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Finite Groups with Primitive Sylow Normalizers.

A. D’ANIELLO - C. DE VIVO - G. GIORDANO

Sunto. – Si prova che sono primitivi i gruppi finiti nei quali siano primitivi i norma-
lizzanti dei sottogruppi di Sylow. Si classificano i gruppi di tale classe, denotata
con N P, e si studiano le classi di Schunck il cui bordo sia contenuto in N P, fornen-
do, tra l’altro, condizioni necessarie e sufficienti affinchè i proiettori siano subnor-
malmente immersi.

Summary. – We prove that are primitive the finite groups whose normalizers of the Sy-
low subgroups are primitive. We classify the groups of such class, denoted by N P,
and we study the Schunck classes whose boundary is contained in N P. We give also
necessary and sufficient conditions in order that the projectors be subnormally
embedded.

Let X be a non empty class of finite groups and denote by NX the class of
finite groups G such that, for any prime p which divides NGN , the normalizer of
a Sylow p-subgroup of G belongs to X.

A well known result of Glauberman [9] asserts that, if X4 0
p�P

Xp , where P is

the set of primes and Xp is the class of finite p-groups, then G�NX if and only if
G�X. In 1986 Bianchi, Berta Mauri and Hauck [3] generalized that result by
proving that, if 8 is the class of nilpotent finite groups, then N848 . Recently
Ballester-Bolinches and Shemetkov [2] proved that if normalizers of Sylow p-
subgroups are p-nilpotent for every prime p then the group is nilpotent.

If the class X is subgroup-closed it is always true that X ’NX, nevertheless
equality does not hold in general, even if X satisfies strong closure properties.
In fact, in 1988 Fedri and Serena [7] showed that, if U is the class of supersol-
uble finite groups, then the class NU is much larger than U; in 1991 the same
authors and Bryce [5] throughly studied the class NU.

Observe that NX need not coincide with X, even if X is a S-closed saturated
Fitting formation; for instance, if X is the class of finite groups with ordered
Sylow tower, S4�NX2X.

In this paper we prove that, if P is the class of finite primitive groups, then
NP is a homomorph strictly contained in P; this means that the class P, which
has a very few closure properties, is N-closed and that X ’NX is no more true
if the class is not S-closed. Then we classify the groups in NP.

As NP is contained in P, a homomorph X whose Q-boundary is contained in
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NP is an F-Schunck class, where F is the class of finite groups; equivalently, X

is an F-projecive class (see [6], III, (2.7) and (3.10)). We consider F-Schunck
classes whose boundary is contained in NP and characterize that ones which
are Gaschütz classes. Recall that a Gaschütz class is a class X of (finite) groups
such that the set of X-covering subgroups is non-empty, for all groups G (see
[6], III, (3.5)). Moreover we study the behaviour of X-projectors and find con-
ditions for them to be subnormally embedded. A subgroup H is subnormally
embedded in a group G if, for all primes, a Sylow subgroup of H is a Sylow sub-
group of some subnormal subgroup of G . Most of our notation is standard and
can for instance be found in [6]. «Group» will stand for «finite group».

1. – N-closure property of P.

1.1. LEMMA. – Let G�NP. If p is a prime dividing NGN and Gp�Sylp (G),
then Gp is the unique minimal normal subgroup of NG (Gp ). In particular,
CG (Gp )4Gp .

PROOF. – This follows immediately from the hypothesis that NG (Gp ) is
primitive.

1.2. LEMMA. – Let G�NP and let N be a normal subgroup of G . Then N is
a Hall subgroup of G .

PROOF. – Let p be a prime dividing NNN and Gp be a Sylow p-subgroup of G .
Since NG (Gp )1Nc1, we get by Lemma 1.1, that GpGNG (Gp )1N , hence
GpGN .

