Bollettino

Unione Matematica Italiana

S. Dragotti, G. Magro, L. Parlato

On the suspension homomorphism

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.1, p. 247-257.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_247_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On the Suspension Homomorphism.

S. Dragotti - G. Magro - L. Parlato

Sunto. - In questa nota vengono studiate le condizioni affinché l'omomorfismo di sospensione

$$
s: \Theta_{r-1}^{\mathscr{F}}\left(S^{n-1}, x_{0}\right) \rightarrow \Theta_{r}^{\mathscr{F}}\left(S^{n}, x_{0}\right)
$$

sia un epimorfismo o un isomorfismo.

Summary. - In this paper we investigate the conditions for the suspension homomorphism

$$
s: \Theta_{r-1}^{\mathscr{F}}\left(S^{n-1}, x_{0}\right) \rightarrow \Theta_{r}^{\mathscr{F}}\left(S^{n}, x_{0}\right)
$$

is onto or an isomorphism.

Introduction.

The functor $\Theta^{\mathscr{F}}$ associated to a manifold class \mathfrak{F} satisfies all the EilenbergSteenrod axioms except excision. The last axiom holds provided that \mathfrak{F} satisfies the geometric excision property (see [4]). In this case $\Theta^{\mathscr{F}}$ coincides with the classical homology functor.

In this paper we introduce a weaker geometric property: the «dimensioncontroled» excision, or (m, n) excision, and we investigate how it is related to the suspension homomorphism

$$
s: \Theta_{r-1}^{\mathscr{F}}\left(S^{n-1}, x_{0}\right) \rightarrow \Theta_{r}^{\mathscr{F}}\left(S^{n}, x_{0}\right) .
$$

Already in a recent note ([6]) we have proved that s is an isomorphism if $r=n$. By making power to the, purely geometric, custom there employed, we arrive to devoid a definition wich allows us to obtain a larger result for the homomorphism s (Theor. 3.1).

The intuitive idea of «dimension-controled» excision is that of eliminating a part X of a geometrical space S without shifting another part Y, provided that the dimensions of X, Y, S have selected values.

Elementary techniques of PL topology (regular neighbourhoods, general position theorems) state conditions for the manifold class $\mathscr{P} \mathscr{L}$ of the standard

PL-spheres satisfies the new definition (Prop. 2.3). In this case the functor $\Theta^{\mathscr{F}}$ agrees with the classical homotopy functor π, and our main theorem, joint to the recalled result of [6], provides, in greater geometric simplicity and in a broadened point of view, a proof of the well- known Freudenthal's suspension theorem.

The original construction of the functor $\Theta^{\mathscr{F}}$ is developed in [3]. The papers [4], [5], [7] contain more closely investigations about their basic properties, and their behaviour in interesting special cases.

In order to make the current paper self-contained enough that the main theorem can be understood we include a section that provides the definitions of manifold class and functor associated.

1. - Manifold classes and associated functors.

A manifold class is a graded collection $\mathfrak{F}=\left\{\mathscr{F}_{h}\right\}_{h \geqslant 0}$ of compact polyhedra, defined up to a $P L$-isomorphism, closed under link and join, and such that $S^{0} \in$ $\mathscr{F}_{0}\left(S^{n}=\right.$ standard $P L$-sphere).

The collection \mathcal{C} of the geometric cycles without boundary is so, and for each \mathfrak{F} such that $\mathscr{F}_{0}=\left\{S^{0}\right\}$ we have $\mathfrak{F} \subseteq \mathcal{C}$.

The collection $\mathscr{P} \mathfrak{L}$ of the standard $P L$-spheres is so, and $\mathscr{P} \mathfrak{L} \subseteq \mathfrak{F}$ for each manifold class \mathfrak{F}.

A polyhedron $\Sigma \in \mathscr{F}_{h}$ is called \mathscr{F}_{h}-sphere, a polyhedron P of the form Σ st (x, Σ) is called \mathscr{F}_{h}-pseudodisc. \mathscr{F}_{h}-spheres and \mathscr{F}_{h}-pseudodiscs are allowable links for a theory of generalized manifolds, the \mathscr{F}-manifolds, and a subsequent cobordism theory, the \mathscr{F}-cobordism.

A manifold class \mathscr{F} is said to be connected if the polyhedron obtained attaching two \mathscr{F}_{h}-pseudodiscs, by a PL-homeomorphism between their boundaries (if there exists), is an \mathscr{F}_{h}-sphere.

Let \mathscr{F} be a connected manifold class such that $\mathscr{F}_{0}=\left\{S^{0}\right\}$. The last hypothesis implies that any \mathscr{F}-manifold M is a geometric cycle, so it makes sense to define M to be orientable if M is orientable as geometric cycle. If M denotes an oriented \mathscr{F}-manifold, then -M will denote the same manifold with the opposite orientation.

