
BOLLETTINO
UNIONE MATEMATICA ITALIANA

Yu. G. Rykov

On the nonhamiltonian character of shocks in
2-D pressureless gas

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 5-B (2002),
n.1, p. 55–78.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_55_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_55_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2002.



Bollettino U. M. I.
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On the Nonhamiltonian Character of Shocks
in 2-D Pressureless Gas.

YU. G. RYKOV

Sunto. – Si considera un sistema bidimensionale della dinamica dei gas introdotto nel
1970 da Ya. Zeldovich per descrivere la formazione della struttura di grande scala
dell’universo. Il sistema si rivela come qualcosa di intermedio tra un sistema di
equazioni differenziali ordinarie e un sistema iperbolico di equazioni alle derivate
parziali. La caratteristica principale è la nascita di singolarità: discontinuità del-
la velocità e funzioni delta di vario tipo per la densità. Si dà una descrizione rigo-
rosa delle soluzioni generalzzate in termini di misure di Radon e si ottiene una ge-
neralizzazione delle condizione di Rankine-Hugoniot. Sulla base di tali condizioni
si mostra che la rappresentazione variazionale delle soluzioni generalizzate, vali-
da nel caso unidimensionale, non vale in generale nel caso bidimensionale. Si ot-
tiene anche un sistema unidimensionale non banale non strettamente iperbolico
per la descrizione dell’evoluzione all’interno dell’urto.

Summary. – The paper deals with the 2-D system of gas dynamics without pressure
which was introduced in 1970 by Ua. Zeldovich to describe the formation of large-
scale structure of the Universe. Such system occurs to be an intermediate object be-
tween the systems of ordinary differential equations and hyperbolic systems of
PDE. The main its feature is the arising of singularities: discontinuities for velo-
city and d-functions of various types for density. The rigorous notion of generalized
solutions in terms of Radon measures is introduced and the generalization of
Rankine-Hugoniot conditions is obtained. On the basis of such conditions it is
shown that the variational representation for the generalized solutions, which is
valid for 1-D case, in 2-D case generally speaking does not take place. A nontrivial
1-D system of nonstrictly hyperbolic type is also obtained to describe the evolution
inside the shock.
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1. – Introduction. Basic definitions.

This paper studies the shock waves for the system of 2-D pressureless gas
dynamics
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where (u , v) has the physical meaning of velocity vector, r has the physical
meaning of density. The system (1) is nonstrictly hyperbolic system of conser-
vation laws which has three coinciding characteristic fields and incomplete set
of eigenvectors. Due to these properties the shock waves develop strong sin-
gularities in the density which are of type of d-functions on the surface. So (1)
is relevant to describe some process of concentration of matter. We will con-
sider the Cauchy problem for (1)

r(0 , x , y)4r 0 (x , y)D0

u(0 , x , y)4u0 (x , y)

v(0 , x , y)4v0 (x , y) ,

(2)

where r 0 , u0 , v0 are piecewise C 1 (R2 ) functions and will be taken in the spe-
cial form (see below) to produce locally the single shock front.

For the smooth functions the system (1) is equivalent to the following sys-
tem of equations
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(3)

The last two equations in the system (3) constitute the so-called inviscid
2-D Burgers equation, which was proposed (but in 3-D case) by Ya. Zeldovich
[24] to describe the formation of the large scale structure of the Universe.
Further this approach, in particular the consideration of the whole system (3),
was developed in the consequent papers (see, for example, [21], [12], [22], [23]
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and the references therein) from the physical point of view. But if we are deal-
ing with the laws of conservation of mass and momentum it would be more
convenient from the mathematical and physical also points of view to investi-
gate the system in divergent form (1) especially in the case when one has the
developing of such singularities as shock waves. For 1-D variant of the system
(1) the particular generalized solutions were constructed in [2] (there also
were proposed some numerical schemes), and the existence theorem in the
sense of Radon measures for wide class of initial data was proved in [9], [10],
[11], see also [3], [4] for the uniqueness results in the framework of duality
solutions. In [9], [10] the generalized solutions were constructed by the aid of
variational principle for appropriate Hamilton-Jacobi equation (see [13], [14],
[15], [17] for the variational principle to one quasilinear equation of the first
order).

There were number of attempts to construct the generalized solutions to
system (1) by analogy with 1-D case and with the aid of variational principle,
which can be written for 2-D inviscid Burgers equation and then generalized
through corresponding Hamilton-Jacobi equation. Further in this paper we
will show that in general this is impossible. The problems for multi-D which
involve different types of singularities can expose rather complicated behav-
ior, see, for example, [16], [7], [25]. Here we investigate the «simplest» degen-
erate case of 2-D system when the characteristics can be calculated explicitly.
Nevertheless the generalized solutions to system (1) (see Definition 1 below)
exhibit the different behavior compared to ones for the single first order 2-D
equation of Hamilton-Jacobi type. The main ideas of the present paper were
outlined in [19], [20].

As it has been already said for smooth functions the system (1) is equiva-
lent to (3) and for small enough values of time and smooth initial data the
characteristics method can be applied. So the solution to the problem (1), (2)
reads

r(t , x , y)4r 0 (a , b)
¯(a , b)

¯(x , y)

u(t , x , y)4u(0 , a , b) ; v(t , x , y)4v(0 , a , b) ,

(4)

where functions a(t , x , y), b(t , x , y) are determined by the equations

x4a1 tu(0 , a , b) ; y4b1 tv(0 , a , b) .(5)

But it is well known that the characteristics of the system (3) can intersect
themselves for finite time even for infinitely smooth initial data. Hence one
finds the formation of singularities: discontinuities for the velocity (u , v) and
d-functions for the density r which correspond to concentration process in
some points or along some curves. So it is necessary to introduce the notion of
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generalized solution to the problem (1), (2) which is natural to formulate in
terms of Radon measures because of the type of singularities.