1.3. LEMMA. – The groups in NP are monolithic.

PROOF. – Suppose that G is a group in NP. Assume that N and L are two
different minimal normal subgroups. Then N and L have trivial intersection
and by Lemma 1.2 they are Hall subgroups of G . Let p be a prime dividing the
order of N . Then L centralizes the Sylow p-subgroups of N which are Sylow p-
subgroups of G . This contradicts Lemma 1.1. Therefore G is monolithic.

1.4. PROPOSITION. – The class NP is (strictly) contained in P.

PROOF. – Let G be a group belonging to NP. If there is a prime p such that
Op (G)c1, then, by Lemma 1.1, Op (G)4Gp�Sylp (G), and G4NG (Gp ) is
primitive. If instead Fit (G)=1 then by Lemma 1.3, G has a unique minimal
normal subgroup and it is not abelian, therefore G is primitive.

The inclusion NP ’ P is strict; the smallest order of a group G� P2NP

is 20.

1.5. PROPOSITION. – The class NP is a homomorph.
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PROOF. – Let G be a group in NP and let N be a normal subgroup of G such
that G/N�NP. By Lemma 1.2 N is a Hall subgroup of G and therefore G splits
over N (Schur-Zassenhaus Theorem). Let G4K l3N . Since K�NP and K is a
Hall subgroup of G , it is easy to see that there exists a Sylow p-subgroup Gp of
G such that GpGK and NG (Gp )4NK (Gp )� P: a contradiction.

2. – Classification of the groups in NP.

As it is well known there exist 3 distinct types of primitive groups

P 4 P1N
.

P2N
.

P3

where P1 is the class of primitive groups of affine type, i.e. primitive groups
whose socle is abelian; P2 is the class of (primitive) monolithic groups, whose
socle is not abelian; P3 is the class of primitive non-monolithic groups (see, for
instance, [6]). As an easy consequence of Lemma 1.3 we get that

2.1. PROPOSITION. – The class NP contains no primitive group of type P3 .

A fundamental theorem of Walter on simple groups is used in the proof of
the following auxiliary result. We were not able to decide whether or not it can
be avoided.

2.2. LEMMA. – If G is a non abelian simple group with elementary abelian
Sylow subgroups, for all primes, then one of the following holds:

(i) G is isomorphic to the Janko group J1 ;
(ii) G is isomorphic to PSL(2 , p f ), where either p fD3, p f

f3, 5 (mod 8),
(p f61) /2 square-free or p42, fD1, 2 f61 square-free.

PROOF. – Walter (see, for instance, [10] p. 485) proved that if G is a non-
abelian simple group with abelian Sylow 2-subgroups, then one of the follow-
ing holds:

(i) G is isomorphic to the Janko group J1;
(ii) G is isomorphic to PSL(2 , p f ), where either p fD3, p f

f3, 5 (mod 8)
or p42, fD1;

(iii) G is of Ree type.

By hypothesis all Sylow subgroups of G are elementary abelian. Then G is
not of Ree-type, because a Sylow 3-subgroup of a group of Ree type has class 3
(see, for instance, [10], p. 483) . If G is isomorphic to PSL(2 , p f ) for an odd
prime q dividing (p f61) /k (k4 (2 , p f61)), the Sylow q-subgroups of G are
cyclic and so they have order q; it follows that (p f61) /k is square-free.

2.3. LEMMA. – The alternating group A5 is, up to isomorphism, the only
non abelian simple group in NP.
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PROOF. – Let G be a non abelian simple group in NP. Then all Sylow sub-
groups of G are elementary abelian (see Lemma 1.1), hence by Lemma 2.2 G is
either isomorphic to the Janko group J1 or to PSL(2 , p f), with conditions in
the statement. On the other hand, Lemma 1.1 says that Sylow subgroups of G
are self-centralizing. The group G is not isomorphic to J1 , because the central-
izer of a Sylow 3-subgroup of J1 is cyclic of order 6 (see, for instance, [10],
p. 482). Thus G is isomorphic to PSL(2 , p f). Then G possesses cyclic sub-
groups of order (p f61) /k , (k4 (2 , p f61)), whose Sylow q-subgroups are Sy-
low q-subgroups of G , if qc2; therefore (p f61) /k is a prime, because the Sy-
low subgroups of G are selfcentralizing; it follows p f45 or p f44, that is GC

PSL(2 , 4 )CPSL(2 , 5 )CA5 . It is easy to see that A5�NP.