An \mathscr{F}-cobordism between two oriented \mathscr{F}_{h}-spheres Σ_{1} and Σ_{2} is an oriented \mathfrak{F}-manifold W such that:
a) ∂W is the disjoint union of Σ_{1} and $-\Sigma_{2}$;
b) $W \cup c_{1} * \Sigma_{1} \cup c_{2} * \Sigma_{2}$ is an \mathscr{F}_{h+1}-sphere.

An \mathfrak{F}-cobordism between two oriented \mathscr{F}_{h}-pseudodiscs P_{1} and P_{2} is an oriented \mathfrak{F}-manifold W such that:
a') $\partial W=P_{1} \cup P_{2} \cup W_{0}$, where W_{0} is a cobordism between ∂P_{1} and ∂P_{2};
b') $W \cup c_{1} * P_{1} \cup c_{2} * P_{2}$ is an \mathscr{F}_{h+1}-pseudodisc.
Let (X, x_{0}) be a pointed topological space. A singular \mathscr{F}_{h}-sphere of $\left(X, x_{0}\right)$ is a triple (Σ, Δ, f), where Σ is an oriented \mathscr{F}_{h}-sphere, $\Delta \subseteq \Sigma$ is a top dimensional simplex and $f:(\Sigma, \Delta) \rightarrow\left(X, x_{0}\right)$ a continuous map.

Two singular \mathscr{F}_{h}-spheres $\left(\Sigma_{1}, \Delta_{1}, f_{1}\right)$ and $\left(\Sigma_{2}, \Delta_{2}, f_{2}\right)$ are said \mathscr{F}-cobordant if there exists a triple $\left(W, W^{\prime}, g\right)$, called \mathfrak{F}-cobordism, where W is an \mathfrak{F} cobordism between Σ_{1} and $\Sigma_{2}, W^{\prime} \subseteq W$ is a PL-disc such that $W^{\prime} \cap \Sigma_{i}=\Delta_{i}$, $i=1,2$, and $g:\left(W, W^{\prime}\right) \rightarrow\left(X, x_{0}\right)$ is a continuous map, such that: $g / \Sigma_{i}=f_{i}$, $i=1,2$.

The \mathscr{F}-cobordism between singular \mathscr{F}-spheres is an equivalence relation.
Let $\Theta_{h}^{\mathscr{F}}\left(X, x_{0}\right)$ denote the set of the \mathscr{F}-cobordism classes of singular \mathscr{F}_{h} spheres of $\left(X, x_{0}\right)$.

As in the case of the homotopy theory we can geometrically define an addition in $\Theta_{h}^{\mathcal{F}}\left(X, x_{0}\right)(h \geqslant 1)$ which give a group structure. The zero element is the class of the \mathscr{F}_{h}-spheres cobordant to zero, and a cobordism to zero of (Σ, Δ, f) is a triple (P, D, g), where P is an oriented $(h+1)$-pseudodisc, $D \subset P$ is a topdimensional simplex, and $g:(P, D) \rightarrow\left(X, x_{0}\right)$ is a continuous map such that $\partial P=\Sigma, D \cap \Sigma=\Delta$, and $g / \Sigma=f$.

Let (X, A) be a pair of topological spaces and let x_{0} be a point of A. By relative \mathscr{F}_{h}-sphere of (X, A, x_{0}) we mean a triple (P, Δ, f), where P is an oriented \mathscr{F}_{h}-pseudodisc, $\Delta \subseteq P$ is a top-dimensional simplex meeting ∂P in a top-dimensional simplex, and $f:(P, \Delta) \rightarrow\left(X, x_{0}\right)$ is a map which carries ∂P to A.

Given a relative \mathscr{F}_{h}-sphere (P, Δ, f) of $\left(X, A, x_{0}\right),(\partial P, \Delta \cap \partial P, f /)$ is a singular \mathscr{F}_{h-1}-sphere of $\left(A, x_{0}\right)$ which will be denoted by $\partial(P, \Delta, f)$.