DEFINITION 1. – Suppose (Pt (dx , dy), It (dx , dy), Jt (dx , dy) ) are the fami-
lies of Radon measures defined on Borel subsets of R2 , weakly continuous
with respect to t and such that PtF0, and It , Jt are absolutely continuous
with respect to Pt for almost every fixed tD0. Let us define the vector func-
tion (u(t , x , y), v(t , x , y) ) as Radon-Nykodim derivatives

u(t , x , y)4
dIt

dPt

; v(t , x , y)4
dJt

dPt

.(6)

Then (Pt , It , Jt ) will be called the generalized solution of the problem (1), (2),
iff: 1) for an arbitrary functions f , g , h�C0

1 (R2 ) (the space of continuously
differentiable functions with compact support) and 0E t1E t2E1Q

(7) ss f (x , y) Pt2
(dx , dy)2ss f (x , y) Pt1

(dx , dy)4

s
t1

t2

{ss ¯f

¯x
(x , y) It (dx , dy)1ss ¯f

¯y
(x , y) Jt (dx , dy)} dt

(8) ssg(x , y) It2
(dx , dy)2ssg(x , y) It1

(dx , dy)4

s
t1

t2

{ss ¯g

¯x
(x , y) u(t , x , y) It (dx , dy)1ss ¯g

¯y
(x , y) v(t , x , y) It (dx , dy)} dt

(9) ssh(x , y) Jt2
(dx , dy)2ssh(x , y) Jt1

(dx , dy)4

s
t1

t2

{ss ¯h

¯x
(x , y) u(t , x , y) Jt (dx , dy)1ss ¯h

¯y
(x , y) v(t , x , y) Jt (dx , dy)} dt ,

where ss stands for the integration with respect to whole R2 ;

2) in the weak sense as tK10

PtKr(0 , a , b) da db ; ItKr(0 , a , b) u(0 , a , b) da db ;

JtKr(0 , a , b) v(0 , a , b) da db .

Concerning the system (3) there is well-known Hopf-Cole’s representation
[13] for the solution with potential initial velocity. This representation can be
derived with the aid of infinitesimal viscosity method (i.e. the adding of the
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second order operators with small parameter e to the right-hand side of the
last two equations of (3) and then letting e tend to zero) and allows to deter-
mine the location of singularities. Namely

(u , v)4˜(x , y) C(t , x , y) ,(10)

where

C(t , x , y)4min
a , b
{S0 (a , b)1

(x2a)2

2 t
1

(y2b)2

2 t
} ,

S0 is the potential of initial velocity. The representation (10) is valid in domains
of smoothness of C and gives the location of the set where singularities arise.
That is the singular points of C will be such points (t , x , y) that the global
minimum of the expression in the braces with respect to (a , b) is attained
more than in one point. For 1-D case the representation (10) in case of con-
stant initial density gives us the way to construct the generalized solution to
the 1-D analogue of the problem (1), (2), see [9], [10] (in these papers one can
also find the generalization of (10) to nonconstant initial density). Unfortu-
nately in 2-D case the generalized solution in the sense of Definition 1 to the
problem (1), (2) for constant initial density can not be constructed via
(10).

Our study is organized as follows. In § 2 we formulate the conditions on the
initial data (2) which allow to conjecture the development of shock and then
assuming that such shock exists and satisfies the problem (1), (2) in the sense
of Definition 1 give the formulas for the velocity along the shock. These formu-
las are the generalization of Rankine-Hugoniot conditions for hyperbolic con-
servation laws. In § 3 it is shown that in the case of potential initial velocity
these formulas determine the singularity surface which in general does not co-
incide with one determined by the representation (10). As it is shown in § 4 one
can obtain certain 1-D quasilinear hyperbolic system of PDEs for the motion
inside the shock. But this system does not satisfy Friedrichs’ symmetrizabili-
ty condition, so it creates difficulties to prove the global existence theorem. An
interesting heuristic procedure to guess the system is deferred to Appendix.
Finally in § 5 one investigates some simplest solutions for derived system in
case when r 0 , u0 , v0 are piecewise constant but the data along the initial shock
front are rather arbitrary. Even with such trivial external field one encounters
with complicate behavior of the generalized solutions. It is shown that there
are nontrivial cases when the solution can be defined explicitly and other cases
when the corresponding Cauchy problem is reduced to equation of type Ptt4

const QPx . Such equations are ill-posed in the spaces of functions of finite
smoothness.
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Further the letter subscripts (except «i», «j» and «t») will denote
appropriate derivatives.

2. – The propagation of the shock front.

Let us denote the coordinates in R23]t40( as (a , b). Suppose there is
the C 1 curve G 4 (A(l), B(l) ) in the plane (a , b), l is a parameter, such that, for
definiteness, AlF0, BlF0; Al

21Bl
2
c0. Suppose that G can also be found as

the solution of the equation G(a , b)40, G�C 1 (R2 ). Consider the following
initial data (2)

r 0 (a , b)4r 21 (r 12r 2 ) H(G(a , b) )

u0 (a , b)4u21 (u12u2 ) H(G(a , b) )

v0 (a , b)4v21 (v12v2 ) H(G(a , b) ) ,

(11)

where H is the Heaviside function, i.e. H(u)40 for uE0, H(u)41 for uD0;
and the following conditions hold

I) u2 (a , b), v2 (a , b)�C 1 (G2); u1 (a , b), v1 (a , b)�C 1 (G1), here
G2

f ](a , b) : G(a , b)E0(, G1
f ](a , b) : G(a , b)D0(.

