BOLLETTINO UNIONE MATEMATICA ITALIANA

E. BALLICO

The rank of the multiplication map for sections of bundles on curves

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 4-B (2001), n.3, p. 677–683.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2001_8_4B_3_677_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2001.

The Rank of the Multiplication Map for Sections of Bundles on Curves.

E. BALLICO

Sunto. – Sia X una curva liscia di genere $g \ge 2$ ed A, B fasci coerenti su X. Sia $\mu_{A,B}$: $H^0(X, A) \otimes H^0(X, B) \to H^0(X, A \otimes B)$ l'applicazione di moltiplicazione. Qui si dimostra che $\mu_{A,B}$ ha rango massimo se $A \cong \omega_X e B$ è un fibrato stabile generico su X. Diamo un'interpretazione geometrica dell'eventuale non-surgettività di $\mu_{A,B}$ quando A, B sono fibrati in rette generati da sezioni globali e deg(A) + deg $(B) \ge 3g - 1$. Studiamo anche il caso dim (Coker $(\mu_{A,B}) \ge 2$.

Introduction.

Let X be a smooth connected projective curve of genus $g \ge 2$ defined over an algebraically closed field K and A, B coherent sheaves on X; $\mu_{A,B}$: $H^0(X,A) \otimes H^0(X,B) \to H^0(X,A \otimes B)$ will denote the multiplication map. Set $\omega := \omega_X$. For several pairs (A, B) the rank of $\mu_{A, B}$ has a geometric meaning (see e.g. [Bu], [E], [EKS], [G], [GL] and [Re]). For instance if A = $B \in Pic(X)$ is very ample and $h^1(X, A) = 0$ the map $\mu_{A,A}$ is surjective if and only if the corresponding complete embedding is projectively normal; furthermore, Ker $(\mu_{\omega,\omega})$ is the domain of the classical Wahl (or Gaussian) map. As obvious from [G], 4.a.1 and 4.e.4, [EKS], Th. 1, and [Bu] the case $A \cong \omega$ is on the border of the known results on the surjectivity of $\mu_{\omega,B}$ for vector bundles B with large slope. In section one we study the rank of $\mu_{\omega,B}$ when B is a general stable bundle on X and prove that $\mu_{\omega,B}$ has maximal rank. For all integers r, d with r > 0 M(X; r, d) will denote the scheme of all rank r stable vector bundles on X with degree d. It is well-known that M(X; r, d) is a smooth irreducible variety of dimension $r^2(q-1) + 1$. The aim of section one is the proof of the following result.

THEOREM 0.1. – Assume char $(\mathbf{K}) = 0$. Let X be a smooth projective curve of genus $g \ge 2$ and r, d positive integers. Fix a general $E \in M(X; r, d)$. If $d \ge rg + r$ the multiplication map $\mu_{\omega, E}$ is surjective. If d < rg + r the map $\mu_{\omega, E}$ is injective.

In section two we give a geometric interpretation of the non-surjectivity of $\mu_{L,M}$ for spanned line bundles L, M on X with deg(M) + deg $(L) \ge 3g - 1$. We prove the following result.

THEOREM 0.2. – Let X be a smooth projective curve of genus g and L, M spanned line bundles on X such that deg(M) + deg(L) \geq 3g – 1. The map $\mu_{L,M}$ is not surjective if and only if there exists an effective divisor $D \subset X$, $D \neq 0$, with $h^0(X, L(-D)) \geq 2$, deg(D) $\geq 2(h^0(X, M) - h^0(X, M(-D)) + 2(h^0(X, L) - h^0(X, L(-D)))$ and such that the map $\sigma_D \circ \mu_{L,M}$: $H^0(X, L) \otimes H^0(X, M) \rightarrow H^0(X, L \otimes M | D) \cong L \otimes M | D$ is not surjective. Furthermore, if $\mu_{L,M}$ is not surjective there is such D with $h^0(X, L(-D)) + h^1(X, M(D)) \geq h^0(X, L) + h^1(X, M)$ and $4 \leq 2(\deg(D)) \leq \deg(L) + \deg(M) + 2 - g$.

Notice that the inequality $\deg(M) + \deg(L) \ge 3g - 1$ in the statement of Theorem 0.2 is always satisfied if $M \cong L^{\otimes t}$ with $t \ge 2$ and $h^1(X, L) = 0$. Then we study the case dim (Coker $(\mu_{L,M}) \ge 2$ and prove the following result.