Two relative \mathfrak{F}-spheres $\left(P_{i}, \Delta_{i}, g_{i}\right), i=1,2$, of $\left(X, A, x_{0}\right)$ are called \mathfrak{F} cobordant if there exists a triple $\left(V, V^{\prime}, G\right)$ where V is an \mathscr{F}-cobordism between P_{1} and $P_{2}, \quad V^{\prime} \subseteq V$ a $\mathscr{P} \mathcal{L}$-cobordism between Δ_{1} and Δ_{2}, and $G:\left(V, V^{\prime}\right) \rightarrow\left(X, x_{0}\right)$ is a continuous map such that the following conditions hold:
(1) $V^{\prime} \cap P_{i}=\Delta_{i}, i=1,2$
(2) $G / P_{i}=g_{i}, i=1,2$
(3) Let $W=\partial V-\left(\stackrel{\circ}{P}_{1} \cup \stackrel{\circ}{P}_{2}\right)\left({ }^{1}\right)$ and $W^{\prime}=W \cap V^{\prime}$. Then $\left(W, W^{\prime}, G /\right)$ is an \mathscr{F}-cobordism between $\partial\left(P_{1}, \Delta_{1}, g_{1}\right)$ and $\partial\left(P_{2}, \Delta_{2}, g_{2}\right)$ with $G(W) \subseteq A$.

The \mathfrak{F}-cobordism between relative \mathscr{F}-spheres is an equivalence relation.
Let $\Theta_{h}^{\mathscr{F}}\left(X, A, x_{0}\right)$ denote the set of the \mathscr{F}-cobordism classes of relative \mathscr{F}_{h} spheres of $\left(X, A, x_{0}\right)$. As before, we can introduce in $\Theta_{h}^{\mathfrak{F}}\left(X, A, x_{0}\right)(h \geqslant 2)$ a group structure. The zero element is the class of the relative \mathscr{F}_{h}-spheres cobor-
(${ }^{1}$) $\stackrel{\circ}{P}$ stands for $P-\partial P$.
dant to zero, and a cobordism to zero of (P, Δ, f) is a triple (Q, D, F) where Q is an \mathcal{F}-pseudodisc of dimension $h+1, D \subseteq Q$ is an $h+1$ simplex of Q, $F:(Q, D) \rightarrow\left(X, x_{0}\right)$ is a continuous map such that

1) $P \subset \partial Q, D \cap P=\Delta$
2) $F / P=f$
3) Let $Q^{\prime}=\partial Q-\stackrel{\circ}{P}$ and $D^{\prime}=D \cap(\partial Q-\stackrel{\circ}{P})$. Then $\left(Q^{\prime}, D^{\prime}, F /\right.$ is a cobordism to zero of $\partial(P, \Delta, f)$ with $F\left(Q^{\prime}\right) \subset A$.

Given a continuous map $f:\left(X, A, x_{0}\right) \rightarrow\left(Y, B, y_{0}\right)$, we can define, for each $h \geqslant 2$, a homomorphism $\Theta^{\mathscr{F}}(f): \Theta_{h}^{\mathscr{F}}\left(X, A, x_{0}\right) \rightarrow \Theta_{h}^{\mathscr{F}}\left(Y, B, y_{0}\right)$ by setting

$$
\Theta^{\mathscr{F}}(f)([(P, \Delta, g)])=[(P, \Delta, f \circ g)] .
$$

As proved in [3], the definitions above recalled allow us to build a covariant functor $\Theta^{\mathscr{F}}$ which assigns to every pointed pair of topological spaces (X, A, x_{0}) a graded group $\Theta^{\mathscr{T}}\left(X, A, x_{0}\right)$, just as $\mathscr{P} L$ determines the classical functor π using \mathscr{F}-spheres and \mathscr{F}-pseudodiscs instead of $P L$-spheres and discs.

Every $\Theta^{\mathscr{F}}$ satisfies the first six axioms of Eilenberg and Steenrod (excision is excluded).

If $\mathscr{F}^{\prime} \subseteq \mathscr{F}$ there exists a canonical homomorphism (forgetful) of graded groups $\psi_{\mathcal{F}^{\prime}, \mathfrak{F}:} \Theta^{\mathscr{F}^{\prime}}\left(X, A, x_{0}\right) \rightarrow \Theta^{\mathscr{F}}\left(X, A, x_{0}\right)$ which allows to factorize the classical Hurewicz homomorphism

$$
\begin{array}{ccc}
\pi\left(X, x_{0}\right) & \xrightarrow{\psi_{\mathcal{P R}, \mathcal{C}}} & H\left(X, x_{0}\right) \\
\psi_{\mathcal{P L}, \mathscr{F}} \downarrow & & \nearrow \psi_{\mathscr{F}, \mathfrak{C}} \\
\Theta^{\mathscr{F}}\left(X, x_{0}\right)
\end{array}
$$

A manifold class \mathfrak{F} is said to be coconnected if for every \mathscr{F}_{h}-sphere Σ and \mathscr{F}_{h} pseudodisc $P \subset \Sigma$, the polyhedron $\Sigma-\stackrel{\circ}{P}$ is an \mathscr{F}_{h}-pseudodisc.