II) Al v22Bl u2E0 and Al v12Bl u1D0 on G.

REMARK 2.1. – Let us note that the condition I) reads that for every point
(a *, b *)4 (A(l *), B(l *) )� G there exists some domain Q%R23 [0 , T(l *) ],
T(l *)D0, (a *, b *)�QO ]t40( where the transformations ( j41 , 2)

.
/
´

x4a1 tuj (a , b)

y4b1 tvj (a , b)

are nondegenerate for every 0E tET(l *), the characteristic lines (5) with
u(0 , a , b)4u2 , v(0 , a , b)4v2 never cross themselves, and the characteris-
tic lines (5) with u(0 , a , b)4u1 , v(0 , a , b)4v1 never cross themselves.

But the condition II) reads that for 0E tET(l *) there will be another do-
main Q1%Q where exactly two characteristic lines issued from different sides
of G will come to the same point (among these points the shock surface will
form itself). So these conditions are natural for the propagating shock front
to exist locally up to time moment T(l *)D0.

The following definition is essential for our analysis to elicit shock fronts
with «good» behavior. Let us denote through Q×1 the maximal Q1-domain from
Remark 2.1 which is valid for l4 l *.
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Figure 1. – The map Lt for fixed t; l is a parameter along S.

DEFINITION 2. – The shock front S will be called stable iff

SO]t4t(%Q×1O ]t4t( as 0EtET(l *) .

It is natural to seek the solution to the problem (1), (11) in the form (see
Fig. 1, Eulerian representation)

r(t , x , y)4

ru(t , x , y)4

rv(t , x , y)4

r 21 (r 12r 2 ) H(S)1P
A

t d(S)

r 2 u21 (r 1 u12r 2 u2 ) H(S)1It
A

d(S)

r 2 v21 (r 1 v12r 2 v2 ) H(S)1JAt d(S) ,

(12)

where r j (t , x , y), uj (t , x , y), vj (t , x , y), S(t , x , y)�C 1 (R13R2 ), ( j41 , 2)
and satisfy (1) in classical sense; S(t , x , y)40 represents some surface S in
R13R2 and SO(]0(3R2 )4 G; PAt , IAt , JAt�C 1 (S); H is the Heaviside function
mentioned above, d is standard Dirac measure.

If the solution to the problem (1), (11) exists in the sense of Definition 1
then by formulas (6) there is defined the velocity vector UA4 (uA, vA) on the sur-
face S and from each point of G one can draw the integral curve of UA on S. Sup-
pose (x s(t , l), y s(t , l) ) is the corresponding parametrization of S (l is a para-
meter along G) and d(x s ) /dt4uA, d(y s ) /dt4 vA. Then according to formulas (6)
and conditions I), II) one can define the functions aj (t , l), bj (t , l)�C 1 (S),
( j41 , 2) which correspond to the initial positions of characteristics which
come to the same points of the surface S from left and right.

Further let us define the map (see Fig. 1)

Lt : (a , b)K (x , y)(13)

in the following way. Let us issue the characteristic line (keeping in mind (11))
from the point (a , b)

x(t)4a1tu0 (a , b) ; y(t)4b1tv0 (a , b)(14)
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and consider the time t 0 of the intersection of line (14) and S. Then let us take
Lt (a , b)4 (x(t), y(t) ) if t 0D t and Lt (a , b)4 (x s (t , l0 ), y s (t , l0 ) ) if t 0G t ,
where l0 is defined from the condition (x(t 0 ), y(t 0 ) )4 (x s (t 0 , l0 ),
y s (t 0 , l0 ) ).

Now we are able to formulate the generalization of Rankine-Hugoniot
conditions.

THEOREM 2.1. – The generalized solution in the sense of Definition 1 to the
problem (1), (11) in the form (12) exists iff the following formulas are
true

uA4 IAt /PAt ; vA 4 JAt /PAt(15)

PAt4s
0

t

[r 0
1 ( (a1 )t (b1 )l2 (b1 )t (a1 )l )2r 0

2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l ) ] dt

IAt4s
0

t

[r 0
1u0

1 ((a1)t (b1)l2(b1)t (a1)l)2r 0
2u0

2 ((a2)t(b2)l2(b2)t(a2)l)] dt(16)

JAt4s
0

t

[r 0
1v0

1 ((a1)t (b1)l2(b1)t (a1)l)2r 0
2v0

2 ((a2)t (b2)l2(b2)t(a2)l)] dt ,

where r 0
j
fr 0 (aj , bj ), u0

j
fu0 (aj , bj ), v0

j
fv0 (aj , bj ), ( j41 , 2).

PROOF. – Suppose there are some family of domains D(t) with oriented
boundaries ¯D(t) in the plane (a , b), D(t 1 )%D(t 2 ) for 0Et 1Et 2ET . Suppose
¯D(t) is closed curve (a(t , l), b(t , l) ), l is a parameter along the curve, a ,
b�C 1 ( [t 1 , t 2 ]3R). Then it is easy to check that the following formula is valid

d

dt
s s

D(t)

W da db4s s
D(t)

¯W

¯t
da db1 t

¯D(t)

W(at bl2bt al ) dl ,(17)

where W�C 1 ( [t 1 , t 2 ]3 0
t� [t 1 , t 2 ]

D(t)).

