDw (x)2Dw (y)NGc Qsup
Br

1

NDwN
Nx2yNg

r g
(x , y�Br/2

1 ,

(12)

where c4c(n , N , p) and g4g(n , N , p). r

4. – Higher integrability.

In this section we prove higher integrability for solutions of

s
B1

!
i , a

NDuNp22 ¯u i

¯x a

¯W i

¯x a
dx40 (W�HV(13)

u(I)%V .(14)

Actually the following proof of Theorem 4.1 contains also the proof of a Cac-
cioppoli type estimate. But we need only higher integrability, so we don’t note
explicitly this Caccioppoli inequality.

We need some further definitions:
Let

z u
R »4 s–

BR
1

Du dx

and j u
R be the matrix

(j a
u )R4 (z u

a )!R for aEn ,

(j n
u )R4 (z u

n )»R .

Generally let j be a matrix with

(j a )�V for aEn ,

(j n )�V » .

A calculation then shows
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LEMMA 4.1. – If BR (x0 )%%B, x0�I and W�HV with supp (W)%BR then, with
j4 (j)u

R from above, it holds

s
BR

1

NjNp22 j DW dx40 . r

THEOREM 4.1. – Let BR4BR (x0 )%%B , x0�I , u a solution of (13) and (14)
and rER . Then there exist constants c4c(n , N , p) and k4k (n , N , p)D0
such that, with j as above, the estimate

s–
BR/2

1

(NjNp22NDu2jN21NDu2jNp)11kdxGcu s–
BR

1

NjNp22NDu2jN21NDu2jNpdxv11k

holds.

PROOF. – Using u2a2j(x2x0 ) (with a�V) as a test function, and using
Lemma 4.1 and Lemma 2.1, by a similar calculation as in Lemma 3.1 in [3] we
get

(15) s–
B1

r

NjNp22 NDu2jN21NDu2jNp dxG

cu s–
B1

R

(NjNp22 NDu2jN21NDu2jNp )
n

n12 dxv
n12

n
.

Now let

g»4 (NjNp22 NDu2jN21NDu2jNp )
n

n12 .

Then it follows because of (15)

s–
B1

R/2

g
n12

n dxGcu s–
B1

R

gdxv
n12

n

.(16)

Now define

g(x)4
.
/
´

g(x) ,

0 ,

if x�B 1

if x�B 1 .

Let x�B be given and REdist (x , ¯B). We distinguish three cases:

Case 1: BR (x)OB 14¯ .

In this case g40 on BR (x).
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Case 2: BR (x)%B 1 .

We can apply Lemma 3.1 from [3]:

s–
BR/2 (x)

g
n12

n dxGcg s–
BR (x)

g dxh
n12

n
.

Case 3: BR (x)O (Rn 0B 1 )c¯ .

(I) If Nxn NER/4 , then BR/8 (x)%BNxn N1R/4 ( (x, 0 ) )%B(3 /4) R ( (x , 0 ) )%BR (x).
Therefore, we get

s–
BR/8 (x)OB1

g
n12

n dxGc s–
BNxnN1R/4 ( (x , 0 ) )OB1

g
n12

n dx

Gcu s–
B(3 /4) R ( (x , 0 ) )OB1

g dxv
n12

n

by (16)

Gcu s–
BR (x)OB1

g dxv
n12

n

.

(II) If Nxn NFR/4 , it follows from Lemma 3.1 in [3] that

s–
BR/8 (x)

g
n12

n dxGcg s–
BNxnN(x)

g dxh
n12

n

Gcg s–
BR (x)

g dxh
n12

n

,

since Nxn NGR , (x4 (x, xn ) ).
In each case we therefore get

s–
BR/8 (x)OB1

g
n12

n dxGcu s–
BR (x)OB1

g dxv
n12

n
.

A covering argument shows that actually

s–
BR/2 (x)OB1

g
n12

n dxGcu s–
BR (x)OB1

g dxv
n12

n

.

With Proposition V.1.1 in [4], we get for all q4 n12

n
1e with eGe 0 and e 0 suf-
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ficiently small

u s–
B1

R/2

g q dxv
1

q

Gcu s–
B1

R

g
n12

n dxh
n

n12
.

If we set k4
ne

n12
the assertion follows. r

5. – Decay estimate.

