
BOLLETTINO
UNIONE MATEMATICA ITALIANA

Zindine Djadli, Antoinette Jourdain

Nodal solutions for scalar curvature type
equations with perturbation terms on compact
Riemannian manifolds

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 5-B (2002),
n.1, p. 205–226.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_205_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_205_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2002.



Bollettino U. M. I.
(8) 5-B (2002), 205-226

Nodal Solutions for Scalar Curvature Type Equations
with Perturbation Terms on Compact Riemannian Manifolds.

ZINDINE DJADLI - ANTOINETTE JOURDAIN

Sunto. – L’oggetto del presente articolo è lo studio delle soluzioni soggette a cambia-
menti di segno delle equazioni di tipo curvatura scalare a perturbazione. I princi-
pali risultati in esso contenuti riguardano l’esistenza di tali soluzioni e la determi-
nazione puntuale del loro insieme degli zeri. Da ciò deduciamo, in alcuni casi, dei
risultati di molteplicità.

Summary. – In this paper we study the nodal solutions for scalar curvature type equa-
tions with perturbation. The main results concern the existence of such solutions
and the exact description of their zero set. From this we deduce, in particular cases,
some multiplicity results.

1. – Introduction.

Let (M , g) be a compact riemannian n-manifold, nF3, and denote by Scalg

the scalar curvature of g . Let gA be some conformal metric to g , that is gA 4
u 4/(n22) g for some u�C Q (M), uD0. As well known, one has that

D g u1
(n22)

4(n21)
Scalg u4

n22

4(n21)
ScalgA u

n12

n22

where D g is the Laplacian of g with the minus sign convention and ScalgA is the
scalar curvature of gA. A natural and interesting generalization of this equation
is the equation

D g u1au4 fu
n12

n22 1hu q(E1)

where a , f and h are smooth functions, and q�g1; n12

n22
h . Such an equation

has been studied by various authors. Among others, let us mention Brézis and
Nirenberg [4] where (E1 ) is studied in the Euclidean context, and Djadli [8],
[9] where (E1 ) is studied in the Riemannian context. The goal of this paper is
to study the existence of nodal solutions to (E1 ) on a compact Riemannian ma-
nifold, (M , g), with or without boundary. Given a , f and h three smooth func-

tions on M , and q�g1; n12

n22
h real, we look for changing sign solutions u to

D g u1au4 fNuN
4

n22 u1hNuNq21 u(E)
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If M has a boundary, we look for solutions satisfying a Dirichlet condition on
the boundary, that is uf0 on ¯M . The problem of finding nodal solutions of
equation (E) has been studied by several authors (among others Atkinson-
Brézis-Peletier [2], Cao-Noussair [6], Hebey-Vaugon [13], Musso-Passaseo
[16] and Tarantello [17]). We also refer to the paper of Fortunato-Jannelli
[10]. As far as we know, there is no result about the zero set. A main point here
is that we do get, in fairly general situations, the exact description of the zero
set of the solutions.

The variational method by minimization, as used by Jourdain [14] or Hebey
[11], does not work for such an equation because of the Euler-Lagrange multi-
pliers that appear in this kind of approach. To overcome this difficulty, we use
instead a variational method based on the Mountain-Pass lemma of Ambroset-
ti and Rabinowitz [1], as developed in Brézis and Nirenberg [4] (see also Dja-
dli [9] for an example of an application in the Riemannian context). Such an ap-
proach will be developed together with ideas taken from the isometry-concen-
tration method as presented in Hebey [11]. This will allow us to prescribe the
zero set of the nodal solutions we obtain, and hence to get multiplicity results
for equation (E) in some particular cases.

Notations and remarks. In this paper, we let a , f and h be three smooth

functions; we set p4 n12

n22
and let q� (1 ; p) be a real number. By simplicity

we take a perturbation of the form hu q . Nevertheless, our results can be
extended to more general perturbations satisfying suitable assumptions.

Acknowledgment. The authors thank the referee for valuable comments
and useful remarks.

2. – Terminology and general notations.

Let (M , g) be a smooth compact Riemannian manifold, with or without
boundary ¯M . For seek of simplicity, we use the following notation

W 1, 2 (M)4
.
/
´

H 2
1 (M) if ¯M4¯

H
i

2
1 (M) if ¯M c¯

where H1
2 (M) is the completion of C Q (M) with respect to the norm

VuVW 1, 24kV˜uV2
21VuV2

2

and H
i

2
1 (M) is the completion of C0

Q (M) with respect to the same norm. Let G
be a subgroup of the isometry group of (M , g), denoted by Isom (M , g). Wi-
thout loss of generality, up to replacing G by its closure in Isom (M , g), we can
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assume that G is a compact. We also consider t an involutive isometry of
(M , g), that is an element of Isom (M , g) such that t i t4IdM . For x a point of
M , we denote by OG (x) the orbit of x under the action of G ,

OG (x)4]s(x), s�G(

By definition, we say that G and t commute weakly if for all x�M

t(OG (x) )4OG (t(x) )

We also say that the set of the fixed points of t splits M into two domains V 1

and V 2 , stable under the action of G , if

(i)

(ii)