2.4. PROPOSITION. – The only group in NP whose socle is not abelian is, up
to isomorphism, A5 .

PROOF. – Let G�NPOP2 and let R be the socle of G . Since R is a Hall sub-
group of G (see Lemma 1.2), R is a direct power U n of a non abelian simple
group U , whose Sylow subgroups are elementary abelian and self-centralizing
(see Lemma 1.1); it follows UCA5 (see proof of Lemma 2.3) and therefore GC

A5 &nat K (natural wreath product), where K is a transitive subgroup of Sn and
2, 3, 5 do not divide NKN . If nD1, since CR (K)c1, we have that a Sylow p-
subgroup of G , with p dividing NKN , is not self-centralizing, a contradiction.
Thus n41, that is K41 and GCA5 .

Next propositions provide the classification of groups in NPOP1 .

2.5. PROPOSITION. – Every group in NPOP1 is soluble.

PROOF. – Assume that the theorem is false and let a counterexample G of
smallest order be chosen. Let S be the soluble radical of G . By Lemma 1.2 S is
a Hall subgroup of G , therefore by minimality of NGN we have that S4Soc (G)
is a Sylow subgroup of G . On the other hand, since G/S�NPOP2 , we get
G/SCA5 (Proposition 2.4). It follows that G is a holomorph of an elementary
abelian p-group S by an irreducible subgroup K of GL(n , p)C Aut S , with
KCA5 , where NSN4p n (pD5). Now it is well known that an irreducible
GF(p) A5-module V on which A5 acts faithfully is, up to isomorphism, one of
the following.

1st case: 3Np21 and V is the GF(p) A5-module induced from a linear non-
principal GF(p) A4-module, where A4 is a point stabilizer (dimGF(p) V45).

2nd case: V is a non-principal direct summand of the GF(p) A5-module in-
duced from the principal GF(p) A4-module, A4 as above (dimGF(p) V44).

3rd case: pc2, k5�GF(p) and any point stabilizer acts irreducibly on V
(dimGF(p) V43).
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In any case it is easy to see that there exists a Sylow subgroup Q of A5 such
that CV (Q)c0: in the first case Q�Syl5(A5), in 2nd and 3rd cases Q�
Syl3(A5).

Therefore CS (Q)c1 and so CG (Q)DQ , which is false by Lemma 1.1.

Let p and q be different primes and put r4exp (p , q), i.e. the (multiplica-
tive) order of p modulo q . We will denote by L(p , q) the holomorph of the ad-
ditive group of GF(p r ) by the subgroup of order q in the Singer cycle of
GL(r , p) (see, for instance, [11] p. 187).

2.6. PROPOSITION. – For any pair (p , q) of distinct primes the groups
L(p , q) and L(q , p) are, up to isomorphism, the only two groups G belonging
to NP such that p (G)4]p , q(.

PROOF. – It is easy to see that L(p , q) and L(q , p) are in NP. Conversely,
let G be a group in NP with p (G)4]p , q(. Since G is soluble (Burnside’s theo-
rem) we can assume, by Lemma 1.2, that Soc (G)=Gp�Sylp (G). On the other
hand Lemma 1.1 ensures that a Sylow q-subgroup Gq of G is elementary
abelian; therefore, since Gq acts faithfully and irreducibly on Gp , Gq has order
q and so GCL(p , q).