Proposition 1.1. - Let \mathfrak{F} be a connected, coconnected manifold class. All the \mathfrak{F}-spheres and \mathfrak{F}-pseudodiscs of positive dimension are connected. The only \mathfrak{I}_{0}-sphere is S^{0}.

Proposition 1.2. - Let \mathfrak{F} be a connected, coconnected manifold class, and let $P^{\prime} \subseteq P$ be \mathscr{F}_{h}-pseudodiscs such that $\partial P \cap \partial P^{\prime}=P^{\prime \prime}$ is an \mathscr{F}_{h-1}-pseudodisc, then the polyhedron $P-\left(\stackrel{\circ}{P} \cup P^{\prime \prime}\right)$ is an \mathscr{F}_{h}-pseudodisc.

Proposition 1.3. - Let \mathfrak{F} be a connected manifold class. The cylinder $P \times I$ and the cone cP on an \mathscr{F}_{h-1}-pseudodisc P are \mathscr{F}_{h}-pseudodiscs.

Proposition 1.4. - Let \mathfrak{F} be a connected, coconnected manifold class. The polyhedron obtained by gluing two \mathscr{F}_{h}-pseudodiscs belong an \mathscr{F}_{h-1}-pseudodisc of their boundary is an \mathfrak{F}_{h}-pseudodisc.

2. - The (m, n) excision property.

In this section we do the definition of «dimension-controled» excision and some observations about this. Moreover we study the behaviour with respect to this property of the manifold class $\mathcal{P} \mathfrak{L}$ of the standard $P L$-spheres.

The intuitive idea of dimension-controled excision, described in the Introduction, in case the objects are polyhedra and pseudodiscs of a manifold class can be well formulated in the following fashion.

Definition 2.1. - Let $m>n \geqslant 0$ integers. A manifold class \mathfrak{F} is said (m, n)-excisive if for each pair of disjoint polyhedra X_{1}, X_{2} of codimension n contained in an m-pseudodisc P and such that $X_{i}^{\prime}=X_{i} \cap \partial P$ has codimension $\geqslant n$ in $\partial P, i=1,2$, for every $(m-1)$-pseudodisc P_{i}^{\prime} of ∂P containing X_{i}^{\prime} and not meeting X_{j}, if there is one, there exists an m-pseudodisc P_{i} such that
i) $X_{i} \subset$ int P_{i}
ii) $P_{i} \cap X_{j}=\emptyset, i \neq j$
iii) $P_{i} \cap \partial P$ is an $(m-1)$-pseudodisc contained in int P_{i}^{\prime}.

Roughly speaking, if \mathfrak{F} is (m, n)-excisive, it is possible to eliminate a polyhedron X contained in a pseudodisc P without moving another polyhedron Y provided $\operatorname{dim} P=m$, $\operatorname{dim} X=\operatorname{dim} Y=m-n$, and provided that it is possible to eliminate on the boundary ∂P the polyhedron $X \cap \partial P$ without moving $Y \cap \partial P$.

Remark 2.2. - At first glance the Definition 2.1 may seem strange because considers only polyhedra X_{i} of P which meet ∂P. Newertheless if $X_{i} \cap \partial P=\emptyset$, we can replace, without loss of the generality, X_{i} by $Y_{i}=X_{i} \cup x_{i}$, where x_{i} is a point of $\partial P-X_{j}$. Indeeed the hypothesis $m>n$ implies that the codimension $m-1$ of $Y_{i} \cap \partial P$ in ∂P results greater or equal to n.

Since a polyhedron of codimension n is contained in a polyhedron of codimension $n^{\prime}>n$, it is evident that a manifold class $\mathscr{F}(m, n)$-excisive is also (m, n^{\prime})-excisive for each n^{\prime} such that $m>n^{\prime}>n$.

The manifold class \mathcal{C} of the geometric cycles is (m, n)-excisive for each m and $n, m>n$. This follows from the excision property of the geometric cycles.

Finally we consider the class $\mathscr{P} \mathfrak{L}$ of the standard PL-spheres.

Proposition 2.3. - The manifold class $\mathcal{P} \mathfrak{L}$ is (m, n)-excisive provided $n \geqslant$ 2 and $m<2 n-1$.

Proof. - Let $X_{i}, i=1,2$, be disjoint polyhedra of dimension $m-n$ contained in a PL-disc m-dimensional D, such that $\operatorname{dim} X_{i} \cap \partial D \leqslant m-1-n$. Suppose that there is a top dimensional PL-disc D_{i}^{\prime} of ∂D such that $X_{i} \cap \partial D \subset \stackrel{\circ}{D}_{i}^{\prime}$ and $D_{i}^{\prime} \cap X_{j}=\emptyset, i \neq j$.