Similarly as in [3], we will derive a decay estimate for

c (x0 , r) »4Nj r
u Np22 s–

Br
1

NDu2j r
u N2 dx1 s–

Br
1

NDu2j r
uNp dx ,

where x0�I and Br4Br (x0 )%%B . More precisely, we show

LEMMA 5.1. – Let BR4BR (x0 )%%B and 0EtE1/2 . If u is a solution of (13)
and (14), then there exists a constant c4c(n , N , p) with

(i) c (R)Dt
n12

k Nj R
u Np ¨ c (t k R)Gc(t k )2g2

n12

k c (R) ,

(ii) c (R)Gt
n12

k Nj R
u Np ¨ c (tR)Gct 2 c (R) .

PROOF. – We first prove (i):
For tE1/2 we have

c (t k R)GNj u
tk R N

p22 s–
(Btk R )1

NDu2j u
tk R N

2 dx1 s–
(Btk R )1

NDu2j u
tk R N

p dx

Gc sup
BR/2

1

NDuNp22 s–
(Btk R )1

NDu2j u
tk R N

2 dx

Gc sup
BR/2

1

NDuNp (t k )2g ,

because

s–
(Btk R )1

NDu2j u
tk R N

2 dxG s–
(Btk R )1

s–
(Btk R )1

!
aEn

N ¯u

¯x a
(x)2g ¯u

¯x a
(y)h!N2

1 s–
(Btk R )1

s–
(Btk R )1

N ¯u

¯x n
(x)2g ¯u

¯x n
(y)h»N2

dx dy ,

gbecause g ¯u

¯x a h»404g ¯u

¯x n h! on Ih, and the terms on the right hand side
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may be estimated by

c sup
BR/2

1

NDuN2 (t k )2g ;

cf. (12) and the assumptions. From (12) it furthermore follows that

c (t k R)Gc s–
B1

R

NDuNp dx Q (t k )2g

Gc(t k )2gu s–
BR

1

NDu2j u
R N

p dx1Nj u
R N

pv

Gc(t k )2g2
n12

kk c (R) .

Now we prove (ii):
A short calculation shows that we can assume that Nj R

u Nc0. Now let w»4

u2j u
R (x2x0 ). Let v be the solution of

.
/
´

s
BR/2

1

gId1 (p22)
j R

u j R
u

Nj R
u N2 h Dv DW dx40 (W�H

v�w1H ,

where

H»4]WNBR/2
1 : W�H 1, 2

0 (BR/2 ), W(BR/2OI)%V( .

Now let W4v2w ; then by similar calculations as in [3]

s–
BR/2

1

NDv2DwN2 dxGcNjN22 s–
BR/2

1

NDwN4g11g NDwN

NjN
h2p26h dx .(17)

Because of the assumption, we can estimate the right hand side:

sup
BR/2

1

NDwNG sup
BR/2

1

NDuN1NjN

Gcu s–
BR

1

NDu2jNp dxv1/p

1cNjN by (12)

GcNjN .
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Therefore, it follows from (17)

s–
BR/2

1

NDv2DwN2 dxGcNjN22k s–
BR/2

1

NDwN212k dx

GcNjN22k2 (p22)(11k) c 11k (R) by Theorem 4.1.

A comparison of u and v now gives the estimate: Let tE1/2 . Using the as-
sumption in (ii) and (12), as in [3] we get

c (tR)GcNj u
R N

p22 s–
BtR

1

NDu2j u
tR N

2 dx

GcNj u
RN

p22u s–
BtR

1

NDw2DvN2dx1 s–
BtR

1

NDv2j v
tRN

2dx1 s–
BtR

1

Nj v
tR2j w

tR N
2 dxv .

Now

Nj v
tR2j w

tR N
2GN s–

BtR
1

Dw2j v
tR dxN

2

Gc s–
BtR

1

NDw2DvN2 dx1c s–
BtR

1

NDv2j v
tR N

2 dx .

