De Falco, Maria: 
Groups with many nearly normal subgroups
 Bollettino dell'Unione Matematica Italiana Serie 8 4-B (2001), fasc. n.2, p. 531-540, Unione Matematica Italiana (English)
pdf (365 Kb), djvu (134 Kb).  | MR1832003  | Zbl 1147.20302  
Sunto
Un sottogruppo $H$ di un gruppo $G$ si dice nearly normal se ha indice finito nella sua chiusura normale $H^{G}$. In questa nota si caratterizzano i gruppi in cui ogni sottogruppo che non sia nearly normal soddisfa una fissata condizione finitaria $\chi$ per diverse scelte naturali della proprietà $\chi$.
Referenze Bibliografiche
[2] 
B. BRUNO-
R. E. PHILLIPS, 
Groups with restricted non-normal subgroups, 
Math. Z., 
176 (
1981), 199-221. | 
MR 607962 | 
Zbl 0474.20014[3] 
S. FRANCIOSI-
F. DE GIOVANNI, 
Groups satisfying the minimal condition on certain non-normal subgroups, Proceedings of 
Groups Korea 1994, 
de Gruyter, Berlin (
1995), 107-118. | 
MR 1476951 | 
Zbl 0868.20031[4] 
S. FRANCIOSI-
F. DE GIOVANNI-
L. A. KURDACHENKO, 
On groups with many almost normal subgroups, 
Ann. Mat. Pura Appl. (4), 
169 (
1995), 35-65. | 
MR 1378469 | 
Zbl 0853.20024[5] 
S. FRANCIOSI-
F. DE GIOVANNI-
M. L. NEWELL, 
Groups with polycyclic non-normal subgroups, 
Algebra Colloq., 
7 (
2000), 33-42. | 
MR 1810594 | 
Zbl 0958.20030[6] 
A. GALOPPO, 
Groups satisfyng the maximal condition on non-(nearly normal) subgroups, 
Ricerche Mat., to appear. | 
MR 1848347 | 
Zbl 1163.20308[7] 
N. HALBRITTER, 
Groups with a nilpotent-by-finite triple factorization, 
Arch. Math. (Basel), 
51 (
1988), 393-400. | 
MR 970352 | 
Zbl 0629.20016[8] 
B. H. NEUMANN, 
Groups with finite classes of conjugate subgroups, 
Math. Z., 
63 (
1955), 76-96. | 
MR 72137 | 
Zbl 0064.25201[10] 
D. J. S. ROBINSON, 
Finiteness Conditions and Generalized Soluble Groups, 
Springer, Berlin (
1972). | 
Zbl 0243.20033[11] 
G. M. ROMALIS-
N. F. SESEKIN, 
Metahamiltonian groups, 
Ural Gos. Univ. Mat. Zap., 
5 (
1966), 101-106. | 
MR 202837 | 
Zbl 0351.20020[12] 
G. M. ROMALIS-
N. F. SESEKIN, 
Metahamiltonian groups II, 
Ural Gos. Univ. Mat. Zap., 
6 (
1968), 52-58. | 
MR 269733[13] 
G. M. ROMALIS-
N. F. SESEKIN, 
Metahamiltonian groups III, 
Ural Gos. Univ. Mat. Zap., 
7 (
1969/70), 195-199. | 
MR 285610 | 
Zbl 0324.20036[14] 
D. J. S. ROBINSON-
Z. ZHANG, 
Groups whose proper quotients have finite derived subgroups, 
J. Algebra, 
118 (
1988), 346-368. | 
MR 969677 | 
Zbl 0658.20019[15] 
V. S. ŠUNKOV, 
On the minimality problem for locally finite groups, 
Algebra and Logic, 
9 (
1970), 137-151. | 
Zbl 0234.20015[16] 
D. I. ZAICEV-
L. A. KURDACHENKO-
A. V. TUSHEV, 
Modules over nilpotent groups of finite rank, 
Algebra and Logic, 
24 (
1985), 412-436. | 
MR 853774 | 
Zbl 0604.20037