M4V 1NV 2NFt with V 1OV 24¯ and measure (Ft )40

t (V 1 )4V 2 and (s�G , (i41, 2 s (V i )4V i

where Ft denotes the set of the fixed points of t , that is

Ft4]x�M , t (x)4x(

We say that a function u�W 1, 2 (M) is t-antisymmetrical if u i t42u a.e., and
G-invariant if for all s�G , uis4u a.e. In what follows, we denote by Card the
cardinality of a set (even when the set is infinite). By definition, a function u�
C 2 (M) is said to be a solution of (E) if u satisfies (E) pointwise and uf0 on
¯M (if M has a boundary). Finally, we say that an operator L defined on
W 1, 2 (M) is coercive on a certain subspace X of W 1, 2 (M) if there exists k�R1*
such that for all u�X

s
M

L(u). u dv ( g)FkVuVW 1, 2 (M)
2

Note that the operator D g1a is clearly coercive on W 1, 2 (M) if a is a positive
function.

3. – A general theorem of existence.

Let G be a compact subgroup of the isometry group of (M , g) and let t be
an involutive isometry of (M , g). We assume that G and t commute weakly,
and that for some x1�M , t(OG (x1 ) )OOG (x1 )4¯ . Then,

H 4]u�W 1, 2 (M), u is G-invariant and t2antisymmetrical(

is not a trivial set, i.e H c ]0(. See Jourdain [14] for the proof of this
claim.

The purpose of this section is to prove the following existence result
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THEOREM 3.1. – Let G be a compact subgroup of the isometry group of
(M , g), nF3, let t be an involutive isometry of (M , g) such that G and t com-
mute weakly and t(OG (x1 ) )OOG (x1 )4¯ for some x1�M , and let a , f and h be
three smooth G-invariant and t-invariant functions. We assume that f is po-
sitive on M and that the operator D g1a is coercive on H (where H is as abo-

ve). We set p4 n12

n22
and let q� (1 ; p). We consider the following functional

defined on H by

J(W)4s
M

m 1

2
N˜WN21

1

2
aW 22

1

p11
fNWNp112

1

q11
hNWNq11n dv ( g)

We assume that for all x in M there exists v� H, vg0, such that

sup
tF0

]J(tv)(E
Card OaG , tb (x)

nK(n , 2 )n ( f (x) )
n22

2

(x)

where aG , tb denotes the subgroup of Isom(M , g) generated by G and t and
where K(n , 2 ) is the best constant in the Sobolev embedding of W 1, 2 (M) in
L

2n

n22 (M). Then (E) possesses a nodal solution u�C 2 (M), which is G-inva-
riant and t-antisymmetrical.

Moreover, if we assume that Ft splits M into two domains V 1 and V 2

stable under the action of G , we can choose u such that the zero set of u is
exactly FtN¯M , where Ft is the set of the fixed points of t .

The proof of this theorem proceeds in several steps. Its first part, where u
is just assumed to be G-invariant and t-antisymmetrical, but the zero set of u
is not described, could have been proved with standard arguments. Because of
the second part, where the zero set of u is described, we have to be more sub-
tle. A main tool here is the so-called deformation lemma. We recall its state-
ment below, and refer to Brézis and Nirenberg [5] for its proof.

LEMMA 3.2. – Let X be a Banach space, F a function of class C 1 defined on

X and c�R . We set Fc4]u�X/F(u)Gc(. Then for any given dE
1

8
there

exists a continuous deformation h : [0 ; 1 ]3XKX such that

(1) h(0 , u)4u for all u�X

(2) h(t , .) is a homeomorphism of X onto X for all t� [0 ; 1 ]

(3) h(t , u)4u for all t� [0 ; 1 ] if NF(u)2cNF2d or if VF 8 (u)VGkd

(4) 0GF(u)2F(h(t , u) )G4 kd for all u�X , for all t� [0 ; 1 ]
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(5) Vh(t , u)2uVG16 kd for all u�X , for all t� [0 ; 1 ]

(6) If u�Fc1d then either

(i) h(1 , u)�Fc2d or

(ii) for some t1� [0 ; 1 ] we have VF 8 (h(t1 , u) )VE2 kd

Now, following in a certain sense a strategy initiated by Yamabe [19], we prove
the existence of a nodal solution for (E) when p is replaced by a sub-critical
exponent. First we introduce the modified energy corresponding to this chan-
ge; let e 0 be such that 0Ee 0Ep2q , and for 0EeGe 0 , we consider the C 1

functional Je defined on H by

Je (W)4s
M

m 1

2
N˜WN21

1

2
aW 22

1

p2e11
fNWNp2e112

1

q11
hNWNq11n dv ( g)

LEMMA 3.3. – Let G be a compact subgroup of the isometry group of (M , g),
nF3, let t be an involutive isometry of (M , g), such that G and t commute
weakly and such that, for some x1�M

t(OG (x1 ) )OOG (x1 )4¯

Let also a , f and h be three smooth G-invariant and t-invariant functions.
We assume that f is positive on M and that the operator D g1a is coercive on

H. We set p4 n12

n22
and let q� (1 ; p). Let e 0 be such that 0Ee 0Ep2q . Then

for all e such that 0EeGe 0 , there exists ue�C 2 (M), G-invariant and t-anti-
symmetrical, ueg0 in M and uef0 on ¯M , which is a nodal solution
of

D g ue1aue4 fNue N
p2e21 ue1hNue N

q21 ue(Ee)

In addition, for all 0EeGe 0

Je (ue )G inf
u� H ug0

sup
tF0

Je (tu) and Je (ue )Fr

for some positive r independent of e . Moreover, if we assume that Ft splits M
into two domains V 1 and V 2 stable under the action of G , we can choose ue

such that its zero set is exactly FtN¯M , where Ft is the set of the fixed points
of t .

