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Bollettino U. M. 1.
(8) 5-B (2002), 79-107

C1 P-Partial Regularity of p-Harmonic Maps
at the Free Boundary.

THOMAS MULLER (*)

Sunto. — Dimostriamo la CY P-regolarita parziale fino alla frontiera libera delle map-
pe p-armoniche che minimizzano la p-energia | |Du|? di.

Summary. — We prove the partial C* P-regolarity up to the free boundary of the p-har-
monic maps which minimize the p-energy ) |Dul|? d.

1. — Introduction.

Let B be the open unit ball in R” and ScRY a (k — 1)-dimensional submani-
fold of RY without boundary of class C1'°, 0 <o<1,1<k<N + 1. Assume
ue HV?(B, RY) is a minimizer for the functional

ou' u’
1) Fu) = f( cou yP -
ST G o

p/2
) de, with p>2

in the class of all maps ve H"?(B, RY) with v(dB) c S, (g;) and (y ,4) are uni-
formly elliptic, ¢ is in C% ?(RY) and bounded, and y is in C% °(B). Generally we
call a map « which is a critical point of F' p-harmonic. Note that this definition
is slightly different from the usual one, but it agrees in the case g =1d, y = id.
In Theorem 8.2 we show that ue CL.?(2,) for some relatively open subset
Q,c B and some 0 < 3 < 0, if we assume that S is a linear subspace V. We can
assume this if we can localize in the image, i.e. for some ¢’ > p, for ("~ -al-
most all points x € 9B there exists a neighborhood U(x) such that u(U(x)) lies
completely in a N-dimensional coordinate neighborhood of S. Furthermore we
show that (" 9(B\Q,) =0 for some ¢’ > ¢ > p. In particular we therefore
show that the first derivatives of u are Holder continuous in ("~ %-almost all
boundary points « € dB. In the special case p = n we therefore get everywhere
regularity. Partial C f-regularity in the interior has been proven indepen-
dently by Fusco&HUTCHINSON in [3] and GIAQUINTA&MODICA in [5]. These

(*) This research was supported by a grant of the DFG-Graduiertenkolleg «Nichtli-
neare Differentialgleichungen».
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authors use a result of UHLENBECK [8] and get partial regularity for the first
derivatives of minima of (1). Crucial for the methods in [3] is an estimate from
[8] for solutions of

2) div(|Du|?"2Du) =0.
This estimate says for B,,.c Q2 and x, yeB,:

3) | Du(er) — Du(y) | < c-sup | Du| M
Ba, r
Now we describe the methods we use.

Since all estimates are local, it is enough to prove estimates on B* = {x e
B:x,>0}. Furthermore we assume that we can localize in the image, and
therefore we can assume that S is a (k — 1)-dimensional subspace of RY. By re-
flection we get an estimate similar to (3) at the free boundary. Therefore, we
are able to adapt the technique of FUSCO&HUTCHINSON to the situation at the
free boundary: first we derive a Caccioppoli inequality at the free boundary
for solutions of (2). This Caccioppoli inequality leads to the study of a suitable
decay function, similarly as in Fusco& HUTCHINSON. More precisely, by com-
parison with the solution of a suitable linear free boundary value problem, we
get a decay relation at the free boundary for

@(r) = |§r|p_2_)f|Du—§,,|2doc+ f|Du—£T|”dw,

B} B,

where &, is the matrix which arises from Du, := f Dudx by projecting the
B
tangential derivatives onto V and by projecting the normal derivative onto V*.
Using only the estimates (3), we get by a local comparison principle (cp. [4]
and [3]) partial a-Holder continuity at the free boundary for all & <1 and a de-
cay estimate for

r? f | Du | du .

B}

Again by a comparison principle we finally get partial Holder continuity of the
first derivatives at the free boundary. Since we are arguing with the functional
F' and not with the Euler equations, we can only treat minimizers (cp. [3]).

In the special cases k=1 and k = N + 1 the above boundary value problem
(1) reduces to a Dirichlet problem with zero boundary values and the Neu-
mann problem resp. Among other things these cases have already been treat-
ed by HAMBURGER in [7]. However, in the case of the general free boundary
value problem as above, the choice of test functions is restricted further, so we
need different methods. In [2], DUZAAR&GASTEL show partial Holder continu-
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ity up to the free boundary for p-harmonic maps between manifolds, which are
solutions to a free boundary value problem as above and which are locally min-
imizing. This result justifies our assumption that S is a linear subspace.

Our results are of interest especially in the case p = n, if we look at the ge-
ometric free boundary value problem for %-harmonic maps. For example, if we
try to find «nice» maps between BcRY and suitable domains in RY by mini-
mizing the energy, we would get regularity up to the boundary. Secondly, it is
a natural continuation of the results of DUZAAR&GASTEL.

We make the following general agreements about the notation we use: c is
always a universal constant which depends only on the data and which may
change from line to line. Dependence on any other quantities will be noted
explicitly.