2.7. PROPOSITION. – Let G�NPOP1 . Then Np(G)NG2.

PROOF. – Let G be a minimal counterexample. By Proposition 2.5 G is solu-
ble; therefore, since NP is a homomorph, minimality of NGN and Lemma 1.2 en-
sure that G is a holomorph of an elementary abelian p-group V by an irre-
ducible p 8-subgroup K of GL(n , p)CAut V , with Np(K)N42 (NVN4p n). On
the other hand, by Proposition 2.6, we get KCL(q , t), for some pair (q , t) of
distinct primes (and different from p). If Kt is a Sylow t-subgroup of K (of G),
we have CV (Kt )c1, because Ot (K)41 (see, for instance, [12] IX. 6.2 Theo-
rem). Thus Kt is not self-centralizing in G , which contradicts Lemma 1.1.

2.8. THEOREM. – The class NP is the following homomorph (contained in
P): NP 4 (1)N

.
(A5 )N

.
(Cp Np�P)N

.
(L(p , q)N(p , q) pair of different

primes).

PROOF. – This follows immediately from Propositions 2.4, 2.6 and 2.7.

2.9. COROLLARY. – NP is a N-closed homomorph, that is N(NP)4N P.

PROOF. – This follows easily from Theorem 2.8.
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3. – Schunck classes with boundary in NP.

In this section we examine the Schunck classes in title.
The word «Schunck class» will stand for «F-Schunck class», where F is the

class of finite groups.
We notice that, since (Cp Np�P)’N P, among Schunck classes whose

boundary is in NP there are all Schunck classes X with the property that X-
projectors of G are normal in G for all soluble groups G (see [4]). On the other
hand it is easy to see that a Schunck class, whose boundary is in NP, is not, in
general, a NE-class, i.e. a Schunck class with normally embedded projectors.
For example, let D=bX be a Q-boundary contained in NP and containing
L(p , q) but not Cp , with qNp21. Let G be the holomorph of an elementary
abelian group N of order p 2 by a cyclic group U of order pq , that contains a
power automorphism of N of order q . It is easy to see that Proj (G) is the class
of conjugates of U and U is not normally embedded in G .

More meaningful is the behaviour of these classes for what concerning
SNE-property: we say that a Schunck class has the SNE-property if projec-
tors are subnormally embedded.

3.1. PROPOSITION. – Let X be a Schunck class whose boundary bX is con-
tained in NP.

(i) If A5� bX, then X is a Gaschütz class and CovX (G) is a conjugacy
class for all groups G .

(ii) If A5� bX and one of the maximal subgroups of A5 does not belong
to bX, then X is a Gaschütz class.

PROOF. – We prove that CovX (G) is not empty and that, if A5� bX, then
CovX (G) is a conjugacy class, for all G� bX (see, for instance, [6], III, (3.8),
(3.13)).

It is easy to see that, if Cp� bX, then CovX (Cp )4]1(. Now let L(p , q)�
bX, for a pair (p , q) of distinct primes (see Theorem 2.8). Since bX is a Q-
boundary, we get Cq� bX and therefore Cq� X; it follows CovX (L(p , q) )4
Sylq (L(p , q) ), hence CovX (L(p , q) ) is a conjugacy class of L(p , q). Thus we
proved (i). Now let A5� bX and let M be a maximal subgroup of A5 which not
belongs to bX. It remains to show that CovX (A5 ) is not empty (see Theorem
2.8). If Mab� bX we have M� X and therefore M�CovX (A5 ). Then let Mab�
bX, that is C3� bX, if MCA4 , C2� bX, if MCO A4 . Let firstly MCA4 . If C2�
bX, the Sylow 2-subgroups of A5 belong to X and they are X-covering sub-
groups of A5 , because A4� X and C3� X. If instead C2� bX, then either all
non-trivial subgroups of A5 do not belong to X or the Sylow 5-subgroups of A5

belong to X (if C5� bX); in any case CovX(A5)=]1( or CovX (A5 )4 Syl5 (A5 )
and so CovX (A5 )c¯ . Now let MCO A4 . Since bX is a Q-boundary, we can as-
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sume A4� bX and so C3� bX. Therefore C3� X and, by hypothesis, C2� bX. It
follows that the Sylow 3-subgroups of A5 are X-covering subgroups of A5 .

