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Operator Semigroups in Banach Space Theory.

PIETRO AIENA (*) - MANUEL GONZÁLEZ (**) - ANTONIO MARTÍNEZ-ABEJÓN (**)

Sunto. – In questo lavoro, motivati dalla teoria di Fredholm in spazi di Banach e dalla
cosiddetta teoria degli ideali di operatori nel senso di Pietsch, viene definito un
nuovo concetto di semigruppo di operatori. Questa nuova definizione include quel-
la di molte classi di operatori già studiate in letteratura, come la classe degli ope-
ratori di semi-Fredholm, quella degli operatori tauberiani ed altre ancora. Inoltre
permette un nuovo ed unificante approccio ad una serie di problemi in teoria degli
operatori su spazi di Banach. Ad un ideale di operatori A vengono associati, in
modo naturale, due semigruppi di operatori A1 e A2 . In particolare, se W è la
classe degli operatori debolmente compatti, il semigruppo di operatori associato
W1 è la classe degli operatori tauberiani. Questo lavoro contiene, oltre che una pa-
noramica sulle proprietá, gli esempi e le applicazioni di tali semigruppi, diversi
nuovi risultati. Vengono inoltre posti in evidenza una serie di nuovi problemi
aperti che meritano di essere studiati..

1. – Introduction.

The theory of Fredholm operators stems from the study of the existence
and uniqueness of solutions of differential and integral equations from an ab-
stract point of view. In this theory we find two fundamentally different classes
of operators: semigroups, like the classes of Fredholm and upper and lower
semi-Fredholm operators; and ideals, like the classes of compact, strictly sin-
gular, strictly cosingular and inessential operators. The aim of Fredholm the-
ory is to determine the algebraic and topological properties of these semi-
groups and its stability under perturbation by operators of certain kinds; in
particular, by operators in the mentioned ideals.

The ideals of Fredholm theory were one of the sources of inspiration for
Pietsch’s concept of operator ideal [82]. Moreover, many classes of operators
which are operator ideals, like the weakly compact, the completely continuous,
or the unconditionally converging operators, have been applied to study the
isomorphic properties of Banach spaces from a homological point of view. For
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example, Grothendieck [62] isolated the Banach spaces with the Dunford-Pet-
tis property as those spaces X such that weakly compact operators from X into
any Banach space are completely continuous. His aim was to determine a class
of Banach spaces that shares some of the pleasant properties of the spaces
C(K) and L1 ( m). During the sixties and the seventies, the theory of operator
ideals became an important branch of functional analysis, with a wealth of re-
sults, examples and applications. A systematic account of this theory can be
found in [82].

The aim of this paper is to introduce a concept of operator semigroup
which includes the semigroups of Fredholm theory and some other classes of
operators, like the tauberian operators, that have been considered in the liter-
ature. The definition of operator semigroup is inspired in that of operator ide-
al, but these concepts are opposite: For every Banach space X , the identity IX

belongs to all the operator semigroups and the null operator 0X belongs to all
the operator ideals.

Using operator semigroups we can study the isomorphic properties of Ba-
nach spaces from a new point of view, similar to that used in the study of the
Radon-Nikodym property by means of semiembeddings, Gd-embeddings and
similar classes of operators [21, 34]. In fact, the operator semigroups, like the
tauberian operators [79], preserve some isomorphic properties of Banach
spaces.

We show that every operator ideal has associated several semigroups. In
this way, Fredholm and semi-Fredholm operators are associated with the ide-
al of compact operators, and tauberian and cotauberian operators are associat-
ed with the ideal of weakly compact operators. Some operator semigroups as-
sociated with certain classical operator ideals had been previously introduced
in a different way [69, 79, 80, 55, 56, 58, 44, 20]. Moreover, the concept of per-
turbation class allows us to associate operator ideals to operator semigroups.

We develop the basic properties of the operator semigroups, present plen-
ty of examples and indicate some open questions. We give a survey of the re-
sults in the literature that may be included in the theory of operator semi-
groups. Moreover, we describe some methods that can be used to construct or
to characterize operator semigroups.