Being $m<2 n-1$, we have $2(m-n-1)+1<m-1$. Hence there is a point c_{i}^{\prime} of $\stackrel{\circ}{D}_{i}^{\prime}$ in general position with respect to $X_{i}^{\prime}=X_{i} \cap \partial D_{i}^{\prime}$, so c_{i}^{\prime} and X_{i}^{\prime} are joinable, and the cone $C_{i}^{\prime}=c_{i}^{\prime} * X_{i}^{\prime}$ is contained in $\stackrel{\circ}{D}_{i}^{\prime}$.

Now consider a point $c_{i} \in \stackrel{\circ}{D}$ in general position with respect to $C_{i}^{\prime} \cup X_{i} \cup X_{j}$ (this is possible because $2(m-n)+1<m)$, hence the cone $C_{i}=c_{i} *\left(C_{i}^{\prime} \cup X_{i}\right)$ is disjoint from X_{j}. An ε-neighbourhood of C_{i} is a PL-dise D_{i} (C_{i} is collapsible), and there exists $\varepsilon>0$ sufficiently small so that such a disc not meet X_{j}.

Moreover $D_{i} \cap \partial D$ is a regular neighbourhood, in ∂D, of the cone C_{i}^{\prime}, so it is a PL-disc contained in $\stackrel{\circ}{D}_{i}^{\prime}$.

3. - The main theorem.

Theorem 3.1. - Let \mathfrak{F} be a connected, coconnected manifold class.
If \mathfrak{F} is (r, n) excisive for each $r \leqslant m(r>n \geqslant 2)$ then the suspension homomorphism:

$$
s: \Theta_{r-1}^{\mathscr{F}}\left(S^{n-1}, x_{0}\right) \rightarrow \Theta_{r}^{\mathscr{F}}\left(S^{n}, x_{0}\right)
$$

is an isomorphism for each $r \leqslant m-1$.
If $r=m, s$ is onto.
Proof. - The suspension homomorphism s is obtained by composition

$$
\begin{gathered}
\Theta_{r-1}^{\mathscr{F}}\left(S^{n-1}, x_{0}\right) \stackrel{\partial}{\stackrel{ }{\sim}} \Theta_{r}^{\mathfrak{F}}\left(D_{+}^{n}, S^{n-1}, x_{0}\right) \stackrel{i}{\rightarrow} \Theta_{r}^{\mathscr{F}}\left(S^{n}, D_{-}^{n}, x_{0}\right) \stackrel{j}{\leftarrow} \Theta_{r}^{\mathfrak{F}}\left(S^{n}, x_{0}\right) \\
s=j^{-1} \circ i \circ \partial^{-1}
\end{gathered}
$$

where D_{+}^{n} and D_{-}^{n} are the northern and southern hemispheres of S^{n}, and x_{0} is a fixed point of $S^{n-1}=\dot{D}_{+}^{n} \cap \dot{D}_{-}^{n}$.

The boundary homomorphisms ∂ and j also are isomorphisms by standard properties of the involved spaces, and by homotopy and exactness axioms of the functor $\Theta^{\mathscr{F}}$.

Hence s is an isomorphism or s is onto if, and only if, the homomorphism i is so.

Let $p_{1} \in \stackrel{\circ}{D}{ }_{+}^{n}$ the north pole, $p_{2} \in \stackrel{\circ}{D}{ }_{-}^{n}$ the south pole of S^{n}, consider the dia-
$\operatorname{gram}(r \geqslant 2)$

$$
\begin{array}{ccc}
\boldsymbol{\Theta}_{r}^{\mathscr{F}}\left(D_{+}^{n}, S^{n-1}, x_{0}\right) & \xrightarrow{\partial_{1}} & \boldsymbol{\Theta}_{r-1}^{\mathscr{F}}\left(S^{n-1}, x_{0}\right) \\
i_{1} \downarrow & \downarrow^{j_{1}} \\
\left.r^{n}-p_{2}, S^{n}-\left(p_{1} \cup p_{2}\right), x_{0}\right) & \xrightarrow{\partial_{2}} & \Theta_{r-1}^{\mathscr{F}}\left(S^{n}-\left(p_{1} \cup p_{2}\right), x_{0}\right)
\end{array}
$$

where the vertical maps are induced by inclusion maps. Because D_{+}^{n} and $S^{n}-$ p_{2} are contractible, the homotopy and exactness axioms of the functor $\Theta^{\mathscr{F}}$ assure that the connecting homomorphisms $\partial_{1}, \partial_{2}$ are isomorphisms. Moreover S^{n-1} is a strong deformation retract of $S^{n}-\left(p_{1} \cup p_{2}\right)$, and hence j_{1} is an isomorphism.