PROPOSITION 0.3. – Fix integers g, b with $g \ge 4$ and $b \ge 2$. Let X be a smooth projective curve of genus g and L, M very ample line bundles on X such that $\deg(M) + \deg(L) \ge 3g - 1$ and $\dim(\operatorname{Coker}(\mu_{L,M})) = b$. Then there exists an effective divisor $D \subset X$, $D \ne 0$, with $h^0(X, L(-D)) \ge 2$, $\deg(D) \ge 2(h^0(X, M) - h^0(X, M(-D))) + 2(h^0(X, L) - h^0(X, L(-D)))$ and such that the map $\sigma_D \circ \mu_{L,M}$: $H^0(X, L) \otimes H^0(X, M) \to H^0(X, L \otimes M | D) \cong L \otimes M | D$ is not surjective. Furthermore, if $\mu_{L,M}$ is not surjective there is such D with $h^0(X, L(-D)) + h^1(X, M(D)) \ge h^0(X, L) + h^1(X, M), 2(\deg(D)) \le \deg(L) + \deg(M) + 2 - g$ and $h^0(X, O_X(D)) + \varepsilon(D) \ge b$, where $\varepsilon(D) \coloneqq \dim(\operatorname{Coker}(\sigma_D \circ \mu_{L,M}))$.

The proofs of 0.2 and 0.3 are just small modifications of the proof of [GL], Th. 3.

This research was partially supported by MURST (Italy).

1. - Proof of 0.1.

Let *C* be a one-dimensional projective locally Cohen-Macaulay scheme. We will use the notation $\mu_{A,B}$ even for sheaves *A*, *B* on *C*. If $L \in \text{Pic}(C)$ and *L* is spanned, $h_L: C \to P(H^0(C, L))$ will denote the associated morphism.

We need the following well-known generalization of a lemma of Castelnuovo.

LEMMA 1.1. – Let C be a one-dimensional projective locally Cohen-Macaulay scheme with $h^0(C, \mathbf{O}_C) = 1$ and $R \in \operatorname{Pic}(C)$ with R spanned and $h^0(C, R) = 2$. Then the multiplication map $\mu_{\omega, R} \colon H^0(C, \omega_C) \otimes H^0(C, R) \to H^0(C, \omega_C \otimes R)$ is surjective. **PROOF.** – A choice of a basis of $H^0(C, R)$ induces an exact sequence

(1)
$$0 \to \omega_C \otimes R^* \to \omega_C \oplus \omega_C \to \omega_C \otimes R \to 0$$

Since $h^0(C, \mathbf{O}_C) = 1$, we have $h^1(C, \omega_C) = 1$ by duality ([AK]). Since $h^1(C, \omega_C \otimes R^*) = h^0(C, R) = 2 = 2(h^1(C, \omega_C))$ and $h^1(C, \omega_C \otimes R) = h^0(C, R^*) = 0$ (duality and the assumption $h^0(C, \mathbf{O}_C) = 1$), we obtain that in the long cohomology exact sequence induced by (1) the map $H^1(C, \omega_C \otimes R^*) \rightarrow H^1(C, \omega_C) \oplus H^1(C, \omega_C)$ is an isomorphim. Thus the multiplication map $H^0(C, \omega_C) \oplus H^0(C, \omega_C) = H^0(C, \omega_C) \otimes H^0(C, R) \rightarrow H^0(C, \omega_C \otimes R)$ is surjective, as wanted.

LEMMA 1.2. – Assume char $(\mathbf{K}) = 0$. Let C be an integral projective curve with $C \neq \mathbf{P}^1$ and $R \in \text{Pic}(C)$, R spanned and with h_R birational. Then the multiplication map $\mu_{\omega,R}$: $H^0(C, \omega_C) \otimes H^0(C, R) \rightarrow H^0(C, \omega_C \otimes R)$ is surjective.

