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Harmonic Functions on Classical Rank one Balls.

PHILIPPE JAMING (*)

Sunto. – In questo articolo studieremo le relazioni fra le funzioni armoniche nella pal-
la iperbolica (sia essa reale, complessa o quaternionica), le funzione armoniche eu-
clidee in questa palla, e le funzione pluriarmoniche sotto certe condizioni di cresci-
ta. In particolare, estenderemo al caso quaternionico risultati anteriori dell’autore
(nel caso reale), e di A. Bonami, J. Bruna e S. Grellier (nel caso complesso).

1. – Introduction.

In this paper, we study the links between harmonic functions on the hyper-
bolic balls (real, complex or quaternionic), the euclidean harmonic functions on
these balls and pluriharmonic functions. In particular we investigate whether
growth conditions may separate these classes.

More precisely, let F4R , C or H (the quaternions) and let n be an inte-
ger, nF2 (nF3 if F4R). Let Bn be the euclidean ball in Fn, let D be the eucli-

dean laplacian operator on Bn and let N4r ¯

¯r
be the normal derivation opera-

tor. For k�N* a function u of class C 2k is said to be k-hamonic if D k u40, in
particular for k41 this are the euclidean harmonic functions.

The ball Bn can also be endowed with the hyperbolic geometry. Let DF be

the associated Laplace-Beltrami operator. Let r4 n21

2
, n , 2n11 according

to F4R , C or H.
It is well known that if u is euclidean harmonic or more generally k-harmo-

nic for k�N* with a boundary distribution, then every normal derivative of u,
N k u, has also a boundary distribution. We will show that if u is a DF-harmonic
function with a boundary distribution, then for every integer kEr, N k u has
also a boundary distribution.

Next, we define a pluriharmonic function as a function that is euclidean
harmonic over every F-line where F is seen as Rd with d4dimR F. This exten-
ds a classical definition from the case F4C to the two other cases and seems
to be the most pertinent definition for our study.

(*) The author wishes to thank A. Bonami, E. Damek and A. Hulanicki for valuable
conversations and advices. Author partially supported by the European Commission
(TMR 1998-2001 Network Harmonic Analysis).
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It is shown in [7] for F4R and n odd and in [2] for F4C, that if u is DF-
harmonic with a boundary distribution, then N r u has a boundary distribution
if and only if u is also euclidean harmonic. Note that for F4R, r is an integer
if n is odd, whereas for n even, r is a half-integer. In this last case, although
one might give a meaning to N r, the above result is no longer true. Actually, if

F4R and n is even, we will show that if u is DR-harmonic then u is also
n

2
-

harmonic (up to a change of variables), implying that u behaves more alike the
euclidean-harmonic functions. In particular, as has already been shown in [7]
by different methods, if u has a boundary distribution, then N k u has also a
boundary distribution for every k. So, in even dimension, DR-harmonic fun-
ctions behave like euclidean harmonic functions.

Further, in the case F4R, the only functions that are both DR-harmonic
and euclidean harmonic (and more generally k-harmonic with kF1) are the
constants. In the case F4C, it is well known that the only functions that are
both DC-harmonic and k-harmonic with kF1 are the pluriharmonic functions
(see [11]), in particular they are already euclidean harmonic.

We would also like to mention that in the complex case, this result appears
as a particular case of a theorem by Ewa Damek & al (see [3]) stating that, in a
Siegel tube domain, pluriharmonic functions satisfying some growth condition
are characterized by only the invariant laplacian and some other elliptic opera-
tor. Moreover, here no assumptions on boundary values is needed and the se-
cond elliptic operator can be chosen as the euclidean laplacian.

In the case F4H (as in the case F4R), a major difference occurs, namely
that the pluri-harmonic functions are no longer DF-harmonic (except for the
constant functions). Further there exist functions that are both DH-harmonic
and 2-harmonic, and we will show that those DH-harmonic functions that are 2-
harmonic but not 1-harmonic are linked to the pluriharmonic functions, and
that this class is orthogonal on every sphere rS4n21, 0ErE1 to the DH-har-
monic functions that are 1-harmonic. To conclude, if u is 2-harmonic with a
boundary distribution, then N k u has also a boundary distribution. We will
show that, among the DH-harmonic functions the converse is also true: let u be
a DH-harmonic with a boundary distribution, then if N r u has also a boundary
distribution, then u is 2-harmonic.