Therefore

c (tR) G cNj u
R N

p22 t2n s–
BR/2

1

NDw2DvN2 dx1cNj u
R N

p22 s–
BtR

1

NDv2j v
tR N

2 dx

G
Thm. 2.1

cNj u
R N

p22 t2n s–
BR/2

1

NDw2DvN2 dx1cNj u
R N

p22 t 2 s–
BR/2

1

NDv2j v
tR N

2 dx ,

G ct 2 c (R)

by the same computations as in the proof of Lemma 4.1 in [3]. r

With slight modifications of the proof of Theorem 4.2 in [3], we then
get

THEOREM 5.1. – Let BR%%B , 0EaE2g and u a solution of (13) and (14).
Then there exists a constant c4c(n , N , p , a) such that

c (r)Gcg r

R
ha

c (R) ( 0ErGR . r
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Let now j r
u , g defined by

(j r
u , g )a »4prVgPgg ¯u

¯x a h
r
h if aEn

and

(j r
u , g )n »4prV»gPgg ¯u

¯x n h
r
h ,

with Pg from (10).
We will show a decay estimate for

c g (r) »4Nj u , g
r Np22 s–

Br
1

NPg Du2j u , g
r N2 dx1 s–

Br
1

NPg Du2j u , g
r Np dx .

COROLLARY 5.1. – Let BR%%B , 0EaE2g and let u be a solution of

s
B1

!
i , a

(NDuN2
g , g )p/221 gij g ab ¯u i

¯x a

¯W j

¯x b
dx40 (W�HV

u(I)%V

Then there exists a constant c4c(n , N , p , L , a) such that

c g (r)Gc(a)g r

R
ha

c g (R) ( 0ErGR .

PROOF. – We can apply Theorem 5.1 to w from (11). Then we get (with the
obvious notation)

c w (r)Gcg r

R
ha

c w (R) ( 0ErGR

with

c w (r) »4Nj w
r N

p22 s–
Br

1

NDw2j w
r N

2 dx1 s–
Br

1

NDw2j w
r N

p dx .

By definition of w , it follows for

c u*(r) »4Nj u , g
Er

1 Np22 s–
Er

1

NPg Du2j u , g
Er

1 N2 dx1 s–
Er

1

NPg Du2j u , g
Er

1 Np dx

c u*(r)Gcg r

R
ha

c u*(R) ( 0ErGR .

As above, Er
14G 1/2 Br

1 , and c depends also on L . r
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6. – A comparison lemma.

Let g and g satisfy the conditions

NjN2Ggij j i j jGLNjN2 (j�RN ,(18)

NhN2Gg ab h a h bGLNhN2 (h�Rn .(19)

Furthermore, let g and g be continuous, bounded functions on RN and Rn

resp.
For minima of F , we have

LEMMA 6.1. – Let u�H 1, p (B 1 , RN ) be a minimizer for F in u1HV with
u(I)%V . Then there exists a qDp , which depends only on the data, such that
u�H 1, q (Br

1 , RN ) for all Br (x0 )%%B with x0�I . More precisely, we have the
estimate

u s–
Br/2

1 (x0 )

NDuNq dxv1/q

Gcu s–
Br

1 (x0 )

NDuNp dxv1/p

.

PROOF. – We can assume x040. Let h�C Q
c (Bs ) be a cutoff function with

hf1 on Bt (0) and NDhNG
c

s2 t
, tEsEr . Then

v4u2h(u2ur
! )

is an admissible comparison function. As in the proof of Theorem V.3.1 in [4],
we get

s
Bt

1

NDuNp dxGc
1

(r2 t)p
s

Br
1

Nu2ur
! Np dx .

Using Poincaré inequality Lemma 2.1, we can apply Sobolev-Poincaré inequal-
ity to the right hand side:

s–
Br/2

1

NDuNp dxGc Q u s–
Br

1

NDuN
np

n1p dxv
n1p

n

.

Let g»4NDuN
np

n1p . The assertion follows as in the proof of Theorem 4.1 if we
note that there exists an analogous interior estimate as above. r

Now we make the following additional assumptions:
There exists a function v : R1KR1 with the following properties:

(i) Ng(z) g(x)2g(w) g(y)NGv(Nx2yNp1Nz2wNp ),

(ii) v is bounded, continuous and v(0)40,
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(iii) v is nondecreasing,

(iv) v is concave.

Moreover let

HV
R »4]WNBR

1 : W�H 1, p
0 (BR ), W(IOBR )%V( .

Using Lemma 6.1 and global L p-estimates (cf. [4], Remark 3.5, p. 163) togeth-
er with the reflection principle, the same arguments as in the proof of Lemma
5.1 in [3] give

LEMMA 6.2. – Let B2R4B2R (x0 )%%B , x0�I and u�H 1, p (B 1 , RN ) mini-
mizing for F in u1HV

R with u(I)%V . Furthermore let v be the solution
of

v

F 0 (v)

�u1HV
R

f s–
B1

R

ggij (ux0 , R ) g ab (x0 )
¯v i

¯x a

¯v j

¯x b hp/2

dx is minimal .