Denote through P some circle in the plane (a , b) such that P3]t(OStc¯,
Stf SO]t(3R2 . Denote through D2 (t), D1 (t) (Consult with the Fig. 1.)
the domains in the plain (x , y) to which at time t the characteristics come from
(a2 , b2 ), (a1 , b1 ) respectively (note that D2 (t)ND1 (t)4P3]t( and
D2 (t)ND1 (t)4 St). Further let us consider the right hand side of integral
identity (7). Take f�C0

1 (R2 ) such that supp f%P . Suppose Dj*(t)4
Lt

21 (Dj (t) ), ( j41 , 2), DS (t)4 Lt
21 (St ). Define the function ft*(a , b) such
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that ft*(a , b)4 f (Lt (a , b) ). Then one has

s
t1

t2

dt{ !
j41 , 2

s s
Dj (t)

( fx u1 fy v) Pt (dx , dy)1s
St

( fx u1 fy v) Pt (dl)}4

s
t1

t2

dtm !
j41 , 2

s s
Dj*(t)

[ fx (a1 tu0 , b1 tv0 ) r 0 (a , b) u0 (a , b)1

fy (a1 tu0 , b1 tv0 )r 0 (a , b)v0 (a , b) ] da db1s
St

[ fx (x s (t , l), y s (t , l) )u(t , l)1

fy (x s (t , l), y s (t , l) ) v(t , l) ] Pt (dl)n4s
t1

t2

dtm !
j41 , 2

s s
Dj*(t)

¯ft*

¯t
r 0 (a , b) da db1

s
St

¯ft*

¯t
(x s (t , l), y s (t , l) ) Pt (dl)n4s

t1

t2

dtm !
j41 , 2

d

dt
s s

Dj*(t)

ft* r 0 (a , b) da db2

s
St

f (x s (t , l), y s (t , l) ) yr 0 (a2 , b2 )g ¯(a2 )

¯t

¯(b2 )

¯l
2

¯(b2 )

¯t

¯(a2 )

¯l
h2

r 0 (a1 , b1 )g ¯(a1 )

¯t

¯(b1 )

¯l
2

¯(b1 )

¯t

¯(a1 )

¯l
hl dl1

s
St

dft*

dt
(x s (t , l), y s (t , l) ) Pt (dl)n ,

using formula (17).
Consider the right hand side of integral identity (8), here g is playing the

role of f ,

s
t1

t2

dt{ !
j41 , 2

s s
Dj (t)

( gx u1gy v) It (dx , dy)1s
St

( gx u1gy v) It (dl)}4

s
t1

t2

dtm !
j41 , 2

s s
Dj*(t)

[gx (a1 tu0 , b1 tv0 ) r 0 (a , b) u0
2 (a , b)1

gy (a1 tu0 , b1 tv0 ) r 0 (a , b) u0 (a , b) v0 (a , b) ] da db1

s
St

[ gx (x s (t , l), y s (t , l) ) u(t , l)1gy (x s (t , l), y s (t , l) ) v(t , l) ] It (dl)n4
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s
t1

t2

dt{ !
j41,2

s s
Dj* (t)

¯gt*

¯t
r 0 (a, b) u0 (a, b) da db1s

St

¯gt*

¯t
(x s (t, l), y s (t, l)) It (dl)}4

s
t1

t2

dtm !
j41 , 2

d

dt
s s

Dj*(t)

gt* r 0 (a , b) u0 (a , b) da db2

s
St

g(x s (t , l), y s (t , l) ) yr 0
2 u0

2g ¯(a2 )

¯t

¯(b2 )

¯l
2

¯(b2 )

¯t

¯(a2 )

¯l
h2

r 0
1 u0

1g ¯(a1 )

¯t

¯(b1 )

¯l
2

¯(b1 )

¯t

¯(a1 )

¯l
hl dl1s

St

¯gt*

¯t
(x s (t , l), y s (t , l) ) It (dl)n ,

using formula (17).
Consider the right hand side of integral identity (9), here h is playing the

role of f ,

s
t1

t2

dt{ !
j41 , 2

s s
Dj (t)

(hx u1hy v) Jt (dx , dy)1s
St

(hx u1hy v) Jt (dl)}4

s
t1

t2

dtm !
j41 , 2

s s
Dj*(t)

[hx (a1 tu0 , b1 tv0 ) r 0 (a , b) u0 (a , b) v0 (a , b)1

hy (a1 tu0 , b1 tv0 ) r 0 (a , b)v0
2 (a , b) ] da db1

s
St

[hx (x s (t , l), y s (t , l) ) u(t , l)1hy (x s (t , l), y s (t , l) ) v(t , l) ] Jt (dl)n4

s
t1

t2

dt{ !
j41,2

s s
Dj* (t)

¯ht*

¯t
r 0 (a, b) v0 (a, b) da db1s

St

¯ht*

¯t
(x s (t, l), y s (t, l)) Jt (dl)}4

s
t1

t2

dtm !
j41 , 2

d

dt
s s

Dj*(t)

ht* r 0 (a , b) v0 (a , b) da db2

s
St

h(x s (t , l), y s (t , l) ) yr 0
2 v0

2g ¯(a2 )

¯t

¯(b2 )

¯l
2

¯(b2 )

¯t

¯(a2 )

¯l
h2

r 0
1 v0

1g ¯(a1 )

¯t

¯(b1 )

¯l
2

¯(b1 )

¯t

¯(a1 )

¯l
hl dl1s

St

¯ht*

¯t
(x s (t , l), y s (t , l) ) Jt (dl)n ,

again using formula (17). r
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THEOREM 2.2. – For every l and 0E tET(l) the following formulas are
true

(18)

s
0

t

[x s (t, l)2a1 (t, l)2tu0
1 (t, l)]r 0 (a1 , b1)((a1)t (b1)l2(b1)t (a1)l) dt4

s
0

t

[x s (t, l)2a2 (t, l)2tu0
2 (t, l)] r 0 (a2 , b2)((a2)t (b2)l2(b2)t (a2)l) dt ;

s
0

t

[y s (t, l)2b1 (t, l)2tv0
1 (t, l)] r 0 (a1 , b1)((a1)t (b1)l2(b1)t (a1)l) dt4

s
0

t

[y s (t, l)2b2 (t, l)2tv0
2 (t, l)] r 0 (a2 , b2)((a2)t (b2)l2(b2)t (a2)l) dt .