The article is organised as follows: in the next section we give the setting of
our problem, and we make clear the above mentionned links between the dif-
ferent notions of harmonicity in the real and the complex case. In section 3 we
prove that for u DF-harmonic with a boundary distribution, N k u has a bounda-
ry distribution for kEr. In the last section we deal with the quaternionic
case.
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2. – Setting and main results.

2.1. Gauss’ Hypergeometric function.

A number of hypergeometric functions will appear throughout. We use the
classical notation 2F1 (a , b , c ; x) to note

2F1 (a , b , c ; x)4 !
k40

Q G(a1k)

G(a)

G(b1k)

G(b)

G(c)

G(c1k)

x k

k!

whith cc0, 21, 22, R This can also be defined as being the solution of the
differential equation

(12x) x
d 2 u

dx 2
1 [c2 (a1b11) x]

du

dx
2abu40

that is regular in 0. We refer to [4] for the theory of such functions.

2.2. Classical rank one balls.

Let us recall some facts about symetric spaces of rank 1 of the non-compact
type and their realizations as the euclidean unit ball. This facts can be found
for instance in [5] and their adaptation to the ball model are then straightfor-
ward computations.

Let F4R , C or H and let xO x (x�F) be the standard involution on F,
put NxN4xx and d4 dimR F.

Consider Fn11 as a right vector field over F and define the quadratic form
Q(x)4Nx1N21R1Nxn N22Nxn11N2 for x4 (x1 , R , xn11 )�Fn11. Then the
connected component of the identity G of the group of all F-linear transforma-
tions on Fn11 which preserve Q and which are of determinant one (except for
the case F4H) is given as follows:

1. if F4R then G4SO0 (n , 1 ),

2. if F4C then G4SU(n , 1 ),

3. if F4H then G4Sp(n , 1 ).

Let G4KAN be an Iwasawa decomposition for G. Then

K4mkk×, c4gk×0 0
c
h : k×�SO(n , F), c�F , NcN241n ,

A4{at4uch t
0

sh t

0
In21

0

sh t
0

ch t
v : t�R}
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and

N4{nj4

.
`
`
`
´

11y1
d 2

2

y1
d 2

2
j 2

QQ
Q

j n

2y2
d 2

2

12y2
d 2

2
2j 2

QQ
Q

2j n

j 2

j 2

1

0

. . .

. . .

Q Q
Q

j n

j n

0

1

ˆ
`
`
`
˜

:
j4(j 2 ,R, j n)�Fn21

y�F, y42y } .

(where d 24NjN2
21R1NjNn

2). Put A14]at : tD0(. The Cartan decomposi-
tion of G is given by G4KA1K.

Let M be the centralizer of A in K, i.e.

M4{mm×, c4uc
0
0

0
k×

0

0
0
c
v : m×�SO(n21, F), c�F , NcN241} .

If x4 (x1 , R , xn ) and y4 (y1 , R , yn ) are in Fn, set ax , yb4x1 y11R1
xn yn and VxV24 ax , xb. Then the unit ball Bn4]x�Fn : VxV2E1( and its boun-
dary Snd21 (the unit sphere in Fn) are identified with G/K and K/M. More pre-
cisely, an element of G/K is identified with the couple (at , j), tF0, j�Snd21C
K/M which is indentified with the point (sh t . j , ch t) in the hyperboloid
Q(x1 , R , xn , xn11 )421. This point is in turn identified with the point
( th t) j�Bn (see figure 1).

Fig. 1. – The identification of G/K with Bn .
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It is then easily seen that G acts transitively on Bn and on Snd21 as
follows:

g . (x1 , R , xn )4 (y1 yn11
21 , R , yn yn11

21 )

where (y1 , R , yn , yn11 )4g(x1 , R , xn , 1 ). The balls Bn with that action of G
are the classical rank 1 spaces of the non-compact type (or the real, complex
and quaternionic hyperbolic balls depending on F4R , C or H).