The Greek indices a, 3, v, ... have values in {1, ..., n}, the Latin indices
1,7, k, ... have values in {1, ..., N}. We use the convention of summation.
Finally w, is the volume of the n-dimensional unit ball.

I would like to thank Professor Kuwert for calling my attention to this
problem, and for continual support and various helpful ideas.

2. — Linear free boundary value problems.

In this section we will prove some fundamental properties of linear free
boundary value problems. First we give some Poincaré inequalities, which we
will use later. Always let p > 1.

Notation:

V ={rxeRV:m=..=xy=0},
B, :={weR" |z <r},
At i={xeA:x,>0} for AccR",

B = Bl)
I, =B.Nn{x,=0},
I = Il'
Furthermore let
Uy, r 1= f udx ,
B,f (o)
uw-gr, r= pTV(uxo, r) )

uxJ[)—, r = PryL (u:co, r) ’

where pry and pry. are the orthogonal projections onto V and V+ respectively.
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With Theorem 5.15 from [1], we get

LEMMA 2.1. — Let ue HY?(By , RY) with w(Iz)cV. Then we have

R‘pf|u(w)—u0TR|pdx$cf|Du|pdac. L]

B BF
Let
={¢|p+: @eH{*(B, RY), p(I)cV}.

Furthermore let we HV%(B*) be a solution of the free boundary prob-
lem

E‘) 8

®) wl)cV,

where A is elliptic in the sense that > A &¢&S = 2| &[P. Furthermore,
A | <M. whiid

A standard difference-quotient method adapted to the free boundary situ-
ation gives

LEmMA 2.2, — Let u be a solution of (4) and (5), xyel, By, (xy) ccB. Then
there exists a ¢ =c(A, M, n, N, k, r) such that the estimate
||Dk%HL2(BJ) S C”Du”LZ(Bz*,.)
holds. ®

LEmMmA 2.3. — Let u be a solution of (4) and (5) and o e H with A =
supp (@) cc B. Then the following natural boundary condition holds:

fA“ﬁ Jde = — fA“” @lde=0.
ox*
Here v is the exterior unit normal vector to B .
Proor. — By Lemma 2.2 and a covering argument we see that ue

H??2%(A™"). Therefore we can integrate by parts:

ou' 9 Ful
fAU O G - ngﬁ Y pide
o7 Gne ouf it du“ S’

«[ay

Tdy .
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Because of the equation, the first term on the right hand side vanish-
es. ®

LEMMA 2.4. — Let u be a solution of (4) and (5), xyel, By, (xy) cCB und ve

V. Then there exists a constant c¢=c(A, M) such that the Caccioppoli
mequality

f|Du| dm<—f|u v|*du
"By,

holds.

PROOF. — We use in (4) the test function ¢ := (u — v) %, where supp () ¢
By, (xy), n=1 on B,.(x;). We get

ou' o on
O—fA“/’ u’ ”ﬂ;ﬂdmzanﬁa (u— ’u)fa ndx

and therefore
af 2 \pupde<c [ \Dn)?|u—vf2de. w
B* B+

Using Lemma 2.2 and arguing similarly as in the proof of Theorem 2.1 in
[4] we get

LEMMA 2.5. — Let u be a solution of (4) and (5), xyel, B,(xy) cc B. Then
there exists a constant ¢ which depends only on the data, such that the
estimate

f |Du|?dx < ¢ Jf |Du|?*dx  Vos<r

B, (xg) B, ()
holds. ®
Using Caccioppoli inequality (2.4) and Poincaré inequality we get

LEMMA 2.6. — Let u be a solution of (4) and (5), xyel, B,(xy) cc B. Then
there exists a constant ¢ which depends only on the data, such that

2
_]( |u—u£,g|2dm$c(g) J( |lu—u, |?de  Vo<r.

By () B/ (xp)
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Proor. — First let o </2. Then

0 ? J( |u =, o |?de<c J( | Du | da

B; (o) B; (o)
n
Sc(g) J( | Du|* dx
r Br‘/JTZ(x())
n
$c(g) r2 J[ |u =y . |*de
r

The first inequality follows from Lemma 2.1, the second from Lemma 2.5, and
the third one from lemma 2.4 if we set v =, ... This proves the claim for ¢ <
1/2. The claim for ¢ >1/2 follows trivially. =

All tangential derivatives, i.e. a—ua, a <mn, also solve the free boundary
X
value problem (4) and (5). Therefore we infer immediately

COROLLARY 2.1. — Let u be a solution of (4) and (5), xge I, B,(xy) cCB. Then
we have for all o <r with a constant ¢ which depends only on the data

T 2 T
au_(a_u) zdeC(g) J(‘ 3 u _(au)
ox ox* r a<n ox“ ox* 20,1

x, O B, (x9)
In the following, we consider only Ag‘ﬁ with a special structure, namely

2

dx.