PROOF. – If $x := h^0(C, R) - 2 \ge 0$, 1.2 is a particular case of 1.1. Assume $x \ge 0$ and take x general points P_1, \ldots, P_x of C_{reg} . Thus $h^0(C, R(-P_1 - \ldots - P_x)) = 2$. Since h_R is birational and char $(\mathbf{K}) = 0$, the line bundle $L := R(-P_1 - \ldots - P_x)$ is spanned by $H^0(C, L)$ (trisecant lemma). Hence we may apply the case x = 0 and obtain the surjectivity of $\mu_{\omega, L}$. Use $P_1 + \ldots + P_x$ to see $R(-P_1 - \ldots - P_x)$ (resp. $\omega_C \otimes R(-P_1 - \ldots - P_x)$) as a subsheaf of R (resp. $\omega_C \otimes R)$. With these identifications it is easy to check that $\dim(\operatorname{Im}(\mu_{\omega, R})) \ge \dim(\operatorname{Im}(\mu_{\omega, L})) + x$; here we use $h^0(C, \omega_C \otimes L) \neq 0$, i.e. $C \neq \mathbf{P}^1$. Since $\deg(L) \ge 0$ and L, R are locally free, we have $h^0(C, \omega_C \otimes L) = \deg(L) + p_a(C) - 1 = h^0(C, \omega_C \otimes R) - x$ (even if C is not Gorenstein). Hence $\mu_{\omega, R}$ must be surjective.

LEMMA 1.3. – Let C be a Cohen-Macaulay one-dimensional projective scheme with $h^0(C, \mathbf{O}_C) = 1$. Let E be a rank r vector bundle on C spanned by its global sections. Assume that E has no trivial factor. Let F be the kernel of the evaluation map $ev_E: H^0(C, E) \otimes \mathbf{O}_C \rightarrow E$. We have dim $(\operatorname{Coker}(\mu_{\omega, E})) =$ $h^0(C, F^*) - h^0(C, E)$.

PROOF. – The definition of F gives the following exact sequence

(2)
$$0 \to F \to H^0(X, E) \otimes O_C \to E \to 0$$

Since *E* has no trivial factors, we have $0 = h^0(C, E^*) = h^1(C, \omega \otimes E)$ by duality on Cohen-Macaulay schemes ([AK]). Moreover by duality the assumption $h^0(C, \mathbf{0}_C) = 1$ is equivalent to $h^1(C, \omega) = 1$. Therefore after tensoring (2)

by ω we deduce that dim (Coker $(\mu_{\omega, E})$) = $h^1(C, F \otimes \omega) - h^0(C, E) = h^0(C, F^*) - h^0(C, E)$, the last equality being again given by duality.

PROOF OF 0.1. – For a general $E \in M(X; r, d)$ we have $h^0(X, E) = 0$ if $d \leq 0$ r(g-1) and $h^{0}(X, E) = d + r(1-g)$ if $d \ge r(g-1)$, i.e. either $h^{0}(X, E) = 0$ or $h^1(X, E) = 0$ ([La] or [Su] or, in arbitrary characteristic, [BR], Lemma 1.2). Hence a general $E \in M(X; r, d)$ is spanned only if $d \ge rg + 1$. It is known and easy to check that if $d \ge rg + 1$ a general $E \in M(X; r, d)$ is spanned. Since $\omega \otimes E$ is a general element of M(X; r, d + r(2q - 2)) and d > 0, the bundle $\omega \otimes E$ is spanned and we have $h^1(X, \omega \otimes E) = 0$ and $h^0(X, \omega \otimes E) = d + d$ r(g-1) > 0. Hence if $\mu_{w,E}$ is surjective the bundle E must be spanned and hence $d = \deg(E) \ge rg + 1$. First assume $d \ge rg + 1$ and hence E spanned. We obtain an exact sequence (2). Since $h^0(X, E) = d + r(1-q)$, we have rank (F) = d - rg. Since deg $(F^*) = d$ we have $h^0(X, F^*) \ge \chi(F^*) = d + d$ (d - rg)(1 - g) (Riemann-Roch). Hence $h^{0}(X, F^{*}) - h^{0}(X, E) \ge (g - 1)(rg + r - d)$ and we have equality if and only if $h^0(X, F^*) = \chi(F^*)$ for general E. Thus $h^0(X, F^*) > h^0(X, E)$ if d < rq + r. Thus by 1.3 to prove 0.1 for an integer $d \ge gr+1$ it is sufficient to check that $h^0(X, F^*) = \max \{ \chi(F^*), h^0(X, E) \}$ for general E. First assume $d \ge rg + r$. Take r - 1 general line bundles L_i , $1 \le i \le r-1$, with deg $(L_i) = g+1$. Thus $h^0(X, L_i) = 2$, $h^1(X, L_i) = 0$, L_i is spanned and if $1 \le i \le r - 1$ we have exact sequence

$$(3) \qquad \qquad 0 \to L_i^* \to \mathbf{O}_X^{\oplus 2} \to L_i \to 0$$

Take a general $M \in \text{Pic}(X)$ with deg(M) = d - (r-1)(g+1). Since deg $(M) \ge g+1$ we have $h^1(X, M) = 0$, $h^0(X, M) = d - rg - r + 2$ and M is spanned. Call T the kernel of the evaluation map $H^0(X, M) \otimes O_X \to M$. Thus we have an exact sequence