Recall that d4 dimR F. Let g be the positive simple root of (G , A), and
m14d(n21), m24d21 be the multiplicities of g and 2g respectively. Let

r4 m1

2
1m2 , so that r4 n21

2
, n , 2n11 according to F4R , C or H.

The Laplace-Beltrami operator on G/K is given by

d 2

dt 2
1 (m1 coth t12m2 coth 2 t)

d

dt
1

1

sh2 t
Lv 1

1
1

sh2 2 t
Lv 2

where Lv 1
and Lv 2

are tangential operators (see e.g. [10] for precise expres-
sions). Thus, on Bn, the G-invariant laplacian is given by

DF4
12r 2

4r 2
[ (12r 2 ) N 21 (m11m2211 (m221) r 2 ) N]1

12r 2

r 2
D 11

(12r 2 )2

4r 2
D 2

where r4VxV , N4r ¯

¯r
and D 1 , D 2 are two tangential operators having as ei-

genvectors the spherical harmonics.

EXAMPLE. – { If F4R then D 140 while D 24D s the tangential part of the
euclidean laplacian so that

DR4
12r 2

4r 2
[ (12r 2 ) N 21 (n222r 2 ) N]1

(12r 2 )

r 2
D s .

{ If F4C design by Li , j4 zi
¯

¯zj

2zj
¯

¯zi

. Then D 14 L 42
1

2
!

iE j
(Li , j L Li , j1Lj , i Lj , i ) the Kohn laplacian and D 244T 2 with

T4Im !
k41

n

zi
¯

¯zi

, so that

DC4
12r 2

4r 2
[ (12r 2 ) N 212(n21) N]1

12r 2

4r 2
L1

(12r 2 )2

r 2
T 2

(the notation for N is not the same as in [2]).
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The Poisson kernel associated to DF is given by

PF (x , j)4g 12VxV2

N12 ax , jbN2 hr

with x�Bn and j�Snd21. The Poisson integral of a distribution f on Snd21 is
then defined in the usual way and written PF [ f ].

DEFINITION. – Functions u on Bn such that DF u40 will be called
DF-harmonic.

If F4C, these are the M-harmonic functions, whereas if F4R, the author
called them H-harmonic in [7] (however a different identification of Bn with
G/K is used there).

2.3. Boundary distribution.

We focus in this article on functions that have a boundary distribution in
the following sense:

DEFINITION. – A function u on Bn has a boundary distribution if the
limit

lim
rK1

s
Snd21

u(rz) F(z) ds (z)

exists for every F� CQ (Snd21 ).

If u is DF-harmonic then u has a boundary distribution if and only if u4
PF [ f ] for some distribution f on Snd21. To see this, one may use Lewis’ theo-
rem [9] stating that the DF-harmonic functions that are Poisson integrals of di-
stributions are exactly those DF-harmonic functions that have a polynomial
growth and then prove as in [7] (F4R), [1] (F4C) that the DF-harmonic fun-
ctions that have a polynomial growth are exactly those that have a boundary
distribution. Alternatively, one may use the fact that a DF-harmonic function u
is the Poisson integral of an hyperfunction m and that u has a boundary distri-
bution if and only if the hyperfunction m is actually a distribution.

We here study the boundary behavior of normal derivatives N k u of DF-
harmonic functions u that have a boundary distribution. In particular, we ge-
neralize lemma 2.1 in [2] in the complex case and Theorem 8 in [7] in the real
case and give a unified proof independent of F4R , C or H. We prove the
following:
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THEOREM 1. – Let u be a DF-harmonic function with a boundary distribu-
tion. Let Y be a tangential operator that commutes with N. Let k be an inte-
ger and v4N k Yu. Then

– if kEr, v has a boundary distribution,

– if k4r, for every F� CQ (Snd21 ),

s
Snd21

v(rz) F(z) ds (z)4Oglog
1

12r
h .