a<n
By (o)

and
E, eVt

A short calculation together with Lemma 2.3 shows

LEMMA 2.7. — Let u be a solution of (4) and (5), and ¢ € H with supp (@) cC

B. Then
o
f< Y ,(p> de=0. u
I axn

Therefore we can show:
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THEOREM 2.1. — Let u be a solution of (4) and (5) with A"ﬁ —B;f , and
xoel, B.(xg)ccB. Then for all o <r

2

ou ( u )T 2 ou ( u )l
a - a + n - n dm S
B Gy <" O x4 0 o ox" o
2 T 1
u ou 2 u u 2
(8), 4 215 (30 e (30)
") gty <" ox ox ) r ox ox™" ) g r
with a constant ¢ which depends only on the data.
Proor. — First let o <#/2. We use Lemma 2.1 and get
3 ou \* 3 2
o 2 f un_(_un) 2de<c f —Du | dx
By (e ox ox" /o By () ox
f o ou |2 o ou |2
=c ‘ n n n a d .
B, ) ox" ox a<n | ox" Ox

Since %, for a <mn, solves (4) and (5) we get with Lemma 2.5 and the Cac-
cioppoli inequality Lemma 2.4

2 n
de<c ( e ) f Z
r Br/Z( )

+ a<n
0

n T
SOBYRIES(

P B @ <" ox ox /4 o

Using the equality it follows for all o < 7/2

1 n T
T2 (R Tt 212 (2
Jx™ ox" /. r B @~ S ™ Jayr

By (o) %o, @
Together with Corollary 2.1 this shows the assertion for o <#/2. For ¢ =1/2
the assertion follows trivially. m

2

a 9
“ dx

% ox*

9
pt
ox“

a<mn
By (29)

2
dex .

2

dx.

3. — Reflection of the Solution.

For ue H?(Q), 2 <p <n we consider the functional

/2
Folu, Q) :—f( Su’ u’ )p da

i,a Ox* ox“
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The Euler equations of F° are

du' 3
0= fZ|D w|?- Za“a aq’adx VoeHEP(Q).

Now we consider the following free boundary problem for F°:
Let

Hy:={¢|p+: 9eH}"(B), p()cV}
and let u be a solution of

ou' 3!
a a a a

©) fzw P2 de=0 VgeH,

(7 wl)cV.

We want to extend this solution by reflection to a solution of

wa poe 2L

de=0 VoeH}'"(Q).
or® dx ¥ 0 ( )

We define the reflection oy: R¥—RY at V by
k-1
oyi=2-2(z,¢)e—z
i=1
Arguing similarly as in the proof of Lemma 9.12 in [6], we can show

LEMMA 3.1. — Let ue H"?(B ™) be a solution of (6) and (7). Then

_ [u(%,xn), .’)0,7,?0,(%, xn)EB
U(x; xn) =
oyu(®, —x,), «x,<0,(x,x,)eB.

solves the equation

U 3
fZ|DU|” 2 — a(padx=0 VoeHI?(B). m
i, a X X

Now let ge R¥*Y and y e R"*" symmetric matrices such that for some
0<AeR

8 |E[P<g;8'8/<A|E]?  VEeRY,

) n1><y@nang<An|®  VneR"
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Then we look at the free boundary value problem

_ s ou' op’
Bf §(|Du|g,y)p/2 191]‘7/ 4 Ew de=0 VoeHy,
wl)cV.
Here for £e R™Y we write |£|2.,=&L&hy“g;. Moreover let G := (g;) and
= (Vaﬁ)-
We define
u:=VGu,
¢:=VGg,
V:=\GV.

Vis a (k — 1)-dimensional subspace; of RY and a(I) = \/@u([ yc V. Let O be an
orthogonal transformation with OV =V.

We define
(10) P,:=(0-G"),
v:i=01u;
Finally let
11) w(y) =v( " Py)

on B* :=I"2B* and I :=I"?].
Then w solves the free boundary value problem
ow' 3¢l

2\p2 -1 ap _ 77
Ef§(|Dw| PR 0Y S S dr =0 Ve Hy

wdcV,

with Hy := {@|z: o)V, p e HiP(B, RM)}.
Now we can apply Lemma 3.1 together with Theorem 2.1 from [3]. We
conclude
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LEMMA 3.2. — Let w as in (11). Then for all B,,.(xO)CCE’, xoel we
have

(1) sup|Dw|p$cf|Dw|pdx,
Bk Bt

(12)

x— V
# Vx’yEBr;rZ’

(i) |Dw(x) — Dw(y) | <c-sup |Dw)|
B} r

where ¢c=c(n, N, p) and y=y(n, N,p). n

4. — Higher integrability.

In this section we prove higher integrability for solutions of

(13) f2|0u|pfzal
. a'%.a

g+ ba

o) i
" =0 VgeH,
X

)
(14) wl)cV.

Actually the following proof of Theorem 4.1 contains also the proof of a Cac-
cioppoli type estimate. But we need only higher integrability, so we don’t note
explicitly this Caccioppoli inequality.