Then there exists a 0EsE1 with

s–
BR

1

NDu2DvNp dxGc s–
B2R

1

NDuNp dx Qv sucR p s–
BR

1

11NDuNp dxv . r

7. – Hölder continuity.

For x0�I with Br4Br (x0 )%%B , we will derive a decay estimate for

W(x0 , r) »4W(r) »4r p s–
Br

1 (x0 )

NDuNp dx .

This together with the interior estimates of [3] gives Hölder continuity near
the boundary. Firstly we show

LEMMA 7.1. – Let u be minimizing for

s
B1

ggij i u g ab ¯u i

¯x a

¯u j

¯x b
hp/2

dx

in u1HV with u(I)%V and 0EaE1. If x0�I is given, then there exists an e 0

with:
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If there exists R04R0 (e 0 )D0 with dist (x0 , ¯B)DR0 and

W(x0 , R0 )1R0
p4R0

p s–
BR0

1 (x0 )

NDuNp dx1R0
pEe 0 ,

then

W(x0 , r)Gc(a)g r

R0
hpa

W(x0 , R0 ) (rGR0 .

Here without loss of generality c(a)F1.

PROOF. – We apply Lemma 6.2 with R/2 instead of R . Then as in [3] with
0EtE1/4 , we get

W(tR)Gc1 t p W(R) (11t2n v 12p/q (c2 R p1c2 W(R) ) ) .

We choose 0EtE1/4 such that 2c1 t pEt pa . Now

t2n v 12p/q (c2 R p1c2 W(R) )E1 ,

if

R p1W(R)Ge 04e 0 (a)

and e 0 sufficiently small.
We now assume that there exists a R04R0 (a) with BR0

(x0 )%%B such
that

R0
p1W(R0 )Ge 0 .

Then we have

W(tR0 )Gt pa W(R0 ) .

Iteration gives the result. r

Of course we have an analogous interior estimate from [3]. When we write
interior estimate it is understood that we refer to this interior estimate.

For y�B 1 with Br (y)%%B we define

V(y , r) »4Br (y)OB 1

and

F(y , r) »4r p s–
V(y , r)

NDuNp dx .

Similarly as Theorem IV.2.2 in [4], we get the following boundary version of
this theorem.



THOMAS MÜLLER98

THEOREM 7.1. – Let V%Rn open and bounded, v�L 1 (V) and 0GaEn .
Define

Ea »4mx�V : lim sup
rK0

r2a s
Br (x)OV

Nv (y)NdyD0n .

Then

H a (Ea )40 . r

Now we show a decay estimate for F .

THEOREM 7.2. – Let u be minimizing for

s
B1

ggij i u g ab ¯u i

¯x a

¯u j

¯x b
hp/2

dx

in u1HV with u(I)%V , 0EaE1 and 0EdE1/4 .
Then for H n2p-almost all x0�I with dist (x0 , ¯B)Dd , there exist radii

rEd/4 , R0Ed/4 and a constant K4K(a , u) such that for all y�Br
1 (x0 )

F(y , r)GKg r

R0
hpa

(rGR0 .

PROOF. – Because of Lemma 7.1, for H n2p-almost all x0�I

lim inf
rK0

r p2n s
B1OBr (x0 )

NDuNp dx40 .

Therefore for H n2p-almost all x0�I , there exists 0ER0Ed/4 for given eA 0

such that

R0
p s–
B1OBR0 (x0 )

NDuNp dxEeA 0

and

R0
pEeA 0 .

We choose eA 0 »4c(a)21 2p2n2pa21 e 0 /2 , where e 0 and c(a) are the constants
from Lemma 7.1. Since

R0
p s–
B1OBR0 (y)

NDuNp dx
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depends continuously on y , there exists 0ErEd/4 such that

R0
p s–
B1OBR0 (y)

NDuNp dxEeA 0

for all y�Br (x0 )OB 1 .
Let x0�I with dist (x0 , ¯B)Dd . We will show that there exists a uniform

decay estimate for

F(y , r) »4r p s–
V(y , r)

NDuNp dx (rGR0

if y�Br (x0 )OB 1 .
We have to distinguish three cases (we write y4 (y, yn ) ):

Case 1: 0ErGR0Gyn .