REMARK. – If Y is tangential and if u has a boundary distribution, then Yu
has also a boundary distribution. The operators D 1 , D 2 and their products gi-
ve examples of tangential operators that commute with N.

2.4. Links between pluriharmonic, k-harmonic and euclidean harmonic
functions.

We will next clarify a few relations beetween different notions of harmoni-
city on Bn .

To start with, we extend the definition of pluriharmonic in the complex ca-
se to the general case. The most relevant in our context is:

DEFINITION. – Let u be a function of class C 2 on Bn .
For a , b�Fn, define ua , b on F identified with Rd as xOu(ax1b). Then u

is said to be pluriharmonic if for every a , b�Fn, ua , b is harmonic on its
domain.

Let k�N*, then u is said to be k-harmonic if u is of class C 2k on Bn and if
D k u40.

REMARK. – If u is pluriharmonic, then u is also harmonic. In particular if u
is pluriharmonic with a boundary distribution, then all its derivatives also have
a boundary distribution.

Let us first consider the cases of R and C for which references [7] and [2]
are available.

Assume first that F4R. If u is pluriharmonic, then u is an affine function,

in particular ¯ 2 u

¯r 2
40 and D s u40. Further, if u is also DR-harmonic, then

Nu40 and the only affine functions such that Nu40 are the constant
functions.

Assume now that u is both euclidean and DR-harmonic (in particular, u is



PHILIPPE JAMING692

continuous). But, the radial-tangential expression of the euclidean laplacian
is:

D4
1

r 2
[N 21 (n22) N1D s ]

thus, u satisfies

(12r 2 ) N 2 u1 (n22)(12r 2 ) Nu1 (12r 2 ) D s u40 .

Comparing with the radial-tangential expression of DR , one gets further that
Nu40 i.e. u is homogeneous of degree 0. But the only continuous homogene-
ous functions are constant.

Finally, if F4R then r4 n21

2
thus the condition k4r in Theorem 1 has

the above meaning only when n is odd. Moreover, Proposition 3 bellow shows
that the behaviour of DR-harmonic functions is different in even and odd di-
mension. In [7] (1) the equivalence of 1, 4 and 5 in the following proposition has
been proved:

PROPOSITION 2. – Assume n is odd and let u be a DR-harmonic. The follo-
wing are equivalent:

1. u is pluriharmonic (i.e. constant),

2. u is euclidean harmonic,

3. u is k-harmonic for some kF1.
Further, if u has a boundary distribution, this three conditions are equi-

valent to the following:

4. for every F� CQ (Sn21 ),

s
Sn21

N
n21

2 u(rz) F(z) ds (z)4oglog
1

12r
h .

5. N
n21

2 u (i.e. N r u) has a boundary distribution.

The situation in the case n even is different. Recall from Helgason [6] that
every DR-harmonic function has a spherical harmonic expansion of the
form

u(rz)4 !
lF0

fl (r) r l ul (z)(1)

where ul is a spherical harmonic of degree l and fl(r)42F1gl,12 n

2
,l1 n

2
,r 2h.

(1) Where r has to be replaced by 2r because of the different identification of Bn
with G/K.
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Then, if n is even, 12 n

2
, thus fl is a polynomial of degree n

2
21. But then, a

simple computation shows that D k u40 for kF n

2
, that is:

PROPOSITION 3. – For n even, every DR-harmonic function is n

2
-harmonic.

COROLLARY 4. – If n is even and if f� CQ (Sn21 ) then PR [ f ]� CQ (Bn). Fur-
ther, if u is DR-harmonic and has a boundary distribution, then, for every k,
N k u has a boundary distribution.

Assume now that F4C (r4n). In this case, pluriharmonic functions are
both euclidean harmonic and DC-harmonic. The converse is also true (see [11],
Theorem 4.4.9). Moreover, we will show that if u is k-harmonic and DC-harmo-
nic, then u is pluriharmonic, a fact for which we have not found any reference.
Our proof is again based on the fact from [6] that every DC-harmonic function
has a spherical harmonic expansion of the form:

u(z)4 !
p , q�N

2F1 (p , q , p1q1n , NzN2 ) up , q (z)(2)

where up , q is a spherical harmonic of degree p in z and q in z. Moreover, this
series converges uniformly over compact sets of Bn .