We need some further definitions:

Let

%= J(Dudac

Bg
and &% be the matrix
(EDr= (& for a<n,
(EDr= (k-
Generally let £ be a matrix with

EpeV for a<n,

(&)eV-.

A calculation then shows



C'> P-PARTIAL REGULARITY OF p-HARMONIC MAPS ETC. 89

LeEmMA 4.1. - If Bp(xy) cC B, xge I and ¢ € Hy, with supp (@) C Bg then, with
&= (&% from above, it holds

[ep2eDpde=0. =

B

THEOREM 4.1. — Let Bp = Bp(xy) cCB, xyel, u a solution of (13) and (14)
and r < R. Then there exist constants ¢ =c(n, N, p) and k= k(n, N, p) >0
such that, with & as above, the estimate

1+k
_‘F(|§|p‘2|Du—§|2+|Du—§|p)1+Kdac$c( f|§|p‘2|Du—§|2+|Du—§|pdac)
B

Bip
holds.

Proor. — Using u — a — &(x — x,) (with a € V) as a test function, and using
Lemma 4.1 and Lemma 2.1, by a similar calculation as in Lemma 3.1 in [3] we
get

5 f|g)7 2 |Du—EP2+ |Du—&|Pde<

B,

n+2

c( fagr =2 1pu—gp+ pu- él”)n%dac) W
B

Now let
g:= (|.§|7"2 |Du—§|2+ |Du — E|P)wvz.
Then it follows because of (15)

n+2

(16) fg#dxgo( fgdx)T.
By

B

Now define

B gx), if xeB*
g(x) = )
0, if x¢B™.

Let x € B be given and R < dist (x, 0B). We distinguish three cases:

Case 1: Bp(x)NB* =90.
In this case g =0 on Bp(x).
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Case 2: Bp(x)cB ™.

We can apply Lemma 3.1 from [3]:

n+2

f g%dm&c( fgdx) "

Bprp(w) Bp(x)

Case 3: Br(x)N (R*"\B ™) = 0.
(D If |, | <R/4, then Bgg(x)C B\, | ru((@, 0)) C B r((T, 0)) Cc Br(x).
Therefore, we get
Jf g;z de<c )( [7} ;2 dx
B[‘g/g(ac)f'WBJr B‘xn|+13/4((f70, 0)NB+

n+2

$c( f  gae| by ae
B

30 r((T, 0)NB*

n+2

<c< fgdx)".

Brx)NB*

(D) If |x,| = R/4, it follows from Lemma 3.1 in [3] that

n+2

fy$dx<c( f Z]doc)T

Bpyg(x) Blay @)

n+2

_ n
<c JC gdx ,
Bp(x)
since |x, | <R, (x= &, x,)).
In each case we therefore get
n+2
_nre _ "
f g v de<c J( gdx
B}g/g(.%‘)ﬁBJr B}g(ﬁj)f‘lBJr

A covering argument shows that actually

n+2

f g7n7_+z2dec( f g_]dac) ' .

Brp(@)NB™* Br(x)nB*

With Proposition V.1.1 in [4], we get for all ¢ = P24 e withe < €9 and ¢ suf-
n
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ficiently small

l n
_ q _nt2 iz
B B

If we set k= % the assertion follows. ®
n

5. — Decay estimate.

Similarly as in [3], we will derive a decay estimate for

Y (a, 1) = &7 |7 2JC|Du g |*dw + f|Du Ev|Pdu,

B} B,

where xyel and B, = B,(x,) cc B. More precisely, we show

LEMMA 5.1. — Let Bp = Br(xy) cc B and 0 <t < 1/2. If u 1s a solution of (13)
and (14), then there exists a constant ¢ =c(n, N, p) with

(i) p(R)>7 |EL|P = p(E"R) < T p(R),

(i) p(R)<t+ |ER|” = p(R) <cr®y(R).

Proor. — We first prove (i):
For 7 <1/2 we have

YA R) < |E%g P2 f |Du-gupPdrt | |Du-gbp|Pde

(Bikg)* (Brkp)™

<csup |Du|?~* f |Du — &%y |*du
Biie (Bkp)*

<c sup |Du|P(tF)?,

B
because
ou T2
f pu-cippaes § f 3 (—a(y)
(Bikp)* (Bikp)* (B i) a<mn ox

- IS

(B kp)t (Bkp)t

dedy ,

( =) |
ou

1
) =0= (—) on / ), and the terms on the right hand side

A

(because ( u

@
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may be estimated by

¢ sup | Du|*(z")?7;
B

cf. (12) and the assumptions. From (12) it furthermore follows that

w* Ry <c f |Dul?de-(FP

B

$c(r’°)27( f|Du—§§‘g |Pda + | &% |p)

By

<@ p(R).

Now we prove (ii):
A short calculation shows that we can assume that |£%| # 0. Now let w:=
u —E%(x —a). Let v be the solution of

f(1d+(p—2) Sk )Dqupdac=O VoeH

2
B o3
vew+ H,
where

H:={9|pg,: @ eHg *(Bgp), p(BreNI)CV}.