In this case BR0
(y) lies completely in B 1 , and we can apply the interior es-

timates of [3]:

F(y , r)Gc(a)g r

R0
hpa

F(y , R0 )

Gc(a)g r

R0
hpa

eA 0 .

Case 2: 0ErGynGR0 .

Now BR0
(y) does not lie completely in B 1 . But because of the boundary es-

timate Lemma 7.1

(i) ynGR/2 :

F(y , yn )G2n2p W( (y , 0 ), 2yn )

G2n2p c(a)g 2yn

R0
hpa

W( (y , 0 ), R0 ) by Lemma 7 . 1

Gc(a) 2n2p1pag yn

R0
hpa

eA 0 .(21)

(ii) ynDR0 /2 :

F(y , yn )Gc(a) 2n2p111pag yn

R0
hpa

eA 0 .(22)
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Therefore we have shown that in the second case generally

F(y , yn )Ge 0 /2

because of the assumptions on eA 0 .
Therefore, the conditions for the interior estimates are satisfied, and we

can apply the interior estimates with yn instead of R0 . We get

F(y , r)Gc(a)g r

yn
hpa

F(y , yn ) .(23)

Again we distinguish the two cases ynGR0 /2 and ynDR0 /2 .
(iii) ynGR0 /2 :
With (23) and (21) follows

F(y , r)Gc(a) 2n2p1pag r

R0
hpa

eA 0 .

(iv) ynDR0 /2 :
With (23) and (22) follows

F(y , r)Gc(a)g r

yn
hpa

F(y , yn )

Gc(a) 2n2p1pa11g r

R0
hpa

eA 0 .

We have thus shown:
For 0ErGynGR0

F(y , r)Gc(a)g r

R0
hpa

eA 0 .

Case 3: 0GynGrGR0 .

In this case, BR0
(y) does not lie completely in B 1 either. But because of the

boundary estimate in Lemma 7.1, we have

(i) rGR0 /2 :

F(y , r)Gc(a)g r

R0
hpa

eA 0 .
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(ii) rDR/2 :

F(y , r)G
2

v n

r p2n s
Br (y)OB1

NDuNp dx

Gc(a) 2n2p111pag r

R0
hpa

eA 0 .

This proves the assertion. r

COROLLARY 7.1. – Under the assumptions of Theorem 7.2, u is a-Hölder
continuous in H n2p (I)-almost all x0�I with dist (x0 , ¯B)Dd . In general the
Hölder constant depends on x0 .

PROOF. – The claim follows from Theorem 7.2 and Theorem 7.19 in
[6]. r

8. – C 1, a-Estimates.

Similarly as in section 1.5, we will derive a decay estimate for

c g (x08 , R) »4Nj R
u , g Np22 s–

BR
1

NPg Du2j R
u , g N2 dx1 s–

BR
1

NPg Du2j R
u , g Np dx ,

where BR (x08 )%%B , x08�Br (x0 )OI , g4g(ux08 , R/2 ) and Pg are as in (10). In
the following we will always look at a fixed point x08 and therefore omit the
index g .

Furthermore, for z�B 1 we define

M(z , R) »4maxm1, s–
V(z , R)

NDuNp dxn
and we make the additional assumption

v(t)Gct sA /p

with some sAE1.

LEMMA 8.1. – Let u with u(I)%V be minimizing for

s
B1

ggij i u g ab ¯u i

¯x a

¯u j

¯x b
hp/2

dx

in u1HV and 0EdE1/4 .
Then a from Theorem 7.2 can be chosen so large that for H n2p-almost all



THOMAS MÜLLER102

x0�I with dist (x0 , ¯B)Dd , there exist radii rEd/4 , R0Ed/4 and 0EuE
aE1 such that for all x08�Br (x0 )OI

c (x08 , r)GKg r

R0
hu

(c (x08 , R0 )1R0
u ) (rGR0

with a constant K which depends only on the data, on R0 and on the con-
stants in Theorem 7.2.

PROOF. – We apply Theorem 6.2 with R/2 instead of R .
Let 0EtE1/4 and RGR0 ; R0 will be chosen later. We write Br for Br (x08 )

and j r
u for j x08 , r

u etc. The same calculations as in the proof of Theorem 7.1 in [3]
give with (20), Corollary 5.1 and the assumption vGc(Q)sA /p

c (x08 , tR)Gct g c (x08 , R)

1cM(x08 , R) t2n (R 2s 8 /p1W s 8 /p (x08 , R/2 )1W 2s 8 /p 2
(x08 , R/2 ) ) .

where nE2g and s 84ssA.
Now let a , x0 , R0 , r as in Theorem 7.2. Then we have for RGR0 and

x08�Br
1 (x0 ):

W(x08 , R)GK QR pa .