Now, write fp , q (r)42F1 (p , q , p1q1n , r 2 ). If we further ask for u to be
euclidean harmonic or more generally k-harmonic, then applying D k to (2) im-
plies that

!
p , q�N

T k
p , q fp , q (r) up , q (z)40

where Tp , q4
1

r 2
(N 212n(p1q) N). Thus, for every p , q such that up , qc0,

T k
p , q fp , q (r)40 for 0GrE1. But, the only functions W that are regular in 0

such that T k
p , q W40 are polynomials of degree at most k. Thus fp , q has to be a

polynomial. Note that a hypergeometric function 2F1 (a , b , c , x) (with cD0) is
a polynomial if and only if aG0 or bG0. Thus up , q40 unless p40 or q40 i.e.
the sum in (2) is reduced to summing over ](p , 0 ) : p�N( and ](0 , q) : q�N(,
that is, u is pluriharmonic.

Further, in [2], pluriharmonic functions have been characterized among
DC-harmonic functions with a boundary distribution. This gives equivalence of
1, 4 and 5 of the following:

PROPOSITION 5. – Let u be an DC-harmonic function. The following are
equivalent:

1. u is pluriharmonic,

2. u is euclidean harmonic,

3. u is k-harmonic for some k�N*.
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Further, if u has a boundary distribution, this three conditions are equi-
valent to the following:

4. N n u (i.e. N r u) has a boundary distribution,

5. for every F� CQ (S2n21 ),

s
S2n21

N n u(rz) F(z) ds (z)4oglog
1

12r
h .

We will prove a similar result in the quaternionic case (r42n11). How-
ever, the result will be more elaborate, as the class of «pluriharmonic» fun-
ctions and the class of functions that are both euclidean and DH-harmonic do
no longer coincide. We postpone the description of results to section 4.

3. – Proof of theorem 1.

Let us prove Theorem 1 by induction on k. For k40 this is just the hypo-
thesis on u.

If u is DF-harmonic, then

(12r 2 ) N 2 u1 (m11m2211 (m221) r 2 ) Nu1D 1 u1
12r 2

4
D 2 u40 .

If we apply N k21 and isolate terms in N k11 and N k, we obtain

(12r 2 ) N k11 u22(k21) r 2 N k u1 (m11m2211 (m221) r 2 ) N k u4

r 2!
j42

k21gk21

j
h 2 jN k112 j u2 (m221) r 2!

j41

k21gk21

j
h 2 jN k2 j u2

2N k21 D 1 u2
12r 2

4
N k21 D 2 u1r 2!

j41

k21gk21

j
h 2 j22N k212 j D 2 u .

Let Y be a tangential operator that commutes with N then

(3) (12r 2 ) N k11 Yu1 (m11m2211 (m222k11) r 2 ) N k Yu4

r 2!
j42

k21gk21

j
h 2 jN k112 j Yu2 (m221) r 2!

j41

k21gk21

j
h 2 jN k2 j Yu2

N k21 YD 1 u2
12r 2

4
N k21 YD 2 u1r 2 !

j41

k21gk21

j
h 2 j22N k212 j YD 2 u .
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By the induction hypothesis, all the terms in the right member of (3) have a
boundary distribution. If we fix F� CQ (Sn21 ) and write

c k (r)4 s
Snd21

N k Yu(rz) F(z) ds (z)

we get that

gk (r)f (12r 2 ) Nc k1 (m11m2211 (m21122k) r 2 ) c k(4)

has a limit L when rK1.
But, solving the differential equation (4) gN4r d

dr
h leads to

c k (r)4
(11r)r2k

r m11m221
(12r)r2ks

0

r

gk (s) s m11m222

(11s)r112k
(12s)2(r2k)21 ds .

Thus, if kEr, c k (r) has limit L

2r
wheras if k4r, c k (r) has logarithmic

growth. r

4. – Boundary behavior of 2n11th derivative in the quaternionic case.