Now let ¢ =v —w; then by similar calculations as in [3]

2p—6
an fIDv—lezdech|le“(”(|Dw|)p )dx

Bi B | £ |
Because of the assumption, we can estimate the right hand side:

sup | Dw| < sup |Du| + |§|

Bgjz Bgpz

1/p
$c( f|Du—.§|”dm> +c|&] by (12)
BE

<c|&|.
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Therefore, it follows from (17)

_]C |Dv—Dw|2dm$c|§|’2"f | Dw|** 2% duw

Brp Brp

Sc|g| B PmRArOy P E(R) by Theorem 4.1.

A comparison of % and v now gives the estimate: Let 7 <1/2. Using the as-
sumption in (ii) and (12), as in [3] we get

Y(TR) <c|&f|P* _)( | Du — &% | dac

+
Bk

SC"S%VJZ( f|Dw—Dv|2dx+ f|Dv—§7§R|2dx+ fl‘SZR_S?RPd%).
B"E Br}% BJQ

Now
&=t P< | f Dw—grpde
BTE
Scf|Dw—Dv|2dac+cJ(|Dv— e |2 di .
Bk Bk
Therefore

paR) < clgh |2 r £ |Dw—Dorde+clgn | f Do - gt da

B Bk
Thm. 2.1
<c|&p|P 2" f |Dw — Dv|*dx +¢|E% |P 212 f |Dv — &% |*da,
B BRp
< cr?y(R)
by the same computations as in the proof of Lemma 4.1 in [3]. =

With slight modifications of the proof of Theorem 4.2 in [3], we then
get

THEOREM 5.1. — Let Bpcc B, 0 < a <2y and u a solution of (13) and (14).
Then there exists a constant ¢ =c(n, N, p, a) such that

w(g)<c(%) Yp(R) VO<p<R. =
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Let now &9 defined by

u )
D A I

and

o
(E129), = pry- (Pg( = ) )

with P, from (10).
We will show a decay estimate for

poo)i=|epo P> f |P,Du— gy e+ (P, Du—ELY | de

&
Béf Bg
COROLLARY 5.1. — Let Brcc B, 0 <a <2y and let u be a solution of

ou'l dpl
fZ(IDulz,y)”/z_lgw“ﬁlidac=0 VYoeHy,
B+ i, a ) o axﬂ

wlcV

Then there exists a constant ¢ =c(n, N, p, A, a) such that

wg(Q)Sc(a)(%) YpYR) VO<os<R.

ProOF. — We can apply Theorem 5.1 to w from (11). Then we get (with the
obvious notation)

ww<@>Sc( )ww<R> V0<o<R

=vIES!

with

P = &2 f 1Dw—grPde+ f |Dw— g2 e
B(f B

4

By definition of w, it follows for

i) = &ps |2 f 1P, Du—gur 2o+ § 1P, Du— g0 P dn

By £,

w?‘,;(g)Sc(%) pER) V0<o<R.

As above, E," =I'"?B,", and ¢ depends also on A. ®
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6. — A comparison lemma.

Let ¢ and vy satisfy the conditions
(18) |E]*<g,E'E/<A|E]?  VEeRY,

(19) InE<y“’n.np<Aln|® VYneR™

Furthermore, let ¢ and y be continuous, bounded functions on RY and R"
resp.
For minima of F', we have

LEMMA 6.1. — Let ue H"P(B ", RY) be a minimizer for F in u + Hy with
w(l)c V. Then there exists a q > p, which depends only on the data, such that
ue HV (B, RY) for all B,(xy) cc B with xye 1. More precisely, we have the

estimate
1/q 1/p
( f |Du|qdm) Sc( f |Du|7’dx) .

AE) B, (xg)

ProoOF. — We can assume x,=0. Let e C,*(B;) be a cutoff function with
n=1on B,(0) and |Dn| < Lt’ t <s <. Then
s
v=u—nu—u')

is an admissible comparison function. As in the proof of Theorem V.3.1 in [4],
we get

f |w—w, |Pdx.

f |Du|Pde<c
(7'_ t)pr

B/*

Using Poincaré inequality Lemma 2.1, we can apply Sobolev-Poincaré inequal-
ity to the right hand side:

n+p

f|Du|pdm$c-( f|Du|Tp dm) ' .
B

B'i?é T

Let g:= |Du| 777 The assertion follows as in the proof of Theorem 4.1 if we
note that there exists an analogous interior estimate as above. =

Now we make the following additional assumptions:
There exists a function w : R* —R* with the following properties:

() |g() y(@) — gw) y(y) | S w(|x—y|? + |z —w|?),
(ii) w is bounded, continuous and w(0) =0,
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(iii) @ is nondecreasing,

(iv) w is concave.

Moreover let
HE = {@]|ps: peH} P(Bp), p(INBR)CcV}.