PROOF. – Let us take formulas (15) and write them in the following
way

(x s )t Pt4t4It4t ; (y s )t Pt4t4Jt4t ,

Now let us integrate these equalities with respect to t from 0 to t and then in-
tegrating by parts in both sides one obtains

s
0

t

(x s (t)2x s (t) )3

[r 0
1 ( (a1 )t (b1 )l2 (b1 )t (a1 )l )2r 0

2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l ) ] dt4

s
0

t

(t2t)3

[r 0
1 u0

1 ( (a1 )t (b1 )l2 (b1 )t (a1 )l )2r 0
2 u0

2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l ) ] dt

s
0

t

(y s (t)2y s (t) )3

[r 0
1 ( (a1 )t (b1 )l2 (b1 )t (a1 )l )2r 0

2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l ) ] dt4

s
0

t

(t2t)3

[r 0
1 v0

1 ( (a1 )t (b1 )l2 (b1 )t (a1 )l )2r 0
2 v0

2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l ) ] dt .
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Then applying formulas (14) we come to the assertion of Theorem
2.2. r

REMARK 2.2. – Let us mention that expressions (18) look similar to the ex-
pressions for the adhesion principle in [9], [10]. So all characteristics initial-
ly started at points (aj (t , l), bj (t , l) ), j41 , 2 , tE t , l is fixed, will «concen-
trate» in one point at time t .

3. – Comparison with the variational representation.

In this section we assume that r 0 (a , b)f1. Now let us compare the formu-
las (16) for shocks with the restrictions on singularity surface which can be ob-
tained through the variational representation (10) in case of potential initial
data. Suppose L=(x v (t , l), y v (t , l) ) is the singularity surface obtained from
(10). Then L can be represented as the solution of the equation

F(a1 , b1 ; t , x , y)2F(a2 , b2 ; t , x , y)40 ,(19)

where

FfS0 (a , b)1
(x2a)2

2 t
1

(y2b)2

2 t
,

and aj (t , x , y), bj (t , x , y), ( j41 , 2) are defined from the system of
equations

Fa (a , b ; t , x , y)40 ; Fb (a , b ; t , x , y)40 .

THEOREM 3.1. – Suppose the initial velocity vector in (11) is a potential
vector and the potential S0 (a , b) has the form

.
/
´

S0 (a , b)40 , as bD2ef (a , b)

S0 (a , b)4b1ef (a , b) , as bE2ef (a , b) ,
(20)

where eD0 is sufficiently small and the function f�C Q (R2 ), f (0 , 0 )40, sa-
tisfies the conditions: there exists such neighborhood of the point (a40, b40)
that faa (a , 0 )g0 and the curve determined by the equation b1ef (a , b)40 is
monotone for every sufficiently small eD0.

Then the formulas (15) and (19) determine different surfaces.

PROOF It is easy to infer from (19) that as eD0 is sufficiently small in the
neighborhood of the point (t40, x140, x240) the singularities surface has
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the form

y4
t

2
2efgx , 2

t

2
h1o(e) .(21)

Now let us find the equation of singularities surface on the basis of formu-
las (15). As e40 the solution of (15) looks as follows

x(t , l)4a2 (t , l)4a1 (t , l)4 l ; y(t , l)4b2 (t , l)42b1 (t , l)4 t/2 .

As eD0 let us seek the solution of the system (15) in the form

x(t , l)4 l1exA(t , l)1o(e) ; y(t , l)4 t/21eyA(t , l)1o(e) .(22)

Then taking into account the relations

x(t , l)4a2 (t , l)4a1 (t , l)1 tefa (a1 , b1 )

y(t , l)4b2 (t , l)4b1 (t , l)1 t(11efb (a1 , b1 ) ) ,

one obtains PAt , IAt , JAt and finds

¯xA(t , l)

¯t
4

1

2 t
s
0

t

fa dt

yA(t , l)42f (l , 0 )2
1

4
s
0

t

tfaa dt1
1

2
s
0

t

fb dt1
1

4 t
s
0

t

t 2 faa dt ,

(23)

where the values of the derivatives of the function f (a , b) are taken at the
point (l , 2t/2 ). But functions (22) must satisfy (21) which in view of (23) is
equivalent to the following identity

f (l , 2t/2 )2 f (l , 0 )2
1

4
s
0

t

gt2 t 2

t
h faa dt1

1

2
s
0

t

fb dtf0 ,

where the values of the derivatives of the function f (a , b) are taken at the
point (l , 2t/2 ). Further, multiplying by t then three times differentiating with
respect to t and substituting t40 one obtains faa (l , 0 )f0. The last identity
contradicts to the conditions on function f (a , b). r

Differentiating (19) with respect to t and changing notations from t to t one
gets the following condition on the surface L

(a12a2 )(x v )t1 (b12b2 )(y v )t4S0 (a1 , b1 )2S0 (a2 , b2 ) ,(24)
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THEOREM 3.2. – Suppose one has the potential initial data (11). Then the
surfaces which are defined by (15) and (24) coincide iff the following relation
is true

(25) (a12a2 )
d

dl
s
0

t

i * dt1 (b12b2 )
d

dl
s
0

t

j * dt4 (S12S2 )
d

dl
s
0

t

p * dt ,

where

p *f (b12b2 )
(a1 )t1 (a2 )t

2
2 (a12a2 )

(b1 )t1 (b2 )t

2

i *f (b12b2 )
(S1 )t1 (S2 )t

2
2 (S12S2 )

(b1 )t1 (b2 )t

2

j *f (a12a2 )
(S1 )t1 (S2 )t

2
2 (S12S2 )

(a1 )t1 (a2 )t

2
.