The proof of this lemma is divided into two parts. In part 1 we prove the
existence of ue without the assumption that Ft splits M into two domains V 1

and V 2 stable under the action of G . In part 2, we prove that under this addi-
tional assumption, we can prescribe the zero set of ue .
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PROOF OF LEMMA 3.3 (part 1). – Following Brézis and Nirenberg [4], one
easily gets that the assumptions of the mountain-pass lemma are satisfied;
that is, we can find a ball U of radius independent of e around 0 in H, such that
U%B0 (1), and a positive real number r , independent of e , such that

(W�¯U , (eO0EeGe 0 , Je (W)FrD0

Clearly, for all e , Je (0)40Er . Notice now that given a non zero W� H, there
exists a t0 independent on e such that J(tW)E0 for all tF t0 . As mentionned
above, the assumptions of the mountain-pass lemma are satisfied. As a conse-
quence, there exists a sequence (uj )� HN such that

.
/
´

Je (uj )Kce

J 8e (uj )K0 strongly in H8

where ce is defined by

ce4 inf
g�B

max
w�g

Je (w)Fr

B being the set of all continuous paths joining 0 and W . One can easily see that
the minmax level ce corresponding to endpoint t0 W is in fact independent on W ,
and hence we have

ceG inf
u� H ug0

sup
tF0

Je (tu)

Once again following Brézis and Nirenberg [4], the sequence (uj ) is bounded
in H. So we can extract a subsequence, still denoted by (uj ), such that

.
/
´

uj �ue

ujKue

ujKue

weakly in H

strongly in L r (M) for all given rEp11

a.e. in M

Clearly ue verifies weakly in H

D h ue1aue4 fNue N
p2e21 ue1hNue N

q21 ue

There is still to prove that ue is a weak solution of this equation in W 1, 2 (M).
For this we refer to Jourdain [14]. The result follows from a symmetrization
argument via the Haar measure. By classical regularity ue�C 2 (M); it follows,
since ue�C 2 (M)OW 1, 2 (M), that uef0 on ¯M . Moreover, since uj� H and
ujKue a.e., ue is G-invariant and t-antisymmetrical. As one can easily check,
Je (ue )4ceFrD0. Hence, ueg0. This proves the first part of lemma 3.3.

PROOF OF LEMMA 3.3 (part 2). – In order to prove the second part in lemma
3.3, we use the deformation lemma 3.2. For all u� H, we consider the follo-
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wing transformation uKuA where uA is defined by

.
/
´

uA(x)4 Nu(x)N

uA(x)4 0

uA(x)42Nu(x)N

if x�V 1

if x� Ft

if x�V 2

Since M4V 1NV 2NFt with measure(Ft )40, uA� H. Let W� H and let B be
the set of all continuous paths in H, defined on [0 ; 1 ], joining 0 to WA. We consi-
der once again

ce4 inf
G�B

max
s� [0 ; 1 ]

Je (G(s) )

Let d j4
1

j
for jD8. There exists G 1

j�B such that

max
s� [0 ; 1 ]

Je(G
1

j (s))Gce1d j

We consider

G 2
j : [0 ; 1 ]K H

sKG 1
j (s)
A

Clearly G 2
j�C( [0 ; 1 ], H). As a consequence (and since the Dirichlet integral

decreases along the transformation uKuA)

max
s� [0 ; 1 ]

Je (G 2
j (s) )Gce1d j

and G 2
j�B . According to lemma 3.2, there exists a continuous deformation

h j : [0 ; 1 ]3H K H such that for all t� [0 ; 1 ] and all s� [0 ; 1 ]

0GJe(G 2
j (s))2Je(h j (t , G 2

j (s) ))G4 kd j(3.3.1)

Hence

(t� [0 ; 1 ], (s� [0 ; 1 ], Je(h j (t , G 2
j (s) ))GJe(G 2

j (s))

and it follows that

(t� [0 ; 1 ], max
s� [0 ; 1 ]

Je(h j (t , G 2
j (s) ))Gce1d j

Let s j
1 be such that

Je(h j(1 , G 2
j (s1

j)))4 max
s� [0 ; 1 ]

Je(h j(1 , G 2
j (s)))
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According to lemma 3.2, either

(i)

or (ii)

Je(h j(1 , G 2
j (s1

j)))Gce2d j

)t1
j� [0 ; 1 ] such that VJ 8e (h j(t1

j, G 2
j (s1

j)))VG2 kd j

while by point (3) of lemma 3.2, h j (1 , G 2
j (1) )4WA. Then sKh j(1 , G 2

j (s)) is a
continuous path joining 0 to WA, and it follows that

Je(h j(1 , G 2
j (s1

j)))Fce

This means that (i) does not occur (thus, (ii) holds). Moreover, according to
(3.3.1), with t41,