REMARK. – If X is a Schunck class whose boundary contains A5 and all its
maximal subgroups, then X is not a Gaschütz class; thus condition in (ii) of
Proposition 3.1 is necessary for X is a Gaschütz class. Indeed, if
(A5 , A4 , S3 , D5 )’ bX, we get C2 , C3� X, because bX is a Q-boundary; it fol-
lows obviously that CovX (A5 )4¯ . If instead X is a Schunck class whose
boundary is contained in NP, the condition A5� bX (Proposition 3.1, (i)) is not
necessary for CovX (G) is a conjugacy class, for all groups G . For instance, let
bX = Br4 (A5 , Ns , Nt ), where ]r , s , t(4]2, 3 , 5( and Np4NA5

(Sp ), with
Sp� Sylp (A5 ), p� ]2, 3 , 5(. It is easy to see that CovX (A5 )4]Nr

A5( (conjuga-
cy class of Nr); therefore CovX (G) is a conjugacy class for all groups G (see
proof Proposition 3.1). We mention that the classes hBr , r42, 3 , 5 , provide
an example, due to Förster [8], of three Gaschütz classes whose intersection is
not a Gaschütz class.

Finally, it is easy to see that, if X is a Gaschütz class whose boundary is in
NP, then CovX (G) need not be a conjugacy class for all groups G; for instance
bX 4 (A5 , M), with M a maximal subgroup of A5 .

3.2. PROPOSITION. – Let X be a Schunck class whose boundary bX is con-
tained in NP. If bX satisfies the following two conditions:

(a) A5�b X,

(b) L(p , q)�b X implies L(t , p)�b X, for every prime t (cp),
then X is a SNE-class.

PROOF. – Let G be a group whose X-projectors are not subnormally embed-
ded (sne), and let G be of minimal order with respect to this property. Let U
be an X-projector of G , p be a prime, and Up a Sylow p-subgroup of U which is
not a Sylow p-subgroup of any subnormal subgroup of G . Since X is a Gaschütz
class (see Proposition 3.1, (i)), minimality of G ensures that Core G (U)41 and
Soc (G)GFit (G)4Op (G). Let H4UOp (G). Since CoreG (U)41, we have
UEH; therefore H has a quotient H/K in bX and so H/K is either isomorphic
to a L(p , q) or to Cp� bX. On the other hand G has a quotient G/L in bX. If
G/L is of prime order, then UL/L41 (UGL). By minimality of G we get that
U is sne in L and so in G , a contradiction. Consequently G/L is isomorphic to a
L(p1 , p2 ). If p2cp , we get UpGL; on the other hand minimality of G implies
that there exists a subnormal subgroup S of UL such that Up�Sylp (S); it fol-
lows Up�Sylp (SOL) and we get a contradiction, because SOL sn G . Thus
p24p and so Cp� X. Therefore H/KCL(p , q), which contradicts condition
(b).
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Next proposition shows that condition (b) is necessary for SNE-property
holds.

3.3. PROPOSITION. – Let p, q, t be primes, with pcq , t . If X is a Schunck
class whose boundary bX satisfies the following condition:

(L(p , q), L(t , p) )’b X ’N P ,

then there exists a soluble group G , whose projectors are not sne in G .

PROOF. – A group of desidered type can be constructed as follows. Since
L(t , p) is monolithic and Op (L(t , p) )41, a well known result of Gaschütz (see
[6], B. (10.9)) ensures that, if r4exp (p , q), there exists an irreducible
GF(p r) L(t , p)-module V on which L(t , p) acts faithfully. On the other hand, if
Q is a group of order q , V is a GF(p r) Q-module on which Q acts (faithfully) as a
group of scalar transformations. Thus, denoted L(t , p)3Q by G , V is an irre-
ducible GF(p r)G-module on which G acts faithfully. Let G be the holomorph of
the additive group of V by G . Let N=Soc (G), P�Sylp (G), U4PQ , H be a sub-
group of UN that contains strictly U and L4HON . If L/K is a chief factor of
H , since Op (UK/K)=PK/K , we get PK=CUK (L/K) and therefore
H/CUK (L/K)CLQ/KCL(p , q)� bX; thus H� X and so U is X-maximal in
UN . On the other hand, since P is an X-projector of L(t , p), we have that U4

