Kurdachenko, L. A. and Otal, J.: 
Simple modules over CC-groups and monolithic just non-CC-groups
 Bollettino dell'Unione Matematica Italiana Serie 8 4-B (2001), fasc. n.2, p. 381-390, Unione Matematica Italiana (English)
pdf (415 Kb), djvu (160 Kb).  | MR1831995  | Zbl 1076.20027  
Sunto
In questo lavoro studiamo i non CC-gruppi $G$ monolitici con tutti i quozienti propri CC-gruppi, che hanno sottogruppi abeliani normali non banali.
Referenze Bibliografiche
[3] 
S. FRANCIOSI-
F. DE GIOVANNI, 
Soluble groups with many Chernikov quotients, 
Atti Ac. Naz. Lincei (8), 
79 (
1985), 12-24. | 
MR 944386 | 
Zbl 0639.20020[4] 
S. FRANCIOSI-
F. DE GIOVANNI-
L. A. KURDACHENKO, 
Groups whose proper quotients are FC-groups, 
J. Algebra, 
186 (
1996), 544-577. | 
MR 1423275 | 
Zbl 0866.20030[5] 
S. FRANCIOSI-
F. DE GIOVANNI-
M. J. TOMKINSON, 
Groups with Chernikov conjugacy classes, 
J. Austral. Math. Soc. Ser A, 
50 (
1991), 1-14. | 
MR 1094054 | 
Zbl 0748.20025[7] 
P. HALL, 
On the finiteness of certain soluble groups, 
Proc. London Math. Soc., 
9 (
1959), 595-622. | 
MR 110750 | 
Zbl 0091.02501[8] 
B. HARTLEY-
D. MCDOUGALL, 
Injective modules and soluble groups satisfying the minimal condition for normal subgroups, 
Bull. Austral. Math. Soc., 
4 (
1971), 113-135. | 
MR 276320 | 
Zbl 0206.03101[9] 
L. A. KURDACHENKO, 
Some classes of groups with the weak minimal and maximal conditions, 
Ukrainian Math. j., 
42 (
1990), 937-942. | 
MR 1078821 | 
Zbl 0719.20014[10] L. A. KURDACHENKO-J. OTAL, Groups whose proper factors have Chernikov conjugacy classes, to appear.
[11] 
T. LANDOLFI, 
On generalized central series of groups, 
Ricerche Mat., 
44 (
1995), 337-347. | 
MR 1469705 | 
Zbl 0918.20024[12] 
D. MCCARTHY, 
Infinite groups whose proper quotients are finite, 
Comm. Pure Applied Math., 
21 (
1968), 545-562. | 
MR 237637 | 
Zbl 0157.05501[13] 
D. MCCARTHY, 
Infinite groups whose proper quotients are finite, 
Comm. Pure Applied Math., 
23 (
1970), 767-789. | 
MR 265466 | 
Zbl 0196.04404[14] 
M. F. NEWMAN, 
On a class of metabelian groups, 
Proc. London. Math. Soc., 
10 (
1960), 354-364. | 
MR 117293 | 
Zbl 0099.25202[15] 
M. F. NEWMAN, 
On a class of nilpotent groups, 
Proc. London. Math. Soc., 
10 (
1960), 365-375. | 
MR 120278 | 
Zbl 0099.25203[16] 
A. D. POLOVITSKY, 
Groups with extremal classes of conjugate elements, 
Siberian Math. J., 
5 (
1964), 891-895. | 
MR 168658[17] 
D. J. S. ROBINSON, 
Finiteness conditions and generalized soluble groups, 
Ergebnisse der mathematik bands 
62-63, 
Springer-Verlag, Berlin, 
1972. | 
Zbl 0243.20032[18] 
D. J. S. ROBINSON, 
The vanishing of certain homology and cohomology groups, 
J. Pure and Applied Algebra, 
2 (
1976), 145-167. | 
MR 404478 | 
Zbl 0329.20032[19] 
D. J. S. ROBINSON-
J. S. WILSON, 
Soluble groups with many polycyclic quotients, 
Proc. London Math. Soc. (3), 
48 (
1984), 193-229. | 
MR 729068 | 
Zbl 0505.20023[20] 
D. J. S. ROBINSON-
Z. ZHANG, 
Groups whose proper quotients have finite derived group, 
J. Algebra, 
118 (
1988), 346-368. | 
MR 969677 | 
Zbl 0658.20019[21] 
J. S. WILSON, 
Some properties of groups inherited by normal subgroups of finite index, 
Math. Z., 
114 (
1970), 19-21. | 
MR 258932 | 
Zbl 0185.05303[22] 
J. S. WILSON, 
Groups with every proper quotient finite, 
Proc. Cambridge Phil. Soc., 
69 (
1971), 373-391. | 
MR 274575 | 
Zbl 0216.08803[23] 
D. I. ZAITSEV, 
On the existence of direct complements in groups with operators, 
Investigations in group theory, 
Math. Inst. Kiev (
1976), 26-44. | 
MR 476879 | 
Zbl 0416.20020