Je(h j(1 , G 2
j (s)))GJe(G 2

j (s)), (s� [0 ; 1 ]

Taking s4s1
j in this inequality, we deduce

ceGJe(h j(1 , G 2
j (s1

j)))GJe(G 2
j (s1

j))

Using once again (3.3.1) with t4 t1
j and s4s1

j, together with the previous ine-
quality, we deduce that Je (h(t1

j, G 2 (s1
j) ) ) satisfies

ce24 kd jGJe (h(t1
j, G 2

j (s1
j) ) )Gce1d j

This gives a sequence (uj ), namely uj4h j (t1
j, G 2

j (s1
j) ), such that

.
/
´

Je (uj )Kce

J 8e (uj )K0 in H8

As done in part 1, (uj ) converges strongly in L p112e (M) to a certain ue

and

Vue2G 2
j (s1

j)Vp112eGVue2uj Vp112e1Vuj2G 2
j (s1

j)Vp112e

It follows from point (5) of lemma 3.2 that

lim
jQ

Vue2G 2
j (s1

j)Vp112e40

Thus G 2
j (s1

j)Kue a.e. Hence ueF0 on V 1 and ueG0 on V 2 , and it follows from
Hopf maximum principle that ueD0 on V 1 and ueE0 on V 2 . This ends the
proof of lemma 3.3. r

The idea now is to let e go to 0 . First of all, we prove the two following
lemmas
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LEMMA 3.4. – There exists ue�W 1, 2 (M) a solution of (Ee ) as in lemma 3.3,
e b 1, such that if we let

c4 inf
g�B

max
w�g

J(w)

where B is the set of all continuous paths in H joining 0 and a certain u� H,
then

cF lim sup
eK0

Je (ue )

PROOF. – Clearly

Je (u)GJ(u)1
1

p11
max

M
fs
M

NNuNp112NuNp112e Ndv ( g)

Thus

inf
g�B

max
u�g

Je (u)G inf
g�B

max
u�g

J(u)1

1

p11
max

M
f3 sup

t� [0 ; 1 ]
s

M

Nt p11 Nu0 N
p112 t p112e Nu0 N

p112e Ndv ( g)

For ue as in the proof of lemma 3.3, Je (ue )4ce . Hence

Je (ue )4ceGc1
max

M
f

p11
3 sup

t� [0 ; 1 ]
s

M

Nt p11 Nu0N
p112 t p112eNu0N

p112eNdv ( g)

But

lim sup
eK0

sup
t� [0 ; 1 ]

s
M

Nt p11 Nu0 N
p112 t p112e Nu0 N

p112e Ndv ( g)40

Taking the limit as eK0,

lim sup
eK0

Je (ue )4 lim sup
eK0

ceGc

This ends the proof of the lemma. r

LEMMA 3.5. – Assume that there exists a weakly convergent subsequence
of (ue ) which converges to ug0. Then u is G-invariant, t-antisymmetrical,
uf0 on ¯M , u is C 2 on M , and

D g u1au4 fNuNp21 u1hNuNq21 u

Moreover, if we assume that Ft splits M into two domains V 1 and V 2
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stable under the action of G , we can choose u such that the zero set
of u is exactly FtN¯M .

PROOF. – For all 0EeGe 0 , Je (ue )4ce and J 8e (ue ). ue40. Moreover, the
sequence (ue ) is bounded in W 1, 2 (M). Hence we can extract a subsequence,
still denoted by (ue ), so that

.
/
´

(ue ) converges to u weakly in W 1, 2 (M)

(ue ) converges to u strongly in L2 ( M )

(ue ) converges to u a.e.

From this, we deduce that u is G-invariant and t-antisymmetrical. Moreo-
ver,

NueN
p21 ueKNuNp21 u a.e. in M

and

s
M

NueN
p11 dv ( g)4s

M

(NueN
p )

p11

p dv ( g)GC

where CD0 is independent of e . Then

.
/
´

NueN
p21 ueKNuNp21 u weakly in (L p11 )8

NueN
q21 ueKNuNq21 u weakly in (L p11 )8

Since W 1, 2 (M) %KL p11 (M), we get that u is a weak solution in W 1, 2 (M) of
the equation

D g u1au4 fNuNp21 u1hNuNq21 u

As in Trüdinger [18], it follows that u�C 2 (M). Since u�C 2 (M)OW 1, 2 (M),
uf0 on ¯M . The result follows from lemma 3.3. This ends the proof of lemma
3.5. r

We suppose now by absurdum that every weakly convergent subsequence
of (ue ) has for limit 0. We call this hypothesis (RA) (for reductio by absurdum).
In the sequel, we denote by Bx (r) the ball of center x and radius r . As in [13],
the following holds