PQ is an X-projector of G . Now, let S be a subnormal subgroup of G that con-
tains P . Since Op (G)4N , we get Op (S)4NOS and therefore P�Sylp (S);
thus U is not sne in G .

3.4. THEOREM. – Let X be a Schunck class whose boundary bX is con-
tained in NP and not contains A5 . Then X is a SNE-class if and only if bX

satisfies condition (b).

PROOF. – It follows immediately from Propositions 3.2 and 3.3.

The condition A5�b X is not necessary for a Schunck class X, with bX ’
N P, is a SNE-class. For example, if (A5 , C2 , C3 , C5 )’ bX ’ (A5 , Cp Np�P),
then X-projectors are normal subgroups (see [6], III (4.2)). On the other hand
condition (b) is not sufficient for SNE-property. In fact, let D=bX be a Q-
boundary contained in NP, containing A5 , satisfying condition (b) and
C2 , S3 , D5� D. The maximal subgroups of A5 , that are not isomorphic to A4 ,
are X-projectors of A5 and are not sne in A5 . Thus, if X is a SNE-Schunck
class, with A5� bX ’NP, then bX satisfies, besides (b), one of the following
two conditions:

(g) C2�b X or (d) (S3 , D5 )’b X.

Neverthless these conditions are not sufficient for SNE-property, as the
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following examples show. In all examples bX is a Q-boundary contained in NP,
containing A5 and satisfying condition (b).

I. EXAMPLE. – Suppose that bX satisfies condition (d) and C5�b X. Let
G4A5 &nat D5 , where, for example, D5 is the normalizer of a(12345)b in A5 . De-
note by Al--l

5 43i41
5 A5 (i) the base group of G . Let P�Syl5 (A5 ), Q�Syl2 (D5 )

and assume, w.l.o.g., that Q is contained in the stabilizer of 5. The subgroup

U4Q(P(5)3 g3
i41

4

A5 (i)h is an X-projector of G and is not sne in G , because

the normal closure of its Sylow 2-subgroup U2 coincides with G and
U2�Syl2 (G).

II. EXAMPLE. – Suppose that bX satisfies condition (d) and C3�b X. Let

G4S3 &nat A5 and denote by S l--l
3 43

i41

5

S3 (i) the base group of G . Let A be a sta-

bilizer in A5 (w.l.o.g., A the stabilizer of 5) and Q�Syl2 (S3 ). The subgroup U4

A(Q(5)3 g3
i41

4

S3 (i)h is an X-projector of G and is not sne in G , because the

normal closure of its Sylow 3-subgroup U3 coincides with G and U3�
Syl3 (G).

III. EXAMPLE. – Suppose that bX satisfies condition (g) and furthermore
the following conditions: A4� bX, C5� bX. Let G=A5 &nat A4 and denote by

Al--l
5 43

i41

4

A5 (i) the base group of G . Let P�Syl5(A5), Q�Syl3(A4) and assume,

w.l.o.g., that Q is the stabilizer of 4. The subgroup U4QgP(4)3 g3
i41

3

A5 ( i )hh
is an X-projector of G and is not sne in G , because the normal closure of its Sy-
low 3-subgroup U3 coincides with G and U3�Syl3 (G).

Next propositions provide some sufficient conditions for a Schunck class,
whose boundary is contained in NP and contains A5 , is a SNE-class.

3.5. PROPOSITION. – Let X be a Schunck class, whose boundary bX is con-
tained in NP and contains A5 . If bX satisfies (b) and

(e) (C2 , C3 , C5 )’b X,
then X is a SNE-class.