From the trivial commutativity of the above diagram it follows that i_{1} is an isomorphism.

A similar argument shows that if $r \geqslant 2$ also the homomorphism

$$
i_{2}: \Theta_{r}^{\mathscr{T}}\left(S^{n}, D_{-}^{n}, x_{0}\right) \rightarrow \Theta_{r}^{\mathscr{T}}\left(S^{n}, S^{n}-p_{1}, x_{0}\right)
$$

is an isomorphism.
Finally consider the commutative diagram

where h is induced by inclusion.
Being i_{1} and i_{2} isomorphisms, to prove that i is onto (or injective) is equivalent to prove that h is onto (or injective).

Then we now show that, if $r \leqslant m$, the homomorphism

$$
h: \Theta_{r}^{\mathscr{T}}\left(S^{n}-p_{2}, S^{n}-\left(p_{1} \cup p_{2}\right), x_{0}\right) \rightarrow \Theta_{r}^{\mathscr{T}}\left(S^{n}, S^{n}-p_{1}, x_{0}\right)
$$

is onto.
Let (P, Δ, f) be a representative triple of an element α of $\Theta_{r}^{\mathscr{F}}\left(S^{n}, S^{n}-\right.$ $\left.p_{1}, x_{0}\right)$ that is $f: P \rightarrow S^{n}, f(\partial P) \subseteq S^{n}-p_{1}, f(\Delta)=x_{0}$.

We need a representative triple $\left(P^{\prime}, \Delta^{\prime}, f^{\prime}\right)$ of α such that $f^{\prime}\left(P^{\prime}\right) \subseteq S^{n}-$ $p_{2}, f^{\prime}\left(\partial P^{\prime}\right) \subseteq S^{n}-\left(p_{1} \cup p_{2}\right), f^{\prime}\left(\Delta^{\prime}\right)=x_{0}$.

Up to a homotopy we can suppose that f is a simplicial map, p_{1} is the barycentre of a top dimensional simplex of D_{+}^{n} and p_{2} is the barycentre of a top dimensional simplex of D_{-}^{n}.

If $f^{-1}\left(p_{2}\right)=\emptyset$ it suffices to take

$$
P^{\prime}=P, \quad \Delta^{\prime}=\Delta, \quad f^{\prime}=f .
$$

If not, being f a simplicial map, $f^{-1}\left(p_{2}\right)$ is a polyhedron X_{2} of dimension $r-$ n contained in the r-pseudodisc P, and analogously $f^{-1}\left(p_{1}\right)$, if not empty, is a polyhedron Y_{1} of dimension $r-n$ contained in P.

Let $X_{1}=Y_{1} \cup b(\Delta \cap \partial P)\left(b(\Delta \cap \partial P)\right.$ is the barycentre of the face $\Delta_{0}=\Delta \cap$ ∂P of Δ).

We have

$$
\begin{gathered}
\operatorname{dim} X_{1}=\operatorname{dim} Y_{1}=r-n, \quad \operatorname{dim} X_{1} \cap \partial P=0 \leqslant r-1-n \\
X_{1} \cap X_{2}=\emptyset \text { because } f(b)=x_{0} \neq p_{2} \\
X_{1} \cap \partial P=\{b(\Delta \cap \partial P)\} \subset \Delta_{0} \\
X_{2} \cap \Delta_{0}=\emptyset \text { because } f(b)=x_{0} \neq p_{2} .
\end{gathered}
$$

Being $\mathfrak{F}(r, n)$ excisive, there exists an r-pseudodisc P_{1} such that
(a) $X_{1} \subset \operatorname{int} P_{1}, P_{1} \cap X_{2}=\emptyset$
(b) $P_{1} \cap \partial P$ is an $(r-1)$-pseudodisc contained in Δ_{0}

Let Δ_{1} be an r-simplex contained in $\Delta \cap P_{1}$ such that $\Delta_{1} \cap \partial P_{1} \subseteq \Delta_{1} \cap \partial P$ is an $r-1$ simplex containing $b(\Delta \cap \partial P)$.