LEMMA 3.6. – Suppose (RA) and that for all x�M , we can find dD0 such
that

(3.6.1) K(n , 2 )2 ( f (x) )
2

p11 lim sup
eK0

u s
Bx (d)0(Bx (d)O¯M)

fNue N
p112e dv ( g)v

p21

p11

E1
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Then (x�M , )d(x)D0 such that

lim sup
eK0

s
Bx (d(x) )0(Bx (d(x) )O¯M)

Nue N
p112e dv ( g)40

Theorem 3.1 reduces to the proof that (RA) leads to a contradiction. We assu-
me (3.6.1). Since M is compact, there exist x1 , R , xm�M such that

M4 0
1G iGm

Bxi
(d(xi ) )

where d(xi ) is given by lemma 3.6. We recall here that

ce4
p212e

2(p112e)
s

M

fNue N
p112e dv ( g)1

q21

2(q11)
s

M

hNue N
q11 dv ( g)

According to (RA), lim
eK0

s
M

hNue N
q11 dv ( g)40, while by lemma 3.6

lim sup
eK0

s
Bxi (d(xi ) )0(Bxi (d(xi ) )O¯M)

Nue N
p112e dv ( g)40, (i41, R , m

It follows that lim sup
eK0

ce40, a contradiction with the fact that

(0EeGe 0 , ceFrD0

Hence, (3.6.1) is absurd and there exists x0�M such that for all d b 1

lim sup
eK0

s
Bx0 (d)0(Bx0 (d)O¯M)

fNue N
p112e dv ( g)F

1

K(n , 2 )n f (x0 )
2

p21

(3.6.2)

This implies in turn that

lim sup
eK0

ceF
1

n
lim sup

eK0
s

Bx0 (d)0(Bx0 (d)O¯M)

fNueN
p112edv (g)F

1

nK(n, 2)n ( f (x0 ))
2

p21

Now, we distinguish two cases

Case 1. We assume that Card OaG , tb (x0 )41Q. Let AD0 be given. Since f
and Nue N are G-invariant and t-invariant, for all AD0, we can choose dD0
small enough such that

lim sup
eK0

s
Bx0 (d)0(Bx0 (d)O¯M)

fNue N
p112e dv ( g)G

1

A
lim sup

eK0
ce
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We choose A such that

ADnK(n , 2 )n ( f (x0 ) )
2

p21 3 lim sup
eK0

ce

Together with (3.6.2), this leads to a contradiction.

Case 2. We assume that Card OaG , tb (x0 )E1Q. We choose d small enough
such that

lim sup
eK0

s
Bx0 (d)0(Bx0 (d)O¯M)

fNue N
p112e dv ( g)G

n lim sup
eK0

ce

Card OaG , tb (x0 )

Then

lim sup
eK0

ceF
Card OaG , tb (x0 )

nK(n , 2 )n ( f (x0 ) )
n22

2

(3.6.3)

We have according to lemma 3.4 (v0 is given by the assumption (x) of theorem
3.1)

lim sup
eK0

ceGcG sup
tF0

J(tv0 )E
Card OaG , tb (x0 )

nK(n , 2 )n ( f (x0 ) )
n22

2

This is in contradiction with (3.6.3).
Thus, assumption (RA) is absurd, and theorem 3.1 is proved. r

4. – Estimates and test functions.

We say here that a , f and h satisfy (C) at x�M if one of the following
occurs

(C)

.
`
`
/
`
`
´

nF4 , h(x)D0

n44 , h(x)40 and
a(x)

2
2

Scalg (x)

12
E0

nF5 , h(x)40 and
2 Scalg (x)

n24
2

8(n21) a(x)

(n22)(n24)
D

D g f (x)

f (x)

nF5 , h(x)40 ,
2 Scalg (x)

n24
2

8(n21) a(x)

(n22)(n24)
4

D g f (x)

f (x)
and D gh(x)E0

We prove the following
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PROPOSITION 4.1. – Let (M , g) be a compact Riemannian n-manifold (with
or without boundary), nF4, and denote by Isom(M , g) the isometry group of
(M , g). Let G be a subgroup of Isom(M , g) and t be an involutive isometry of
(M , g) such that G and t commute weakly. We consider a , f and h three smoo-
th G-invariant and t-invariant functions defined on M . We assume that f is
positive. Then, given a point x in the interior of M such that OaG , tb (x) is finite
and t (OG (x) )OOG (x)4¯ , there exists a function v� H, vg0, such that

sup
tF0

]J(tv)(E
Card OaG , tb (x)

nK(n , 2 )n ( f (x) )
n22

2

(x)

if a , f and h satisfy (C) at x .

For P�M and k�N*, let c P , k be defined as follows

(Q�BP (d)

(Q�M0 BP (d)

c P , k (Q)4g 1

k
1

12cos ar

a 2 h12 n

2

2g 1

k
1

12cos ad

a 2 h12 n

2

c P , k (Q)40

where r4d(P , Q), Scalg (P)4n(n21) a 2 , and d is such that NaNdGp and
less than the injectivity radius of M (see Aubin [3]). In such an expression we
use the conventions that if Scalg (P)E0, cos ar4cosh iar , and that if

Scalg (P)40, 12cos ar

a 2
4

r 2

2
, where Scalg stands for the scalar curvature of g .