(4)
$$0 \to M^* \to H^0(X, M)^* \otimes O_X \to T^* \to 0$$

Tensoring (4) with ω we obtain $h^0(X, T^*) = h^0(X, M) + \dim (\operatorname{Coker} (\mu_{\omega, M}))$. Hence by 1.2 (at least if char $(\mathbf{K}) = 0$) for general M we have $h^0(X, T^*) = h^0(X, M)$; in positive characteristic we look at the proof of 1.2 and work in the following way; we start with a spanned $L \in \operatorname{Pic}(X)$ with deg(L) = g - 1 and $h^1(X, L) = 0$; take x general points P_1, \ldots, P_x of x and set $R := L(P_1 + \ldots + P_x)$; then we conclude as in the last part of the proof of 1.2. Set $G := M \oplus (\bigoplus_{1 \le i \le r-1} L_i)$. G is spanned, $h^0(X, G) = d + r(1 - g)$ and $h^1(X, G) = 0$. Set $N := T \oplus (\bigoplus_{1 \le i \le r-1} L_i^*)$. Thus N is the kernel of the evaluation map $H^0(X, G) \otimes \mathbf{O}_X \to G$ and $h^0(X, N^*) = h^0(X, G)$. Since $h^1(X, G) = 0$ and G is a flat limit of a flat family of stable vector bundles with constant cohomology ([NR], Prop. 2.6), we obtain that for general $E \in M(X; r, d)$ we have $h^0(X, F^*) = h^0(X, E)$, concluding the proof for $d \ge rg + r$. This part of the proof part could have been proved using [BR], Th. 2.1. Now assume d < gr + r. Since *E* is general, it is easy to check that the natural map $H^0(X, E) \otimes O_X \to E$ is an inclusion of sheaves (and even an embedding of bundles if $d \leq gr + r - 2$, but we do not need it); of course, $h^0(X, E) = 0$ if $d \leq r(g-1)$. Thus the injectivity of $\mu_{\omega, E}$ follows from the fact that the induced map $H^0(X, E) \otimes \omega \to E \otimes \omega$ is injective.

2. – Proofs of 0.2 and 0.3.

Let X be a smooth curve and L, M spanned line bundles on X. We want to find geometric restrictions for the nonsurjectivity of $\mu_{L,M}$ and we want to show that, under suitable assumptions, $\mu_{L,M}$ is surjective if there is no such geometric restriction. A tautological restriction is the existence of an effective divisor D of X such that the restriction map $\sigma_D: H^0(X, L \otimes M) \rightarrow$ $H^0(X, L \otimes M | D) \cong L \otimes M | D$ is surjective, but $\sigma_D \circ \mu_{L,M}$ is not surjective. If however $h^0(X, L(-D)) > 0$, this condition is not quite stupid for the following reasons. First consider the case $h^0(X, L(-D)) = 1$. If L = M, $h^1(X, L) = 0$ and L is very ample, $h_L(X)$ is not projectively normal if and only if none of its hyperplane sections is arithmetically Cohen-Macaulay or if and only if there is one such hyperplane section, say $h_L(D)$, which is not arithmetically Cohen-Macaulay; hence in the range of degrees we are interested in $\mu_{L,L}$ is not surjective if and only if there is $D \in |L|$ such that $\sigma_D \circ \mu_{L,M}$ is not surjective. The case $h^0(X, L(-D)) \ge 2$ is more interesting; for instance in the range of integers for deg (L) we are interested in (i.e. when all maps $\mu_{L,L^{\oplus t}}$, $t \ge 2$, are surjective) if L is very ample and $h_L(X)$ has a quadrisecant line (case deg (D) = 4, $h^{0}(X, L(-D)) = h^{0}(X, L) - 2$ then $\mu_{L,L}$ cannot be surjective. For a very interesting converse in the case M = L and L very ample, see [GL], Th. 3. Following very, very closely the proof of [GL], Th. 3, we will prove Theorem 0.2.