Using Lemma 6.1 and global L?-estimates (cf. [4], Remark 3.5, p. 163) togeth-
er with the reflection principle, the same arguments as in the proof of Lemma
5.1 in [3] give

LEMMA 6.2. — Let Bop = Bog(xg) cc B, xgel and ue HV?(B*+, RY) mini-
mizing for F in u+ HE with w(I)cV. Furthermore let v be the solution

of

veu+ HE
vt i
ox® Axh

/2
F'(v) = f(gij(uxo,g) v (1) ) dx is minimal.

B

Then there exists a 0 <o <1 with

f|Du—Dv|”dw$c f |Du|pdac~w”(cR”Jc1+ |Du|”dac). n
B By §

Bg

7. — Holder continuity.

For xyel with B, = B,(x,) cc B, we will derive a decay estimate for

Gz, 1) i=gr) =0 f |Dujrda.
B,f(:vo)

This together with the interior estimates of [3] gives Holder continuity near
the boundary. Firstly we show

LEMMA 7.1. — Let u be minimizing for

ou' oui\P*
ou yP — | da
Jlover 25:55)

mu+ Hywithu(l)cVand 0 <a<1.Ifx el is given, then there exists an ¢
with:
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If there exists Ry= Ry(e,) >0 with dist(x,, OB) > R, and
@y, By) + R = R{ Jf | D |” da + Ry < ey,
B[:{O(xo)
then

pa
@(xo, 0) < c(a) (}%) p(xy, Ry) Vo <R,.
0

Here without loss of generality c(a) = 1.

Proor. — We apply Lemma 6.2 with R/2 instead of K. Then as in [3] with
0<7<1/4, we get

@(tR) <c; P p(R)(1 + 7 "' (e, R + ey p(R))) .
We choose 0 <7 <1/4 such that 2¢; 77 < t”*. Now
T "0 P (cyR? + o p(R)) <1,
if
RP+@(R)<eg=¢p(a)

and ¢, sufficiently small.
We now assume that there exists a Ry= Ry(a) with B (x,) cCB such
that

R(f + @(Ro) < €.
Then we have
P(tRy) < ™ p(Ry).

Tteration gives the result. =

Of course we have an analogous interior estimate from [3]. When we write
interior estimate it is understood that we refer to this interior estimate.
For ye B™ with B,(y) cc B we define

Q. 0):=B,)NB"*
and
By, 0)=0” | |Dul’de.
Qy, o)

Similarly as Theorem IV.2.2 in [4], we get the following boundary version of
this theorem.
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THEOREM 7.1. — Let Qc R" open and bounded, ve L'(Q) and 0 < a <n.
Define

E, = {xeﬁ: lim sup o ~“ f |v(y) |d?/>0}'

o—0 By(x)N Q
Then
HE,)=0. ]
Now we show a decay estimate for @.

THEOREM 7.2. — Let u be minimizing for

ou' ou’\P?
iou y* — | dw
Jlenr 2235)

m u~+ Hy with u(I)cV,0<a<1and 0 <d<1/4.
Then for "~ P-almost all x,el with dist(x,, OB) >d, there exist radit
r<d/4, Ry<d/4 and a constant K= K(a, u) such that for all y e B," (xy)

pa
qp(y,g)sK(i) VYo <R,.
R,

ProOOF. — Because of Lemma 7.1, for IC" ~P-almost all x el
lim inf @? " f |Du|Pdx=0.
a0 B N B,y

Therefore for I~ P-almost all xyel, there exists 0 < Ry <d/4 for given &,
such that

R f  |pupar<i,

B N Bgy(ao)
and
Rl <ég,.

We choose &, :=c(a) 12" " P~ le¢ /2 where ¢, and c(a) are the constants
from Lemma 7.1. Since

R§ _)( | Du |? dac

B N Bgy(y)
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depends continuously on y, there exists 0 <7 < d/4 such that

Rl f  |Dupdr<i,

B N Bry )

for all yeB,(x,)NB ™.
Let x, el with dist(x,, 0B) > d. We will show that there exists a uniform
decay estimate for

D(y, 0) :=0" f |Du|?dx Vo <R,
Qy, 0)
if yeB.(x))NB™.
We have to distinguish three cases (we write y = (¥, ¥.,)):
Case 1: 0 <9 <Ry <y,.

In this case B, (y) lies completely in B ", and we can apply the interior es-
timates of [3]:

pa
oy, 0) saa)(ﬁ) B(y, Ro)
R,

Case 2: 0 <p <y, <R,.

Now Bg, (y) does not lie completely in B *. But because of the boundary es-
timate Lemma 7.1

() y, < R/2:
Dy, y,) <2" Py, 0), 2y,)

2y,

0

pa
<2"‘”c(a)( ) ¢((y, 0), By) by Lemma 7.1

pa
@1) Sc(a)Z”‘p*p“(%) Zo.