In this section we will restrict our attention to the case F4H , and we will
compare pluriharmonic functions, euclidean harmonic functions and DH-
harmonic functions. Our study will rely on the spherical harmonic expan-
sion of DH-harmonic functions, therefore we will recall the theory of spherical
harmonics adapted to the analysis on S4n21 , the unit sphere of Hn , as can be
found in [8].

4.1. Spherical harmonics in the case F4H.

Let L4](p , q)�N2 : p�N , q2p�2N(.
Denote by w1 , R , wn the standard coordinates on Hn, ws4xs1 ixn1s1

jx2n1s1kx3n1s where xs�R (1GsG4n). The polar coordinates are given as
follows:

.
/
´

w14r cos j( cos F1y sin F)

ws4rs s sin j

where r4V(w1 , RV , wn ), 0GjG p

2
, 0GFG2p, y�H with NyN241 and

D(y)40, s s�H with !
s42

n

Ns sN241. It is easy to see that an M-invariant fun-

ction on Hn depends only on r , r14w11w1 and r24Nw1 N2.
Let K× denote the equivalence classes of irreducible unitary representa-

tions of K and K×M4](t , Vt )�K× : dim Vt
M
c0( where Vt

M denotes the subspa-
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ce of Vt consisting of M-fixed vectors. Since G is of rank one, dim Vt
M41 if

(t , Vt )�K×M . The Peter-Weyl theorem implies that

L 2 (Snd21 )4 !
t�K×M

Vt

as a representation space of K. The actual parametrization of t�K×M and the
spherical harmonics that span Vt

M are given by (see [8]) the following formula:

F p , q4r q sin ( (p11) F)

sin21 F
cosq j 2F1g p2q

2
, 2

p1q12

2
, 2(n21); 2tan2 jh ,

for p , q�L .
The corresponding matrix coefficient at k F p , q , F p , q b is an M-invariant sphe-

rical function on K. The span of these coefficients are nothing but the spheri-
cal harmonics when restricted to Snd21. We will write H(p , q) ((p , q)�L) for
the set of spherical harmonics obtained in this way.

We will use the fact that ]H(p , q) : (p , q)�L( provides a complete ortho-
normal set of joint eigenfunctions of D 1 and D 2 . More precisely, for
W p , q�H(p , q),

1

4
D 2 W p , q42p(p12) W p , q

and

gD 11
1

4
D 2h W p , q42q(q14n22) W p , q .

For convenience, for z�Bn 0]0( we write

z
.
4

z

VzV
4g z 1

VzV
, R ,

z n

VzV
h .

4.2. Spherical harmonics expansion of DH-harmonic hunctions.

Let u be DH-harmonic. By the Peter-Weyl theorem, u has an expansion
into spherical harmonics

u(z)4 !
p , q�L

c p , q (r) W p , q (z
.
)

where r4VzV and

c p , q (r)4s
K

u(k . z) F p , q (k . z
.
) dk .
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Then, using the radial-tangential expression of DH and the fact that D 1 , D 2

are self-adjoint, we get

(12r 2 ) r 2 c p , q9 (r)1 (m11m21 (m222) r 2 ) rc p , q8 (r)2

[q(q14n22)2r 2 p(p12) ] c p , q (r)40 .

Let us look for solutions of the form r q Fp , q (r 2 ). The function Fp , q sati-
sfies

(12 t) tFp , q9 (t)1 [q12n2qt]Fp , q8 (t)2
1

4
[q(q22)2p(p12) ] Fp , q (t)40 .

As c p , q is regular in 0, this leads to

Fp , q (t)42F1g q2p22

2
,

p1q

2
, q12n ; th .

This may be summarized in the following lemma (Helgason - [6]):

LEMMA 6. – Every DH-harmonic function u admits a decomposition into
spherical harmonics of the form

u(rz
.
)4 !

(p , q)�L
2F1g q2p22

2
,

p1q

2
, q12n ; r 2h r q W p , q (z

.
)(5)

where W p , q�H(p , q).