Therefore, for all x08�Br (x0 )OI

c (x08 , tR)Gct n c (x08 , R)1cM(x08 , R) t2n R 2s 8 a/p .(24)

Because of Theorem 7.2, we have for all 0EaE1

M(x08 , R)4 s–
BR

1

NDuNp dxGK(a)g R

R0
hpa

R 2p

4KA(R0 , a) R 2p1pa (RGR0

and therefore

c (x08 , tR)Gct n c (x08 , R)1c(R0 , a) t2n R 2p1pa1
2s 8a

p .

Now we choose aE1 so close to 1 that

pa1
2s 8a

p
Dp .

We get

c (x08 , tR)Gct n c (x08 , R)1ct2n R u (RGR0
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with

u»4pa1
2s 8a

p
2p .

Therefore, for all x08�Br (x0 )OI

c (x08 , t k R)Gct n c (x08 , t k21 R)1ct2n (t k21 R)u (RGR0 .

Now we choose 0EtE1/4 such that

ct n4t u
A
, with nDu

A
Du .

Iteration gives the result. r

Now we define for x�B 1

ux , r »4 s–
V(x , r)

udx

and

C(x , r) »4NDux , rN
p22 s–

V(x , r)

NDu2Dux , rN
2 dx1 s–

V(x , r)

NDu2Dux , r N
p dx .

Obviously this definition is consistent with the one given before.
Then a calculation shows

LEMMA 8.2. – Let u be minimizing for

s
B1

ggij i u g ab ¯u i

¯x a

¯u j

¯x b
hp/2

dx

in u1HV with u(I)%V , 0EdE1/4 .
Then a from Theorem 7.2 can be chosen so large that for H n2p-almost all

x0�I with dist (x0 , ¯B)Dd , there exist radii rEd/4 , R0Ed/4 and 0EuE
aE1 such that for all x08�Br (x0 )OI

C(x08 , r)GKg r

R0
hu

(c (x08 , R0 )1R0
u ) (rGR0 ,(25)

with a constant K which depends only on the data, on R0 and on the constant
in Theorem 7.2. r

Now we can prove the crucial decay estimate:
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THEOREM 8.1. – Let u with u(I)%V be minimizing for

s
B1

ggij i u g ab ¯u i

¯x a

¯u j

¯x b
hp/2

dx

in u1HV , 0EdE1/4 .
Then a from Theorem 7.2 can be chosen so large that for H n2p-almost all

x0�I with dist (x0 , ¯B)Dd , there exist radii rEd/4 , R0Ed/4 , a constant K
and 0EuEaE1 such that for all x08�Br

1 (x0 )

C(x08 , r)GKg r

R0
hu

(rGR0 .(26)

PROOF. – We may assume that

sup
y�Br

1 (x0 )

s–
V(y , R0 )

NDuNp dxGLEQ .

Again we distinguish three possible cases. Let y�Br (x0 )OB 1 .

Case 1: 0GrGR0Gyn .

Because of the interior estimates from [3],

C(y , r)Gcg r

R0
hu

(C(y , R0 )1R0
u )

and

C(y , R0 )4NDuy , R0
Np22 s–

BR0 (y)

NDu2Duy , R0
N2 dx1 s–

BR0 (y)

NDu2Duy , R0
Np dx

Gcg s–
BR0 (y)

NDuNdxhp22

Q s–
BR0 (y)

NDuN2 dx1c s–
BR0 (y)

NDuNp dx

Gc s–
BR0 (y)

NDuNp dxGcL .

Case 2: 0ErGynGR0 .

Firstly, since Br (y)%Byn
(y), we have
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(i) ynGR0 /2 :

C(y , r)Gcg r

yn
hu

(C(y , yn )1yn
u ) by the interior estim. , cp . [3 ]

Gcg r

yn
hugC( (y , 0 ), 2yn )1R0g yn

R0
huh

Gcg r

yn
hugg 2yn

R0
hu

(c ((y, 0), R0)1R0
u)1R0g yn

R0
huh by Lem. 8.2

GcLg r

R0
hu

.