PROOF OF. – 0.2. – Assume that $\mu_{L,M}$ is not surjective, i.e. that its transpose $\mu_{L,M}^*$: $H^0(X, L \otimes M)^* \rightarrow H^0(X, L)^* \otimes H^0(X, M)^*$ is not injective. Take $e \in \text{Ker}(\mu_{L,M}^*), e \neq 0$. Since $H^0(X, L \otimes M)^* \cong \text{Ext}^1(X; L, \omega \otimes M^*)$, e represents a non-trivial extension

$$(5) \qquad \qquad 0 \to \omega \otimes M^* \to E \to L \to 0$$

E is a rank 2 vector bundle on *X*. Let *A* be a rank 1 subbundle of *E* with maximal degree. By a theorem of *C*. Segre and M. Nagata ([N]) we have $\deg(E/A) - \deg(A) \ge g$. Since $\deg(E) = 2g - 2 + \deg(L) - \deg(M)$ and $\deg(L) + \deg(M) \ge 3g - 1$, we have $\deg(A) \ge 2g - 2 - \deg(M) = \deg(\omega \oplus M^*)$. Thus the inclusion $A \to E$ induces a non-zero map $\alpha_D: A \to L$, i.e. there is an

effective divisor D with $A \cong L(-D)$. The inequality $\deg(E/A) - \deg(A) \ge g$ is equivalent to the inequality $2(\deg(D)) \le \deg(L) + \deg(M) + 2 - g$. Now we will check that $\sigma_D \circ \mu_{L,M}$ is not surjective. The effective divisor D induces an inclusion $H^0(X, L(-D)) \subseteq H^0(X, L)$. Set $W_D := H^0(X, L)/H^0(X, L(-D))$. Evaluation on D yields a homomorphism $\varrho_D : H^0(X, M) \otimes W_D \rightarrow L \otimes M | D$ with $\operatorname{Im}(\varrho_D) = \operatorname{Im}(\sigma_D \circ \mu_{L,M})$. Consider the following diagram of exact sequences

$$(6) \qquad \begin{array}{c} H^{0}(X, L \otimes M | D)^{*} & \stackrel{\mathcal{Q}^{*}_{D}}{\longrightarrow} H^{0}(X, M)^{*} \otimes W^{*}_{D} \\ \downarrow & \downarrow \\ H^{0}(X, L \otimes M)^{*} & \stackrel{\mu^{*}_{L,M}}{\longrightarrow} H^{0}(X, M)^{*} \otimes H^{0}(X, L)^{*} \\ \downarrow & \downarrow \\ H^{0}(X, L \otimes M(-D))^{*} & \stackrel{\rightarrow}{\longrightarrow} H^{0}(X, M)^{*} \otimes H^{0}(X, L(-D))^{*} \\ \downarrow & \downarrow \\ 0 & 0 \end{array}$$

By construction α_D lifts to a homomorphism $\beta_D: L(-D) \to E$ and hence (5) induces the trivial extension of L(-D) by $\omega \otimes M^*$. Thus $e \in \text{Ker}(\mu_{L,M}^*)$ maps to zero in $H^0(X, L \otimes M(-D))^* \cong \text{Ext}^1(X; L(-D), \omega \otimes M^*)$. By the diagram (6), there thus exists a non-zero element $f \in \text{Ker}(\varrho_D^*)$ mapping to e. Hence ϱ_D is not surjective. Thus $\sigma_D \circ \mu_{L,M}$ is not surjective. Recall that for any non-degenerate pairing $\gamma: V \otimes W \to T$ between finite dimensional vector spaces over K we have dim $(\text{Im}(\gamma)) \ge \dim(V) + \dim(W) - 1$; hence $\dim(T) \ge \dim(V) + \dim(W)$ if γ is not surjective. Since $h^0(X, M) - h^0(X, M(-D))$ (resp. $h^0(X, L) - h^0(X, L(-D))$) is the dimension of the image of the restriction map $H^0(X, M) \to M | D$ (resp. $H^0(X, L) \to L | D$) and $\varrho_D \circ \mu_{L,M}$ is not surjective, we obtain $\deg(D) \ge 2(h^0(X, M) - h^0(X, M(-D)) + 2(h^0(X, L) - h^0(X, L(-D)))$. Since $e \in \text{Ker}(\mu_{L,M}^*)$, the exact sequence (5) is exact on global sections. Since (5) is exact on global sections, we have $h^0(X, \omega \otimes M^*) + h^0(X, L) = h^0(X, E) \le h^0(X, A) + h^0(X, E/A)$, i.e.