4.3. Euclidean-harmonic, k-harmonic and pluriharmonic DH-harmonic
functions.

If u is euclidean harmonic on Bn and DH-harmonic then the same proof as
for the complex case in section (2.4) implies that the only spherical harmonics

that can occur in (5) are those for which 2F1g q2p22

2
, p1q

2
, q12n ; r 2h is

constant. But an hypergeometric function 2F1 (a , b , c , x) is constant if and
only if a40 or b40, so that the only spherical harmonics that occur in (5) are
those for q4p12 or q4p40.

Let us now turn to pluriharmonic functions. Recall that a function u on Bn

is pluriharmonic if for every a , b�Hn, the function ua , b : R44HOF defined
by ua , b (z)4u(az1b) is harmonic on its domain.

With this definition, the only pluriharmonic spherical harmonics are the

functions in H(p , p), p�N. But 2F1 (21, p , p12n ; r 2 )4g12 p

p12n
r 2h, so

that the DH extension from Snd21 to Bn of a function in H(p , p) is no longer
pluriharmonic, unless p40. So as in the real case, the only pluriharmoic fun-
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ctions that are DH-harmonic are the constants. This leads us to the following
notion:

DEFINITION. – We will say that a function u is the DH-partner of a plu-
riharmonic function if u has a spherical harmonic expansion

u(rz)4 !
p41

1Q g12 p

p12n
r 2h up , p (rz) .(6)

In this case, a direct computation shows that D 2 u40, that is, the DH-par-
tners of pluriharmonic functions are DH-harmonic functions that are 2-harmo-
nic but not 1-harmonic. Moreover, the same proof as for the caracterization of
DC-harmonic functions that are k-harmonic shows that every DH-harmonic
function that is k-harmonic is already 2-harmonic, and thus a sum of a 1-har-
monic function and of a DH-partner of a pluriharmonic function.

Finally,

g12 p

p12n
r 2h r p4 (12r 2 ) r p1

2n

p12n
r 21p

4 (12r 2 ) r p1
2n

r 2(n21)
s
0

r

s p12n21 ds .

From this fact, the definition of a DH-partner of a pluriharmonic function,
given a priori in terms of a spherical harmonics expansion, can be reformula-
ted via an integral operator:

LEMMA 7. – A function u is a DH-partner of a pluriharmonic function if
and only if there exists a pluriharmonic function v such that

u(rz)4 (12r 2 ) v(rz)1
2n

r 2(n21)
s
0

r

s 2n21 v(sz) ds .(7)

Moreover, u has a boundary distribution if and only if v has a boundary
distribution.

PROOF. – If v has a boundary distribution, formula (7) immediatly implies
that u has also a boundary distribution.

For the converse, differentiating (7) leads to the differential equation

r
¯v

¯r
1 (11 (2n23) r 2 ) v42(n21) u1Nu .
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Solving this equation in v leads to

(8) v(rz)4

expg2 2n23

2
r 2h

r
s
0

r

(2(n21) u(sz)1Nu(sz) ) expg 2n23

2
s 2h ds .

But if u has a boundary distribution, then by Theorem 1, Nu has also a boun-
dary distribution. Thus (8) implies that v has a boundary distribu-
tion. r

REMARK. – Note also that, according to the fact that spherical harmonics
for different parameters are orthogonal, the class of DH-partners of plurihar-
monic functions and the class of DH-harmonic and euclidean harmonic fun-
ctions are orthogonal on every sphere rS4n21, 0ErE1 (thus on Bn).

4.4. Boundary behavior of the 2n11th derivative.

We will now establish the following theorem:

THEOREM 8. – Let u be a DH-harmonic function. Then the following are
equivalent:

1. u is k-harmonic for some kF2,

2. u is 2-harmonic,

3. u is the sum of an euclidean harmonic function and of the DH-par-
tner of a pluriharmonic function.

Further if u has a boundary distribution, then the three above assertions
are also equivalent to the following:

4. N 2n11 u has a boundary distribution,

5. for every F� CQ (S4d21 ),

s
S4d21

N 2n11 u(rz) F(z) ds (z)4oglog
1

12r
h .