The triple (P, Δ, f) is \mathscr{F}-cobordant to $\left(P, \Delta_{1}, f\right)$ (cfr. [3] theor. 2.10).
Now if we take $P^{\prime}=P_{1}, \Delta^{\prime}=\Delta_{1}, f^{\prime}=f / P_{1}$ we have
(1) $f^{\prime}\left(P^{\prime}\right)=f\left(P_{1}\right) \subseteq S^{n}-p_{2}$ because $P_{1} \cap X_{2}=\emptyset$
(2) $f^{\prime}\left(\partial P^{\prime}\right)=f\left(\partial P_{1}\right) \subseteq S^{n}-\left(p_{1} \cup p_{2}\right)$ because $f^{-1}\left(p_{1}\right) \subset X_{1} \subset \stackrel{\circ}{P}_{1}$ by (a)
(3) $f^{\prime}\left(\Delta^{\prime}\right)=f\left(\Delta^{\prime}\right) \subseteq f(\Delta)=x_{0}$.

Hence the triple $\left(P^{\prime}, \Delta^{\prime}, f^{\prime}\right)$ determines an element α^{\prime} of $\Theta_{r}^{\mathscr{T}}\left(S^{n}-\right.$ $\left.p_{2}, S^{n}-\left(p_{1} \cup p_{2}\right), x_{0}\right)$.

In order to prove that $h\left(\alpha^{\prime}\right)=\alpha$ it remains to construct an \mathscr{F}-cobordism $\left(W, W^{\prime}, G\right)$ between $\left(P, \Delta^{\prime}, f\right)(\sim(P, \Delta, f))$ and $\left(P^{\prime}, \Delta^{\prime}, f^{\prime}\right)$.

Let $W=P \times I, W^{\prime}=\Delta^{\prime} \times I, G=f \times \mathrm{id}$.
We have

$$
\begin{gathered}
W^{\prime} \cap P \times\{0\}=\Delta^{\prime} \times\{0\} ; \quad W^{\prime} \cap P^{\prime} \times\{1\}=\Delta^{\prime} \times\{1\} \\
G\left(\partial W-\left(\stackrel{\circ}{P} \times\{0\} \cup \stackrel{\circ}{P^{\prime}} \times\{1\}\right)\right) \subseteq S^{n}-p_{1}
\end{gathered}
$$

Then, by using the Propositions $1.2,1.3,1.4$, it is easy to verify that the triple $\left(W, W^{\prime}, G\right)$ satisfies all the conditions which assure that it is the re-
quired cobordism between $\left(P, \Delta^{\prime}, f\right)$ and $\left(P^{\prime}, \Delta^{\prime}, f^{\prime}\right)$, where P and P^{\prime} are respectively identified with $P \times\{0\}$ and $P^{\prime} \times\{1\}$.

Now we prove that h is injective for $r \leqslant m-1$.
Let $\alpha=[(P, \Delta, f)]$ be an element of $\Theta_{r}^{\mathscr{F}}\left(S^{n}-p_{2}, S^{n}-\left(p_{1} \cup p_{2}\right), x_{0}\right)$ such that $h(\alpha)=0$. As above, we can suppose, up to a homotopy, that f is a simplicial map, p_{1} is the barycentre of a top dimensional simplex of D_{+}^{n} and p_{2} is the barycentre of a top dimensional simplex of D_{-}^{n}.

Let ($Q, D, F)$ be a cobordism to zero of (P, Δ, f) in $\left(S^{n}, S^{n}-p_{1}, x_{0}\right)$, that is:
Q is an \mathscr{F}-pseudodisc of dimension $r+1, D \subseteq Q$ is an $r+1$ simplex of Q, $F:(Q, D) \rightarrow\left(S^{n}, x_{0}\right)$ is a simplicial map such that

1) $P \subset \partial Q, D \cap P=\Delta$
2) $F / P=f$
3) $(\partial Q-\stackrel{\circ}{P}, D \cap(\partial Q-\stackrel{\circ}{P}), F)$ is a cobordism to zero of $\partial(P, \Delta, f)$ such that $F(\partial Q-P) \subset S^{n}-p_{1}$.

In order to prove the assert we need a cobordism to zero of (P, Δ, f) in $\left(S^{n}-p_{2}, S^{n}-\left(p_{1} \cup p_{2}\right), x_{0}\right)$.

If $F^{-1}\left(p_{2}\right)=\emptyset$, it suffices to take (Q, D, F) itself.
If not, let $Y_{1}=F^{-1}\left(p_{1}\right), Y_{2}=F^{-1}\left(p_{2}\right) \cup x$, where x is a point of $\partial Q-P$.
$Y_{1_{\mathrm{o}}}$ and Y_{2} are disjoint polyhedra of dimension $r+1-n$ contained in $Q=$ $Q-(D \cup \Delta)$, which is an $(r+1)$-pseudodisc by Prop. 1.2 again.