We assume here that x is a point of the interior of M such that

.
/
´

t (OG (x) )OOG (x)4¯

Card OG (x)E1Q

We set OG (x)4]x1 , R , xm( and define the function C x , k by

C x , k4 !
i41

m u c xi , k

Vc xi , k Vp11

2
c t (xi ), k

Vc t (xi ), k Vp11

v
where d is chosen small enough such that

.
/
´

supp c xi , kOsupp c xj , k4¯ if ic j

supp c xi , kOsupp c t (xj ), k4¯ , (i , j

(where supp stands for the support of a function). By construction, C x , k is G-
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invariant and t-antisymmetrical. Moreover

J(tC x , k )4Card OaG , tb (x) Jut
c x1 , k

Vc x1 , k Vp11

v
so that we only have to compute Jgt c P , k

Vc P , k Vp11
h . As one easily check,

Jgt c k

Vc k Vp11
h4 1

K(n , 2 )2

t 2

2
2

1

p11
f (P) t p112C 81 h(P) k l t q11

2
1

k
y Scalg (P) t 2

n(n24)K(n, 2)2
2

4(n21)a(P) t 2

n(n22)(n24)K(n,2)2
2

D g f (P) t p11

2n
z

1C 81 y h(P)(n22)(q11) Scalg (P)

8n(n21)
2

h(P)(n22) Scalg (P)

4(n21)( (n22) q24)

2
D g h(P) n

(n22) q24
z k l21 t q11

1o(k l21 ) g1 (t)

for nF5, and for n44

Jgt c k

Vc k Vp11
h4 1

K(4 , 2 )2

t 2

2
2

1

4
f (P) t 41

log k

k
g a(P)

2
2

Scalg (P)

12
h C1 t 2

2C 81 h(P) k l t q111Og 1

k
h g2 (t)

where the gi’s, i41, 2 , are smooth functions on R1 such that gi (0)40, C1D0

and C 81 D0 are two constants independent of k , and l4
(n22)(q21)

4
21, (so

that l� (21; 0 )). First of all, before proving proposition 4.1, we state the follo-
wing (elementary) lemma, useful in the proof of proposition 4.1 (for the proof
we refer to Djadli [9])

LEMMA 4.2. – Let 1EqEp4 n12

n22
and AD0, BD0 be three given real

numbers. For k�N* large, let also A(k), B(k) and C(k) be real numbers such
that

.
/
´

A(k)KA

B(k)KB

C(k)K0
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as kK1Q . We define

F(t , k)4A(k) t 22B(k) t p112C(k) t q11

Then, for k large, one has that there exists tk such that

F(tk , k)4max
tF0

F(t , k)

with the additional property that if t04g 2A

(p11) B
h

1

p21
, then tkKt0 as kK1Q.

Furthermore, if

A(k)4A1O(k s ), B(k)4B1O(k s ) and C4O(k s )

for some sE0, then tk4 t01O(k s ).

PROOF OF PROPOSITION 4.1. – Suppose first that nF4 and h(x)D0. Taking
P4x , we have (with the notations of lemma 4.2)

Jut
c x , k

Vc x , k Vp11

v4F(t , k)4A(k) t 22B(k) t p112C(k) t q11

where,

A(k)4
1

2
s

M

{N˜u c x , k

Vc x , k Vp11

vN2
1au c x , k

Vc x , k Vp11

v2}D0

B(k)4
1

p11
s

M

fu c x , k

Vc x , k Vp11

vp11

D0

C(k)4
1

q11
s

M

hu c x , k

Vc x , k Vp11

vq11

and (see Djadli [9])

lim
kK1Q

A(k)4
1

2K(n , 2 )2
4AD0

lim
kK1Q

B(k)4
1

p11
f (x)4BD0

lim
kK1Q

C(k)40
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Let tk and t0 be as in lemma 4.2. Then

Jutk

c x , k

Vc x , k Vp11

v4 1

K(n , 2 )2

tk
2

2
2

1

p11
f (x) tk

p112C 91 h(x) k l tk
q111o(k l )

where C 91 D0. Since h(x)D0, one can write for k large

Jutk

c x, k

Vc x, kVp11

vE 1

K(n, 2)2

tk
2

2
2

1

p11
f (x) tk

p11G
1

K(n, 2)2

t0
2

2
2

1

p11
f (x) t0

p11

As a consequence

Jutk

c x , k

Vc x , k Vp11

vE 1

nK(n , 2 )n ( f (x) )
n22

2

and (x) of theorem 3.1 is satisfied. Assume now that nF5,

h(x)40 and
2 Scalg (x)

n24
2

8(n21) a(x)

(n22)(n24)
D

D g f (x)

f (x)

Then,

Jut
c x , k

Vc x , k Vp11

v4 1

K(n , 2 )2

t 2

2
2

1

p11
f (x) t p112

1

k
y Scalg (x) t 2

n(n24) K(n , 2 )2

2
4(n21) a(x) t 2

n(n22)(n24) K(n , 2 )2
2

D g f (x) t p11

2n
z1og 1

k
h g1 (t)