Moreover, in this case, both the euclidean part and the pluriharmonic par-
tner part of u have a boundary distribution.

PROOF. – The equivalence of 1, 2 and 3 has already been established.
Now let u be a DH-harmonic function with a boundary distribution and
assume 3. Write u4u11u2 where u1 is DH and euclidean harmonic and
u2 is a DH-partner of a pluriharmonic function. Then by orthogonality
of u1 and of u2 on every sphere, it is obvious that u1 and u2 both have
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boundary distributions. In particular, N 2n11 u1 has a boundary distribu-
tion.

Further, Lemma 7 implies first that u2 is the DH-partner of a pluriharmo-
nic function with a boundary distribution and then that N 2n11 u2 also has a
boundary distribution. So 3 implies 4. The implication 4 ¨ 5 is obvious. Let us
prove 5 ¨ 3. Let u be DH-harmonic with a boundary distribution.

Lemma 6 tells us that u admits an expansion in spherical harmonics

u(rz
.
)4 !

(p , q)�L
fp , q (r 2 ) r q W p , q (z

.
)(9)

where W p , q�H(p , q) and fp , q is the hypergeometric function

fp , q (x)42F1g q2p22

2
,

p1q

2
, q12n ; xh .

Moreover the sum 9, as well as its derivatives converge uniformly on compact
subsets of Bn , in particular

VW p , q VL 2 (Sn21 ) N k ( fp , q (r 2 ) r q )4 s
Sn21

N k u(rz) W p , q (z) ds(z) .(10)

We will need the three following facts (see [4]):

i) 2F1 (a , b , c ; x) has a limit when xK1 if and only if at least one of the
following holds:

a) aG0, b) bG0, or g) Re (c2a2b)D0 and cc0, 21, 22, R ;

ii) 2F1 (a , b , c ; x)FC glog
1

12x
h in the cases not covered by i.

iii) d k

dx k 2F1 (a , b , c ; x)4
G(a1k) G(b1k) G(c)

G(a) G(b) G(c1k)
2F1 (a1k , b1k , c1k ; x)

But hypothesis 5 says that the right hand member of 10 has a limit when
rK1. Thus, property iii) implies that, if W p , qc0, then

2F1g q2p22

2
12n11,

p1q

2
12n11, q14n11, xh

has a limit when xO 1. Thus properties i) and ii) imply that W p , q40 unless
((p , q)�L):

{
q2p22

2
G0 (property ia), that is q4p12 — the euclidean harmonic

part — or p4q — the pluriharmonic partner —

{
p1q

2
40 (property ib), that is if (p, q)4(0, 0) the constant part of u.

{ or p2qG0 (property ig), that is again p4q.
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Summarizing, u has a spherical harmonics expansion

u(rz
.
)4!

p40

Q

r p12 W p , p12 (z
.
)1W 0, 0 (z

.
)1 !

p41

Q g12 p

p12n
r 2h r p W p , p (z

.
)

where W p , p�H(p , p), W p , p12�H(p , p12), thus u is of the desired form.
The fact that both parts have a boundary distribution results directly from

the orthogonality mentioned above and Lemma 7. r

5. – Further remarks on pluriharmonic functions.

1. The notion of pluriharmonicity is not invariant under Sp(n , 1 ).
Indeed, at 0, DH and D coïncide. Moreover, a pluriharmonic function is eu-

clidean harmonic at 0, thus DH-harmonic at 0. Thus, if the notion of plurihar-
monicity was invariant under the action of Sp(n , 1 ), pluriharmonic functions
would be DH-harmonic which, as we have seen, is not the case.

2. A theorem of Forelli in the case F4C asserts that a function u is plu-
riharmonic if and only if, for every z�S2n21, the function uz : zOu(zz) is har-
monic (see [11], theorem 4.4.9). In case F4H such a theorem can not
hold.

Indeed, as the slices zz, z�C , z�S4n21 are invariant under the action of
Sp(n , 1 ), this would imply the invariance of the notion of pluriharmonicity, a
contradiction with the previous fact.
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