PROOF. – It is easy to see that because of our construction of the shock sur-
face x s , y s , keeping in mind the assumption that x s4x v , y s4y v , one
has

x s4a21tu2 (a2 , b2 )4a11tu1 (a1 , b1 )

y s4a21tv2 (a2 , b2 )4a11tv1 (a1 , b1 ) .
(26)

and the relations (15) at least locally determine the shock surface (if it exists).
So (24) occurs to be an additional relation and it is consistent with (15) only if it
follows from them.

Hence the condition (24) can be rewritten as follows

(a12a2 ) IAt1 (b12b2 ) JAt4 (S0 (a1 , b1 )2S0 (a2 , b2 ) ) PAt ,(27)

where PAt , IAt , JAt are taken from (16). Further, it is easy to check that the follow-
ing relations are true

( (a1 )t (b1 )l2 (b1 )t (a1 )l )2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l )4

d

dl
y(b12b2 )

(a1 )t1 (a2 )t

2
2 (a12a2 )

(b1 )t1 (b2 )t

2
z2

d

dt
y(b12b2 )

(a1 )l1 (a2 )l

2
2 (a12a2 )

(b1 )l1 (b2 )l

2
z4 d

dl
p *2

d

dt
p ;
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u1 ( (a1 )t (b1 )l2 (b1 )t (a1 )l )2u2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l )4

( (S1 )t (b1 )l2 (b1 )t (S1 )l )2 ( (S2 )t (b2 )l2 (b2 )t (S2 )l )4

d

dl
y(b12b2 )

(S1 )t1 (S2 )t

2
2 (S12S2 )

(b1 )t1 (b2 )t

2
z2

d

dt
y(b12b2 )

(S1 )l1 (S2 )l

2
2 (S12S2 )

(b1 )l1 (b2 )l

2
z4 d

dl
i *2

d

dt
i ;

2[v1 ( (a1 )t (b1 )l2 (b1 )t (a1 )l )2v2 ( (a2 )t (b2 )l2 (b2 )t (a2 )l ) ]4

( (S1 )t (a1 )l2 (a1 )t (S1 )l )2 ( (S2 )t (a2 )l2 (a2 )t (S2 )l )4

d

dl
y(a12a2 )

(S1 )t1 (S2 )t

2
2 (S12S2 )

(a1 )t1 (a2 )t

2
z2

d

dt
y(a12a2 )

(S1 )l1 (S2 )l

2
2 (S12S2 )

(a1 )l1 (a2 )l

2
z4 d

dl
j *2

d

dt
j ,

where SkfS0 (ak , bk ), (k41 , 2). Taking into account these formulas rela-
tion (27) produce (25) and inversely. r

REMARK 3.1. – In case the time interval t is small and initial data are suf-
ficiently smooth all terms in relation (25) approximately equal to zero and
one recovers formulas suggested in [18]. Thus when the time elapsing from
the moment of the emerging of a shock front is small the variational repre-
sentation is approximately valid.

REMARK 3.2. – The nontrivial 2-D example which is known to the author
where the variational representation works rigorously is the 2-D Riemann
problem for (1) with compressive piecewise constant potential velocity vector.
The example of corresponding initial potential S0 (a , b) is shown below
(A , B , C are constants)

S0 (a , b)4Ca2gB1
A1C

k3
h b ; bFmin (0 , k3a)

S0 (a , b)42Aa2Bb ; aF0, k3aFbF2k3a

S0 (a , b)4Ca1g A1C

k3
2Bh b ; bGmin (0 , 2k3a) ,

CD0, A1k3BD0, A2k3BD0 .

This result is obtained when the discontinuity lines are straight and between
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every two neighboring lines is the same angle: 90 7 or 120 7 or 180 7 . The conjec-
ture is that the angle value can be taken arbitrary.

But there the another type of singularity arises: d-function in one point
for density.

The validity of variational principle in this case could be understood in
the following way: the geometry of corresponding initial potential was flat
and had high degree of symmetry.

4. – The flow description inside the shock.

THEOREM 4.1. – Suppose there exists the generalized solution to the prob-
lem (1), (11) in the form (12), (15), (16) and the surface S can be defined from
the parametric equations x4x(t , l), y4y(t , l). Then the following system of
equations is true

(28)

(P
A

t )Q1xl]V(r 12r 2 )2 (r 1 v12r 2 v2 )(1
yl](r 1 u12r 2 u2 )2U(r 12r 2 )(40

(I
A

t )Q1xl]V(r 1 u12r 2 u2)2 (r 1 u1 v12r 2 u2 v2 )(1
yl](r 1 u1

2 2r 2 u2
2 )2U(r 1 u12r 2 u2 )(40

(J
A

t )Q1xl]V(r 1 v12r 2 v2 )2 (r 1 v1
2 2r 2 v2

2 )(1
yl](r 1 u1 v12r 2 u2 v2 )2U(r 1 v12r 2 v2 )(40

y
.
4V , x

.
4U ,

where U4 IAt /PAt , V4 JAt /PAt and «dot» denotes the differentiation with respect
to t .