(ii) ynFR0 /2 :

C(y , r)Gcg r

yn
hu

(C(y , yn )1yn
u )

Gcg r

R0
hu

(C(y , yn )1R0
u ) .

Because of the assumption ynFR0 /2 , it follows with the above argument
that

C(y , yn )GcC(y , R0 )GcL .

Therefore we get in the second case

C(y , r)GcLg r

R0
hu

.

Case 3: 0GyErGR0 .

In this case we have

Br (y)%B2r ( (y , 0 ) ) .

(i) rGR0 /2 :

C(y , r)C( (y , 0 ), 2r)

Gcg r

R0
hu

(C( (y , 0 ), R0 )1R0
u ) by Lemma 8.2

GcLg r

R0
hu

.
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(ii) rDR0 /2 :

C(y , r)Gc s–
V(y , r)

NDuNp dx

GcLg r

R0
hu

. r

By Theorem 8.1 and Theorem III.1.2 in [4] follows

COROLLARY 8.1. – Under the assumptions of Theorem 8.1, Du is Hölder
continuous in H n2p (I)-almost all x0�I with dist (x0 , ¯B)Dd . In general, the
Hölder constant depends on x0 . r

REMARK 8.1. – Actually we have also proved that u is regular inside a rel-
atively open set V 0%B12d

1 and

V 0%{x�B12d
1 : lim inf

rK0
r q s–

Br (x)OB1

NDuNq dx40} for some qDp .

Because of Theorem 7.1, the singular set has H n2q-measure zero for some
qDp .

REMARK 8.2. – If x08 is a regular point then M(x08 , R) is bounded for all
RGR0 . We can again iterate (24) and see that first derivatives are Hölder
continuous for all exponents

bEmin ]n/p , 2ssA/p 2( .

Finally we have

THEOREM 8.2. – Let S%RN a (k21)-dimensional submanifold of class
C 1, sA . Let u�H 1, p (B , RN ) be a minimizer for the functional

F(u) »4s
B

ggij i u g ab ¯u i

¯x a

¯u j

¯x b
hp/2

dx

which respects the boundary condition

u(¯B)%S .

Here g is �C 0, sA (RN ) and bounded, and g�C 0, sA (B). Furthermore, let q 8Dp
and assume that for H n2q 8-almost all points x�¯B , there exists a neigh-
borhood U(x) such that u(U(x) ) lies completely in a N-dimensional coordi-
nate neighborhood of S . Then u is locally a-Hölder continuous in H n2q-al-
most all points x�B for each aE1, and the first derivatives are b-Hölder
continuous with all bEmin ]2g/p , 2ssA/p 2(, (qEq 8 ). r
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REMARK 8.3. – Using the main theorem from [2], which essentially says
that u is continuous on B outside a set of (n2q 8 )-Hausdorff-measure zero,
the assumptions of Theorem 8.2 are satisfied.

R E F E R E N C E S

[1] H. W. ALT, Lineare Funktionalanalysis, Springer, second edition 1992.
[2] F. DUZAAR - A. GASTEL, Minimizing p-harmonic maps at a free boundary, Boll.

Unione Mat. Ital. Sez. B Artci. Ric. Mat. (8), 1 (1998), 391-406.
[3] N. FUSCO - J. HUTCHINSON, Partial regularity for minimisers of certain functionals

having nonquadratic growth, Ann. Mat. Pura Appl. (4), 155 (1989), 1-24.
[4] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear El-

liptic Systems. Annals of Mathematics Studies, 105, Princeton University Press,
1983.

[5] M. GIAQUINTA - G. MODICA, Remarks on the regularity of the minimizers of certain
degenerate functionals, Manuscripta Math., 57 (1986), 55-99.

[6] D. GILBARG - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second
Order, Grundlehren der mathematischen Wissenschaften 224, Springer, second
edition 1998.

[7] C. HAMBURGER, Regularity of differential forms minimizing degenerate elliptic
functionals, J. Reine Angew. Math., 431 (1992), 7-64.

[8] K. UHLENBECK, Regularity for a class of nonlinear elliptic systems, Acta Math., 138
(1977), 219-240.

Thomas Müller: Mathematisches Institut der Albert-Ludwigs-Universität Freiburg
Eckerstrasse 1, D-79104 Freiburg, Germany

E-mail address: antipasHmathematik.uni-freiburg.de

Pervenuta in Redazione
l’1 settembre 1999