Being $r+1 \leqslant m, \mathscr{F}$ is $(r+1, n)$-excisive by hypothesis, and being $\partial Q-\stackrel{\circ}{P}$ an r-pseudodisc containing $Y_{2} \cap \partial \bar{Q}$ and not meeting Y_{1}, there exists an $(r+$ 1)-pseudodisc Q_{2} of \bar{Q} such that
(a') $\quad Y_{2} \subset \operatorname{int} Q_{2}, Y_{1} \cap Q_{2}=\emptyset$
(b') $Q_{2} \cap \partial \bar{Q}$ is an r-pseudodisc Q_{2}^{\prime} contained in $\operatorname{int}(\partial Q-\stackrel{\circ}{P})$

Let D^{\prime} be an $(r+1)$ simplex contained in $\operatorname{int} D$ such that $D^{\prime} \cap \partial Q=\Delta$.

Being \mathscr{F}_{0} a coconnected manifold class, by Prop. 1.2, the polyhedron $Q^{\prime}=$ $Q-\left(Q_{2} \cup Q_{2}^{\prime}\right)$ is an $(r+1)$-pseudodisc.

We have

$$
\begin{gathered}
P \subset \partial Q^{\prime} \text { because } Q_{2}^{\prime} \subseteq \operatorname{int}(\partial Q-\stackrel{\circ}{P}) \\
F\left(Q^{\prime}\right) \subseteq S^{n}-p_{2} \text { because } F^{-1}\left(p_{2}\right) \subset \operatorname{int} Q_{2} \text { and } Q^{\prime} \cap \operatorname{int} Q_{2}=\emptyset \\
F\left(\partial Q^{\prime}-\stackrel{\circ}{P}\right) \subseteq S^{n}-\left(p_{1} \cup p_{2}\right) .
\end{gathered}
$$

At this point it is straightforward to see that the triple ($Q^{\prime}, D^{\prime}, F /$) is the required cobordism to zero of (P, Δ, f) in $\left(S^{n}-p_{2}, S^{n}-\left(p_{1} \cup\right.\right.$ $\left.p_{2}\right), x_{0}$.

Corollary 3.2 (Freudenthal's Suspension Theorem). - If $r<2 n-2$, then

$$
\begin{gathered}
s: \pi_{r-1}\left(S^{n-1}\right) \approx \pi_{r}\left(S^{n}\right) \\
s\left(\pi_{2 n-3}\left(S^{n-1}\right)\right)=\pi_{2 n-2}\left(S^{n}\right)
\end{gathered}
$$

Proof. - Being $\Theta^{\mathscr{P} \mathscr{L}}=\pi$, the assert follows

- if $r \neq n$, from the Prop. 2.3 and Theorem 3.1;
- if $r=n$, as particular case of the result of [6] recalled in Introduction.

REFERENCES

[1] G. A. Anderson, Resolutions of generalized polyhedral manifolds, Tôhoku Mat. Journ., 31 (1979), 495-517.
[2] S. Dragotti - R. Esposito - G. Magro, \mathfrak{F}-varietà e funzioni dual cellulari, Ricerche di Matematica, 33 (1990), 21-33.
[3] S. Dragotti - R. Esposito - G. Magro, Construction of functors connecting homology and homotopy theories, Proc. of Amer. Math. Soc., 120 (1994), 635-646.
[4] S. Dragotti - R. Esposito - G. Magro - L. Parlato, Geometric representation of homology functor, Ricerche di Matematica, 45 (1996), 3-12.
[5] S. Dragotti - G. Magro, A representation of homotopy theory by homotopy spheres, Ricerche di Matematica, 46 (1997), 13-22.
[6] S. Dragotti - G. Magro - L. Parlato, On the groups $\Theta_{n}^{\mathscr{T}}$ of a sphere, Boll. U.M.I. (8) 3-B (2000), 337-346.
[7] R. Esposito - L. Parlato, I teoremi di Hurewicz e Whitehead per funtori omotopici associati a manifold classes, Ricerche di Matematica, 44, (1995), 359-368.
[8] H. Freudenthal, Compositio Math, 5 (1937), 299-314.
[9] C. R. F. Maunder, Algebraic topology, Van Nostrand, London, 1970.
[10] C. P. Rourke - B. J. Sanderson, Introduction to PL topology, Ergeb. Mat. Band. 69, Springer-Verlag, Berlin and New York, 1972.
[11] S. Buoncristiano - C. P. Rourke - B. J. Sanderson, A geometric approach in homology theory, Cambridge University Press - London - New York, 1976.
[12] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[13] J. H. C. Whitehead, Note on suspension, Quart. J. Math. Oxford (2), 1 (1950), 9-22.

> Dipartimento di Matematica ed Applicazioni «Renato Caccioppoli» Via Cintia - 80126 Napoli, Italia

[^0]
[^0]: Pervenuta in Redazione
 il 15 febbraio 2000