0

(i) y, > Ry/2:

pa
22) oy, 1) Sc(a)Z"‘p“”’“(%) %y
0
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Therefore we have shown that in the second case generally
(D(y, yn) S “30/2

because of the assumptions on &,.
Therefore, the conditions for the interior estimates are satisfied, and we
can apply the interior estimates with y, instead of R,. We get

pa
©3) By, 0) sda)(ﬁ) By, 4.

Again we distinguish the two cases ¥, < R,/2 and y, > R,/2.
(i) y, < Ry/2:
With (23) and (21) follows

pa
@(y,g)Sc(a)Z’l_p+p“(%) Zq.
0

(iv) y, > Ry/2:
With (23) and (22) follows

o\
cb(y,Q)SC(a)(—) Dy, Yn)

n
pa
sc(a)27Lp+p(L+1(£) 50_
Ry

We have thus shown:
For 0<po=y,<R,

0 pa
D(y, )Sc(a)(—) £g.
Y, 0 R, 0
Case 3: 0 <y,<o<R,.

In this case, B, () does not lie completely in B * either. But because of the
boundary estimate in Lemma 7.1, we have

() o< Ry/2:

o \™
D < —_ £o.
(%, 0) C(a)(RO) £
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(i) o> R/2:

2
ol " f | Du |P da

@ n B,)NB*

Dy, 0) <

pa
gc(a)zanrlera(i) ‘Z'\O'
R,

This proves the assertion. =

COROLLARY 7.1. — Under the assumptions of Theorem 7.2, u is a-Hdlder
continuous in I~ P(I)-almost all x,e I with dist (xy, dB) > d. In general the
Holder constant depends on x.

Proor. — The claim follows from Theorem 7.2 and Theorem 7.19 in
[6]. m

8. — C “Estimates.

Similarly as in section 1.5, we will derive a decay estimate for
YI(xg, R) = |ERI|P 2 f |P,Du — &% 7 |*de + f |PyDu— &% Y|P dw,
B B

where Bg(xg)ccB, vy €B,(x)) NI, g=g(u, re) and P, are as in (10). In
the following we will always look at a fixed point x;, and therefore omit the
index g.

Furthermore, for ze B+ we define

M(z, R) := max{l, f |Du|”dx}

Az, R)
and we make the additional assumption
w(t) < ct™
with some o <1.

LEmmA 8.1. — Let u with u(l)cV be mainmimizing for
ou't Aui\P*?
ou yP — | da
Bt (g] v axa axﬁ)

mu+Hyand 0 <d<1/4.
Then a from Theorem 7.2 can be chosen so large that for )"~ P-almost all
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xoel with dist (xy, OB) > d, there exist radit r<d/4, Ry<d/4 and 0 <0<
a <1 such that for all xy € B,(xy) N1

0
Y (g, 0) <K(R£) (p(xg, Ry +Rf) Vo<R,
0

with a constant K which depends only on the data, on R, and on the con-
stants in Theorem T7.2.

Proor. — We apply Theorem 6.2 with R/2 instead of R.

Let 0 <7<1/4 and R < R,; R, will be chosen later. We write B, for B, (x; )
and &7 for &3, , ete. The same calculations as in the proof of Theorem 7.1 in [3]
give with (20), Corollary 5.1 and the assumption w < ¢(-)*”?

Yy, TR) <ct"y(xg, R)
+ceM(xg, R)t "(R%*P+ ¢° (2, R/2) + (ng'/pz(xo,’ R/2)).

where v <2y and o' = ¢0.
Now let a, xy, Ry, » as in Theorem 7.2. Then we have for R <R, and
900’ € Br+ (OC())Z

@(xy, R) < K-R?,
Therefore, for all xy € B,(xy) NI
(24) (g, TR) <ct’y(xg, R) +cM(x, R) t "R27 ",
Because of Theorem 7.2, we have for all 0 <a <1
R\
M(xg, R) = f | Du|P de < K(a) (—) RP
B R,
'R
= K(Ry, ) R"*"* VR<R,
and therefore
Wxg, TR) <ct’y(xl, R)+ c(Ry, @) 1 "R Pret ",
Now we choose a <1 so close to 1 that

20’ a
pa +

>p.

We get
Y(xg, tR) <ct’y(xg, R)+ct "R’ VR<R,
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with
20'a
p

0:=poa+ -p.

Therefore, for all xy € B,(x,) N1
Y(xg, T°R) <ct’y(xg, T° 'R)+ct "(r* " 'R)Y VR<R,.

Now we choose 0 <t <1/4 such that

=1  with v>0>0.

Iteration gives the result. =

Now we define for xeB ™

and

Y(x, r) := |Du, ,|P~* _)[ |Du — Du, . |*dx + f |Du — Du,, . | d .
Q(x, ) Qx, r)

Obviously this definition is consistent with the one given before.
Then a calculation shows

LemMmA 8.2. — Let u be minimizing for

ou' ou’\P?
f ou y* — | dx
Bt (g., v ox* 3905)

wm u+ Hy with w(l)cV, 0<d<1/4.