According to lemma 4.2, one can write that tk4 t01O g 1

k
h . Hence,

Jutk

c x , k

Vc x , k Vp11

v4 1

K(n , 2 )2

t0
2

2
2

1

p11
f (x) t0

p112
1

k
y Scalg (x) t0

2

n(n24) K(n , 2 )2

2
4(n21) a(x) t0

2

n(n22)(n24) K(n , 2 )2
2

D g f (x) t0
p11

2n
z1og 1

k
h

Since

Scalg (x) t0
2

n(n24) K(n , 2 )2
2

4(n21) a(x) t0
2

n(n22)(n24) K(n , 2 )2
2

D g f (x) t0
p11

2n
4

2Scalg (x)

n24
2

8(n21) a(x)

(n22)(n24)
2

D g f (x)

f (x)
D0
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it follows that for k large

Jutk

c x , k

Vc x , k Vp11

vE 1

K(n , 2 )2

t0
2

2
2

1

p11
f (x) t0

p11G
1

nK(n , 2 )n ( f (x) )
n22

2

Here again (x) of theorem 3.1 is satisfied. As one can easily check, the proof
that (x) holds in the two remaining cases of (C) is similar. This proves proposi-
tion 4.1. r

5. – Specific results.

Let (M , g) be a compact Riemannian n-manifold (with or without bounda-
ry), such that nF4, and let Isom (M , g) be its isometry group. We consider G
a subgroup of Isom (M , g) and t an involutive isometry of (M , g) such that G
and t commute weakly. Let a , f and h be three smooth, G-invariant and t-inva-
riant functions on M such that D g1a is coercive on H (see section 3) and f is
positive. The following theorem holds

THEOREM 5.1. – Assume that

(H1) inf
x�M

Card OaG , tb (x)

( f (x) )
n22

2

is achieved at a point xmin of the interior of M

(H2) t (OG (x))OOG (x)4¯ , (x in the interior of M of finite orbit under aG, tb

Then (E) possesses a nodal G-invariant and t-antisymmetrical solution u�
C 2 (M), if either all the orbits under the action of aG , tb are infinite, or if for
all x in the interior of M having a finite orbit under the action of aG , tb, a , f
and h satisfy (C) of paragraph 4 at x . Moreover, if we assume that Ft splits M
into two subsets V 1 and V 2 stable under the action of G , then we can choose u
such that the zero set of u is exactly the set FtN¯M , where Ft is the set of the
fixed points of t .

REMARK 1. – The theorem still holds under weaker assumptions. We may
only suppose (H1) and that if OaG , tb (xmin ) has finite cardinality

.
/
´

t (OG (xmin ) )OOG (xmin )4¯

h(xmin )F0

and a , f and h satisfy (C) at xmin (if OaG , tb (xmin ) is infinite, all the orbits under
the action of aG , tb are infinite).
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PROOF OF THEOREM 5.1. – According to proposition 4.1, there exists vmin�
H, vming0, such that

sup
tF0

]J(tvmin )(E
Card OaG , tb (xmin )

nK(n , 2 )n ( f (xmin ) )
n22

2

It follows that for all x�M of finite orbit under the action of aG , tb,

sup
tF0

]J(tvmin )(E
Card OaG , tb (x)

nK(n , 2 )n ( f (x) )
n22

2

The result follows from theorem 3.1. r

5.2. Specific results for bounded domains of euclidean spaces.

We let here V be a smooth bounded domain of Rn , nF4, equipped with the
Euclidean metric j . We begin with two remarks.

REMARK 2. – If V is starshaped, say at 0, obstructions to the existence of
nodal solutions hold. Assume that aF0, ¯r aF0, ¯r fG0, hG0 and ¯r hG0,
one of these inequalities being strict. We claim that (E) has no nodal solution.
For all u , v�C 2 (M), see Kazdan and Warner [15],

22D j ua˜u , ˜vb4div ]2a˜u , ˜vb˜u2N˜uN2 ˜v(2N˜uN2 D j v

22a˜u , Hess (v) ˜ub

where Hess (v) denotes the hessian matrix of v . Taking u to be a nodal solution

of (E) and v (x)4 1

2
r 2 , we get by integrating by parts

s
¯V

(¯n u)2 ax , nb ds422 s
V

a˜u , xb(D j u) dv (j)2 (n22)s
V

u(D j u) dv (j)

where n is the unit outer normal ¯V . Since u is a solution of (E)

s
¯V

(¯n u)2 ax , nb ds42 s
V

a˜u , xb(au2 fNuNp21 u2hNuNq21 u) dv (j)1

(n22)s
V

u(au2 fNuNp21 u2hNuNq21 u) dv (j)
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Integrating by parts we get

s
¯V

(¯n u)2 ax , vb ds422 s
V

au 2 dv (j)2s
V

r (¯r a) u 2 dv (j)1

n22

n
s

V

r (¯r f )NuNp11 dv (j)2
(n22)(q11)22n

q11
s

V

hNuNq11 dv (j)1

2

q11
s

V

r (¯r h)NuNq11 dv (j)

and the claim easily follows.

REMARK 3. – As another remark, note that our results improve previous re-
sults of Demengel and Hebey [7] in the case of the 2-laplacian. On the one
hand, (x) is localized. On the other hand, we do prescribe the zero set of the
solutions.