$$h^{0}(X, L(-D)) + h^{1}(X, M(D)) \ge h^{0}(X, L) + h^{1}(X, M).$$

Since (5) does not split, the inclusion $A \to L$ is not an isomorphism, i.e. $D \neq 0$. Assume M and L spanned; thus for every $P \in X$ we have $h^0(X, L(-P)) = h^0(X, L) - 1$ and $h^0(X, M(-P)) = h^0(X, M) - 1$; the last equality implies $h^0(X, \omega \otimes M^*(P)) = h^0(X, \omega \otimes M^*)$ for every $P \in X$; hence we have $\deg(D) \ge 2$.

REMARK 2.1. – The inequality $\deg(D) \ge 2(h^0(X, M) - h^0(X, M(-D)) + 2(h^0(X, L) - h^0(X, L(-D)))$ in the statement of 0.2 is the translation in our setting of the inequality $\deg(D) \ge 2n + 2$ in the statement of [GL], Th. 3. This

inequality implies deg $(D) \ge 3$ if L or M is very ample and deg $(D) \ge 4$ if both L and M are very ample.

PROOF OF 0.3. – By 0.2 only the last assertion of 0.3 must be proved. Look at the proof of 0.2. For every $e \in \text{Ker}(\mu_{L,M}^*)$ with $e \neq 0$ we obtained an effective divisor, D(e), satisfying the thesis of 0.2 and such that $\sigma_{D(e)} \circ \mu_{L,M}$ contains a class corresponding to the dual of e. We have $D(\lambda e) = D(e)$ if $\lambda \in (K \setminus \{0\})$. Thus we obtain a rational map, γ , from P^{b-1} to a symmetric power $S^x(X)$, x :=deg(D(e)) for general e. Since Pic⁰(X) is an Abelian variety, all the divisors D(e) are linearly equivalent, but some of them may coincide. Since b - 1 =dim $(\text{Im}(\gamma)) + \text{dim}(\gamma^{-1}(u))$, where u is a general element of $\text{Im}(\gamma)$, we conclude.

REFERENCES

- [AK] A. ALTMAN S. KLEIMAN, Introduction to Grothendieck duality theory, Lect. Notes in Math., 146, Springer-Verlag, 1970.
- [BR] E. BALLICO L. RAMELLA, The restricted tangent bundle of smooth curves in Grassmannians and flag varieties, Rocky Mountains J. Math. (to appear).
- [Bu] BUTLER D. C., Normal generation of vector bundles over a curve, J. Differ. Geom., 39 (1994), 1-34.
- [E] EISENBUD D., Linear sections of determinantal varieties, Am. J. Math., 110 (1988), 541-575.
- [EKS] EISENBUD D. KOH J. STILLMAN M., Determinantal equations for curves of high degree, Amer. J. Math., 110 (1989), 513-540.
- [G] GREEN M., Koszul cohomology and the geometry of projective varieties, J. Differ. Geom., 19 (1984), 125-171.
- [GL] GREEN M. LAZARSFELD R., On the projective normality of complete linear series on an algebraic curve, Invent. Math., 83 (1986), 73-90.
- [La] LAUMON G., Fibrés vectoriels speciaux, Bull. Soc. Math. France, 119 (1991), 97-119.
- [N] NAGATA M., On selfintersection number of vector bundles of rank 2 on Riemann surface, Nagoya Math. J., 37 (1970), 191-196.
- [NR] NARASIMHAN M. S. RAMANAN S., Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math., 101 (1975), 391-417.
- [Re] RE R., Multiplication of sections and Clifford bounds for stable vector bundles, Comm. in Alg., 26 (1998), 1931-1944.
- [Su] SUNDARAM N., Special divisors and vector bundles, Tôhoku Math. J., 39 (1987), 175-213.

Dept. of Mathematics, University of Trento, 38050 Povo (TN) Italy E-mail: ballico@science.unitn.it

Pervenuta in Redazione

il 23 gennaio 2000