PROOF. – Taking into account (4), (5) one has

x(t , l)4ai1 tu0
i (ai , bi )

y(t , l)4bi1 tv0
i (ai , bi )

r i4r 0 (ai , bi ) /D(ai , bi ) ,

(29)

where (i41 , 2) and

D(ai , bi )f (11 t(u0
i )a )(11 t(v0

i )b )2 t 2 (u0
i )b (v0

i )a .

Further in this proof for our convenience we will do all calculations inde-
pendently for indices «1», «2» and so omit indices in the expressions and
write a , b , r 0 , u , v , D instead of ai , bi , r 0

i , u0
i , v0

i , Di , i41 , 2 . From (29) one
can infer after differentiation the relations for xl , yl , x

.
, y

.
.

Now consider the right hand side of the first equation from (28) and write
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all terms concerning the index «1» (for «2» the calculations are analogous).
One has

r[xl (V2v)1yl (u2U) ]4r[xl (y
.
2v)1yl (u2x

.
) ]4

r[al (11 tua )1bl tub ][b
.
(11 tvb )1a

.
tva ]2

r[al tva1bl (11 tvb ) ][a
.
(11 tua )1b

.
tub ]4

2rD(a
.

bl2b
.
al )42r 0 (a

.
bl2b

.
al ) .

Thus the first equation from (28) is equivalent to the first equation from (16).
Taking into account the relations

ru[xl (V2v)1yl (u2U) ]42r 0 u(a
.

bl2b
.
al )

and

rv[xl (V2v)1yl (u2U) ]42r 0 v(a
.

bl2b
.
al )

one obtains the other two equations. r

COROLLARY 4.1. – The system (28) is well defined.

PROOF. – We have to prove that PAtD0 under the dynamics of (28). Let us
integrate PAt with respect to l from some l0 to l01Dl , where Dl is small enough.

Note that s
l0

l01Dl

PAt dl is exactly the sum of the areas which are bounded by the

curves (i41 , 2):

(ai (t , l0 ), bi (t , l0 ) ) , (ai (t , l01Dl), bi (t , l01Dl) ) , 0GtG t ;

(ai (t , l), bi (t , l) ) , (ai (0 , l), bi (0 , l) ) , l0G lG l01Dl .

Since Dl is arbitrary then PAtD0 as tD0. r

REMARK 4.1. – The system (28) is nonstrictly hyperbolic system with one
eigenvalue and three eigenvectors. From the first three equations of system
(28) it is obvious to find the additional relation between (PAt )Q , (IAt )Q , (JAt )Q by
eliminating xl and yl .

REMARK 4.2. – From the Cauchy-Kovalevskaya theorem one immediately
gets the local existence and uniqueness theorem for (28) in case of analytic
coefficients and initial data.
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5. – Specific type of motion. Constant external state.

The system (28) does not satisfy Friedrichs’ symmetrizability condition so
to obtain the existence theorem encounters some problems. Nevertheless the
internal dynamics of (28) is highly nontrivial which we demonstrate here in
the simplest case of constant external density and velocity.

Suppose that in (28) r 1fconstfrA, r 2fconstfr , u14v1f0, u2f

constfu , v2fconstfv; the velocity vector (u , v) satisfies condition II).
To simplify the notations we also drop index «t» and «waves» in (28).
Then one has

P
.
1(r2rA)]yl U2xl V(2r]yl u2xl v(40

I
.
1ru]yl U2xl V(2ru]yl u2xl v(40

J
.
1rv]yl U2xl V(2rv]yl u2xl v(40

x
.
4UfI/P , y

.
4VfJ/P .

(30)

From (30) one immediately gets the first integrals

uJ2vI4uJ02vI0fC(l) .(31)

and

uy
.
2vx

.
4

C(l)

P
.(32)

Now let us take the special initial conditions such that C(l)f0. In
other words there exists such k0 (l) that

I04k0 u , J04k0 v .(33)

Then taking into account (31) there exists some unknown k(t , l) such
that

I4ku , J4kv .

And from (32)

uyl2vxl4uy082vx08fG(l)D0 .

due to condition II). After rather simple transformations one arrives to
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the following system

P
.
1G(l)]k×(r2rA)2r(40

(Pk×)Q1rG(l)]k×21(40 ,
(34)

where k×fk/P .
Now expressing k× from the first equation of (34) and substituting it into the

second equation one can find the expressions for P and k× which read

P 24P0 (l)222G(l) P0 (l) N(l) t1rrAG(l)2 t 2

k×(r2rA)4r2
P
.

G(l)
,

(35)

where N(l)f k×0 (l)(r2rA)2r .
From (30) one obtains that x

.
4 k×u , y

.
4 k×v and the stability condition (see

Definition 2) takes the form

0Es
0

t

k×(t , l) dtE t .(36)

It is easy to find that from (36) taking into account (35) follows the stability
condition (see Definition 2)

0E k×0 (l)E1 .(37)

Then from (37) one can easily see that N(l)E0 and so (35) are well defined.
From (35) also follows that k×Kk as tKQ , where

kf
kr

kr1krA
.(38)

Thus we have proved the following theorem

THEOREM 5.1. – Suppose that r 1fconstfrA, r 2fconstfr , u14v1f0,
u2fconstfu , v2fconstfv .