The following proposition easily follows from theorem 3.1

PROPOSITION 5.3. – Let V be a solid torus of R3 , obtained by rotation
around the z-axis of a ball centered on the y-axis. Let G be the group of the ro-
tations around the z-axis and let t be the orthogonal symmetry with respect
to the (x , y)-plane (denoted by P). We assume that a , f and h are three smoo-
th G- and t-invariant functions such that f is positive and D j1a is coercive
on H. Then (E) admits a nodal solution u�C 2 (V), G-invariant and t-anti-
symmetrical, whose zero set is exactly ¯VN (VOP).

In somewhat more difficult situations, for example when all points have fi-
nite orbit, we can use theorem 5.1. As an example, the following holds

PROPOSITION 5.4. – Let V be either a ball or an annulus of Rn centered at 0,
nF4, and t be the antipodal map t (x)42x . We assume that a , f and h are
three smooth t-invariant functions such that f is positive and D j1a is coer-
cive on H. We also assume that there exists x0 in the interior of V such
that

.
/
´

f (x0 )F2
2

n22 f (0) (in the case where V is a ball)

f (x0 )F f (x) (x�¯V

Then (E) admits a nodal solution u�C 2 (V), t-antisymmetrical if for all xc
0 (it is always the case when V is an annulus), a , f and h satisfy the condi-
tion (C) at x .



ZINDINE DJADLI - ANTOINETTE JOURDAIN224

Once again, using theorem 5.1, we can easily deal with situations where al-
most all the points have an infinite orbit. As a corollary, we get multiplicity
when a , f and h are assumed to be constants.

PROPOSITION 5.5. – Let V be an annulus of Rn , nF4, centered at 0, and P
be some hyperplane of Rn . We denote by P» the orthogonal complement of P
such that 0�P» , by GP the group of rotations around P» , by t P the orthogo-
nal symmetry with respect to P and by aGP , t P b the group generated by GP

and t P . Let a , f and h be three smooth aGP , t P b-invariant functions such
that f is positive, D j1a is coercive on H, the set of the functions of W 1, 2 (V)
which are GP-invariant and t P-antisymmetrical. We also assume that there
exists x0� (VOP» )0(¯VOP» ) such that for all x�¯VOP» , f (x0 )F f (x).
Then (E) admits a nodal solution u�C 2 (V), GP-invariant and t P-antisym-
metrical, whose zero set is exactly (POV)N¯V , if for all x� (VO
P» )0(¯VOP» ), a , f and h satisfy (C) at x . In the particular case where a , f
and h are three positive real numbers, (E) possesses an infinity of nodal
solutions.

REMARK 4. – Here again, in the spirit of remark 1, propositions 5.4 and 5.5
do hold under weaker assumptions.

5.6. Specific results for the standard sphere.

Let (S n , st) be the standard unit sphere of Rn11 . One knows exactly
Isom (S n , st), and t splits S n into two domains, stable under the action of G , if
and only if t is an orthogonal symmetry with respect to an hyperplane of Rn11 .
As an easy consequence of theorem 5.1, the following proposition holds

PROPOSITION 5.7. – Let P be an hyperplane of Rn11 , and t be the symmetry
with respect to P . Let also G be the subgroup of Isom (S n , st) generated by the
rotations around P» . We assume that a , f and h are three smooth aG , tb-in-
variant functions, such that D st1a is coercive and f is positive. We also as-
sume that for all P�S nOP» , a , f and h satisfy (C) at P . Then (E) possesses
a nodal solution u�C 2 (S n ), G-invariant and t-antisymmetrical, whose zero
set is exactly S nOP .

The following multiplicity result is a straightforward consequence of pro-
position 5.7. Its last part was proved in Djadli [9]

PROPOSITION 5.8. – We assume that a , f and h are three positive numbers
in the case nF5 and that a� (0 ; 2 ) is a constant, f is a positive constant and
h is a nonnegative constant if n44. Then to each hyperplane P of Rn11 , we
can associate a nodal solution uP , invariant under the action of the sub-
group of Isom (S n , st) which lets fixed S nOP» . Moreover the zero set of uP is
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exactly POS n . In particular, (E) admits an infinity of nodal solutions. On

the contrary, (E) has an unique positive solution if aE
n(n22)

4
.

As an ending remark, we point out that more important zero sets can be
prescribed. Let s 1 and s 2 be two orthogonal symmetries of (S , st) with respect
to two hyperplanes P 1 and P 2 such that P 1

»%P 2 . Let also a , f and h be three
smooth s 1- and s 2-invariant functions such that f is positive, D st1a is coercive
on the subset of W 1, 2 (M) whose functions are s 1- and s 2-antisymmetrical, and
such that

)x0�S n 0(S nO (P 1NP 2 ) ) such that (x�S nO (P 1NP 2 ) f (x0 )F2
2

n22 f (x)

Mimicking what was done in the proof of theorem 3.1 and the proof of theorem
5.1, one can prove that (E) possesses a s 1- and s 2-antisymmetrical nodal sol-
ution whose zero set is exactly S nO (P 1NP 2 ) if for all x�S n 0(S nO (P 1N
P 2 ) ), a , f and h satisfy (C) at x . No particular difficulties are involved
here.
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