PROOF. – Let G be a group whose X-projectors are not sne and let G be of
minimal order with respect to this property. Let U be an X-projector of G , p a
prime, and Up a Sylow p-subgroup of U which is not a Sylow p-subgroup of any
subnormal subgroup of G . Since bX satisfies (b), X is a Gaschütz class (see,
Proposition 3.1, (ii)). Then, arguing as in the proof of Proposition 3.2, we get
CoreG (U)41, Op 8 (G)41 and so Fit(G)4Op (G). If G has a soluble quotient
G/L in bX, then G/L is isomorphic to a L(q , p) and Op (G)41. On the other
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hand, by hypothesis (e), ProjX(A5)=]1(; it follows that, if G has a quotient
G/M isomorphic to A5 , then UM/M41 and minimality of G ensures that U is
sne in M and so in G , a contradiction. Thus Fit(G)41 and the quotients of G in
bX are isomorphic to groups L(q , p); therefore Cp� X and so pc2, 3 , 5 . Now
let R be the centreless CR-radical of G . Since CoreG (U)41, UR has a quo-
tient UR/K in bX; since RK/Kc1, UR/K is isomorphic to A5; consequently R
is a direct power of A5 and so RGOp 8 (G)41, a contradiction.

3.6. LEMMA. – Let X be a Schunck class, whose boundary bX is contained
in NP, contains A5 and satisfies (b). If (S3 , D5 , C5 )’b X, then X-projectors of
G contain a Sylow 2-subgroup of G , for all groups G .

PROOF. – Let G be a group having an X-projector U , whose Sylow 2-sub-
groups are not Sylow subgroups of G , and let G be of minimal order with re-
spect to this property. Minimality of G provides O28 (G)41 and G4 aG2 , Ub,
where G2�Syl2 (G), by recalling that (b) implies that X is a Gaschütz class.
Now let N be a minimal normal subgroup of G such that NGO2 (G). Since G4

aG2 , Ub we get G4UN , by minimality of G . On the other hand G has a quo-
tient G/K in bX; therefore, since C2�b X, we get G/K isomorphic to a L(2 , q),
which contradicts (b). Thus O2 (G)41 and so Fit (G)41. Now, arguing as
above, we have that G4UN , for every minimal normal subgroup N of G ,
hence G� bX and so GCA5; consequently either U is a Sylow 2-subgroup of G
or the normalizer of a Sylow 2-subgroup of G , a contradiction.

3.7. PROPOSITION. – Let X be a Schunck class, whose boundary bX is con-
tained in NP, contains A5 and satisfies (b). If (S3 , D5 , C3 , C5 )’b X, then X is
a SNE- class.

PROOF. – Let G be a group having an X-projector U , such that a Sylow p-
subgroup Up of U is not a Sylow subgroup of a subnormal subgroup of G , and
let G be of minimal order with respect to this property. If G has a quotient iso-
morphic to A5 , we get p42, by minimality of G , and therefore we contradict
Lemma 3.6. Thus G has no quotient isomorphic to A5 and pc2. Then, arguing
as in the proof of Proposition 3.5, we have that G has a quotient G/L isomorphic
to a L(q , p)� bX and that Fit (G)41. Hence Cp� X and so pc3, 5 . After
that the proof goes over as in the proof of Proposition 3.5.

3.8. THEOREM. – Let X be a Schunck class, whose boundary bX is con-
tained in NP, contains (A5 , S3 , D5 ) and satisfies (b). Then X is a SNE-class
if and only if bX satisfies the following condition

(h) (C3 , C5 )’b X.
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PROOF. – This follows immediately from Proposition 3.7 and Examples
I and II.

REMARK. – Let X be a Schunck class, whose boundary bX is contained in
NP, contains (A5 , C2) and satisfies (b). Example III ensures that, if X is a
SNE-class, then bX satisfies one of the following conditions:

A4�b X or C3�b X or C5�b X .
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