Suppose also that G(l)D0 and (37) is true. Than there exists the solution
to the problem (1), (11) and the shock front tends to the following one as
tK1Q

x(l , t)4x0 (l)1kut

y(l , t)4y0 (l)1kvt ,

where k is taken from (38).
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Finally to illustrate the nontrivial character of the problem even with con-
stant external fields let us derive the equation in the case C(l)g0, but r4rA.
Then from (30) one infers

P
.
4r]yl u2xl v(

I
.
1P

. g I

P
2uh4rxl

C(l)

P

x
.
4

I

P
.

(39)

Differentiating the first equation from (39) with respect to t and taking into
account integral (32) one gets the equation for P

P
..
4r(

C(l)

P
)l(40)

So even in the simplest case our system delivers us rather unusual equations
of type (40). To illustrate this let us perform the stability analysis for small
perturbations to the model linear equation

P
..
4KPx ,(41)

where K4const . One have to find partial solutions to (41) in the form

P(t , x)4e i(jx1lt) ,(42)

where i 2421, j�R , l4s1 iD , s�R , D�R . One immediately gets the re-
striction to the choice of j and l

l 242Kij .

Further, one has

s 24D 2 ; 2sD42Kj .(43)

From (43) it follows that

2D 246Kj ,

so we can choose such signs that 2DAconstkj and 2D tends to 1Q as j
tends to 1Q . Thus in (42) one has an arbitrary rapid growth of small pertur-
bations with high frequencies and equation (41) is ill-posed in the class of func-
tions of finite smoothness because it does not satisfy classical Petrovsky
condition.
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Appendix.

Let us carry out some heuristic calculations to obtain the system (28). The
generalized solution (1), (11) can also be written in the form

u4u2 (t , x , y)1 (u1 (t , x , y)2u2 (t , x , y) ) H(S)

v4v2 (t , x , y)1 (v1 (t , x , y)2v2 (t , x , y) ) K(S)

r4r 2 (t , x , y)1 (r 1 (t , x , y)2r 2(t , x , y) ) R(S)1lNS40 d(S) ,

(44)

where d is usual Dirac d-function, but H , K , R are different Heaviside func-
tions which can be distinguished by means of the following heuristic multipli-
cation formulas

d QH4s1 Qd , d QK4s2 Qd ,(45)

where s1 , s2 are some functions on the surface S (in what follows we need not
multiplication with R , so it is not included in (45)). In addition the following
rather natural formulas are supposed to be true in the sense of distribu-
tions

H 2BK 2BHKBRHBRKBH .(46)

Let us note that these formulas can be treated rigorously, for example, with
the help of theory of new generalized functions [5], [1] (all basic ideas and
lines in application to physics can also be found in [6]) but here we do not need
such rigor.

We can write

Ufu21s1 (u12u2 ) , Vfv21s2 (v12v2 ) .

Then taking into account the relations (46) one has the following
equalities

ru4r 2 u21 (r 1 u12r 2 u2 ) H1lUd

rv4r 2 v21 (r 1 v12r 2 v2 ) H1lVd

ru 24r 2 u2
2 1 (r 1 u1

2 2r2 u2
2 ) H1lU 2 d

ruv4r 2 u2 v21 (r 1 u1 v12r 2 u2 v2 ) H1lUVd

rv 24r 2 v2
2 1 (r 1 v1

2 2r 2 v2
2 ) H1lV 2 d .

Substituting these equalities in the system (1) and equating to zero expres-
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sions with different kind of singularities one obtains

St1USx1VSy40

l t1 (lU)x1 (lV)y1 (r 12r 2 ) St1

(r 1 u12r 2 u2 ) Sx1 (r 1 v12r 2 v2 ) Sy40

(lU)t1 (lU 2 )x1 (lUV)y1 (r 1 u12r 2 u2 ) St1

(r 1 u1
2 2r 2 u2

2 ) Sx1 (r 1 u1 v12r 2 u2 v2 ) Sy40

(lV)t1 (lUV)x1 (lV 2 )y1 (r 1 v12r 2 v2 ) St1

(r 1 u1 v12r 2 u2 v2 ) Sx1 (r 1 v1
2 2r 2 v2

2 ) Sy40 .

(47)

Now let us mention that the surface S can be defined from the equation
Sfx2X(t , y)40 but the functions l , U , V depend only on t , y . Introducing
the differentiation along the direction (U , V) which will be denoted by «dot»
rewrite the system (47) in the form

y
.
4V , X

.
4U , y(0 , l)4 l

l
.
1lVy1Xy (V(r 12r 2 )2 (r 1 v12r 2 v2 ) )1

(r 1 u12r 2 u2 )2U(r 12r 2 )40

lU
.
1Xy [V(r 1 u12r 2 u22U(r 12r 2 ) )1

U(r 1 v12r 2 v2 )2 (r 1 u1 v12r 2 u2 v2 ) ]1

U(U(r 12r 2 )2 (r 1 u12r 2 u2) )1

(r 1 u1
2 2r 2 u2

2 )2U(r 1 u12r 2 u2 )40

lV
.
1Xy [V(r 1 v12r 2 v22V(r 12r 2 ) )1

V(r 1 v12r 2 v2 )2 (r 1 v1
2 2r 2 v2

2 ) ]1

V(U(r 12r 2 )2 (r 1 u12r 2 u2 ) )1

(r 1 u1 v12r 2 u2 v2 )2U(r 1 v12r 2 v2 )40 .

Now let us transform the system (48) in the following way. Multiply the
first equation by U and add to the second equation, then multiply the first
equation by V and add to the third equation. Finally multiplying all obtained
equations by yl and using the relation y

.
l4Vy yl one gets the system (28).
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