Then a from Theorem 7.2 can be chosen so large that for IC" P-almost all
xoel with dist(xy, OB) > d, there exist radit r <d/4, Ry<d/4 and 0 <6<
a <1 such that for all xy € B,.(xy) N1

0
(25) ’I’(%d,Q)$K(}%) (p(ag, Ro) +Ry) Vo<Ry,

0

with a constant K which depends only on the data, on R, and on the constant
i Theorem 72. ®

Now we can prove the crucial decay estimate:
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THEOREM 8.1. — Let u with w(I)cV be minimizing for

ou' ou’\P?
iou yP — | da
Bt (g] v ox“ axﬂ)

mu+Hy, 0<d<1/4.

Then a from Theorem 7.2 can be chosen so large that for IC"~P-almost all
xo el with dist(x,, OB) > d, there exist radit » < d/4, Ry < d/4, a constant K
and 0 <6 <a<1 such that for all xj € B," (1)

6
(26) 'I’(aco’,Q)SK(%) Vo <R,.
0

Proor. — We may assume that

sup _)c |Du|Pde<L < o,
yeBT (x)) Qy, Ry)

Again we distinguish three possible cases. Let y e B,(xy)) N B *.

Case 1: 0<po<R,<y,.

Because of the interior estimates from [3],

0
m/,@)sc(%) Py, Ro) + RY)

0

and

Yy, Ry) = |Du, g, |"* f |Du — Du, g, | de + f |Du — Du,, g, |?d
Bpry(y) Bry(y)

SC( f IDuldac)pz' _‘F | Du|?dx + ¢ f | Du | d

Bry(y) Bpry(y) Bry(y)

<c _)( | Du|Pdx < cL .

Bpy(y)
Case 2: 0 <p <y, <R,.

Firstly, since B,(y)cB,, (y), we have
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Q) 1, < Ry/2:

Yy, 0)<c (W(y, y,) +4?) by the interior estim., cp.[3]

(4]
SC(&)H(W(@, 0), 2yn)+Ro(%)e)
(4)

0

0 0 0
(( 2””) (@, 0),Ro)+R09)+Ro(%) ) by Lem. 82

0

(ii) y, = Ro/2:

o

0
Py, 0) < c( ) Py, y.) +v))

6
SC(Rio) (W(y’ yn) +R00) .

Because of the assumption y, = R,/2, it follows with the above argument
that

Y(y, y,) <c¥Py, Ry) <cL.
Therefore we get in the second case

Q 0
Yy, o) <cL|—=—].
(y, 0) (Ro)

Case 3: 0 <y <o <R,.
In this case we have
B,(y)cB,,((%, 0)).
i) o< Ry/2:
Yy, 0)¥((7, 0), 20)

6
$c(}%) (¥(7, 0), Ry)+ R{) by Lemma 82
0

0
$6L(£) .
R,



106 THOMAS MULLER
(i) 0> Ry/2:

Yy, 0)<c f | D |? dee
Qy, 0)

)
<cL ( 2 ) . |
R,
By Theorem 8.1 and Theorem III.1.2 in [4] follows

COROLLARY 8.1. — Under the assumptions of Theorem 8.1, Du is Holder
continuous in IH" =P (I)-almost all xye I with dist (xy, OB) > d. In general, the
Hoélder constant depends on x,. ™

REMARK 8.1. — Actually we have also proved that u is regular inside a rel-
atively open set Q,C By, and

Qc [xeBl+d: lim inf ¢ f | Du | dx = 0} for some q>p.
=0 g wnB*

Because of Theorem 1.1, the singular set has IH"~ measure zero for some

q=>p.

REMARK 8.2. — If xy is a regular point then M(xy, R) is bounded for all
R <R,. We can again iterate (24) and see that first derivatives are Holder
continuous for all exponents

B <min {v/p, 206/p®}.
Finally we have

THEOREM 8.2. — Let ScRY a (k — 1)-dimensional submanifold of class
Ch%. Let wue HV?(B, RN) be a minimizer for the functional

ou't Su’ )”/2

F(u :=f sou y*— —
) (g] Y S Buh

B

which respects the boundary condition
u(dB)CS .

Here g is € C*%(RY) and bounded, and y € C%%(B). Furthermore, let q¢' > p
and asswme that for "~ 1 -almost all points x e OB, there exists a neigh-
borhood U(x) such that w(U(x)) lies completely in a N-dimensional coordi-
nate neighborhood of S. Then u is locally a-Hdlder continuous in "~ 9-al-
most all points xe B for each a <1, and the first derivatives are -Hélder
continuous with all B <min{2y/p, 200/p*}, (¢<q'). =
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REMARK 8.3. — Using the main theorem from [2], which essentially says
that w is continuous on B outside a set of (n — q')-Hausdorff-measure zero,
the assumptions of Theorem 8.2 are satisfied.
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