Let us now review the contents of the different sections. After this intro-
duction we give some definitions and some basic results which will be needed
later on.

In section 2 we introduce the concept of operator semigroup and some re-
lated concepts. Moreover, we give some fundamental results for which we in-
clude the proofs because, in its full generality, they have not appeared before
in the literature.

We show that an operator ideal A has associated two semigroups A1 and
A2 in a natural way. For some operator ideals defined in terms of sequences,
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these semigroups have been studied before. We introduce several properties
of semigroups like right and left stability, injectivity and surjectivity, openess,
and left and right three-space properties, most of them suggested by the cor-
responding properties of the operator ideals. We show examples of semi-
groups with and without these properties and examples of semigroups that are
not associated with any operator ideal.

Moreover, every operator ideal A has associated two other semigroups Al

and Ar defined in terms of left and right invertibility modulo the operator ide-
al A. The classical case, corresponding to the ideal of all compact operators,
was studied by Atkinson [14]. We prove that these semigroups are open and
that they allow us to give a nice description of the radical Arad of the operator
ideal A.

We introduce the perturbation class P S associated with a semigroup S, de-
fined as the class of all operators K such that T1K� S for every T� S.

We also associate operator ideals to some semigroups that satisfy a pertur-
bative characterization, and using them we solve a problem of Herman [67].

In section 3 we give a survey of the results about concrete semigroups and
some related classes that have appeared in the literature. For the proofs, we
refer most of the times to the original source.

First, we consider the semigroups of classical Fredholm theory. These
semigroups have been intensely studied and there are good monographies
that describe its properties [23, 36, 63]. So we only recall the main properties of
the perturbation classes of the upper and lower semi-Fredholm operators.
Moreover, we describe the semigroups associated with the operator ideal of
inessential operators. This operator ideal I, introduced in [70], coincides with
the perturbation class of Fredholm operators, but its associated semigroups
I1 and I2 are quite different from the semi-Fredholm operators.

We give a detailed description of the semigroups associated with the weak-
ly compact operators W: the tauberian operators W1 and the cotauberian op-
erators W2 . Apart from the semigroups of Fredholm theory, these are the
semigroups that have been studied more intensely. We describe some short-
comings of the class W1 ; in particular the imperfect duality between W1 and
W2 can be seen as an asymmetry for the class of weakly compact operators.
For operators acting on L1 ( m) spaces, these shortcomings do not appear.

We present some of the applications that tauberian operators have found in
Banach space theory: preservation of isomorphic properties [79], refinements
of James’ characterization of reflexive spaces [80], equivalence between the
Radon-Nykodim property and the Krein-Milman property [85], and factoriza-
tion of operators [31].

We describe some semigroups that can be characterized in terms of se-
quences. They are related with some results similar to Lohman’s lifting [73].
Among them, the semigroup R1 associated with the weakly precompact oper-
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ators admits some nice characterizations. We also show how these semigroups
allow us to characterize some classes of Banach spaces.

Moreover, we show that the semiembeddings and the Gd-embeddings, al-
though do not form semigroups, have analogous properties and have close re-
lations with some of the semigroups previously considered. These classes were
introduced in relation with the study of the Radon-Nikodym property and the
inclusion of subspaces isomorphic to L1 [0 , 1 ].

In section 4 we describe some additional methods that have been employed
to define or to characterize semigroups. Here again, we do not include proofs
of the results, but refer to the literature.

We consider some semigroups that can be described as ultrapowers of
other semigroups. In general they have better behaviour than the original
semigroups. Some results about local reflexivity for dual spaces [45] allow us
to obtain characterizations of the semigroups. Additional properties are
showed for operators acting on L1 ( m) spaces.

Also, we describe some semigroups associated with incomparability of Ba-
nach spaces; namely, the total incomparability, introduced by Rosenthal [83]
and the total coincomparability, studied in [10, 54]. These semigroups satisfy a
kind of three-space property and admit a perturbative characterization. More-
over, they allow us to characterize the notions of incomparability.

Finally, we show how to define semigroups in terms of certain operational
quantities associated with a space ideal. These semigroups are open and, con-
sequently, they do not coincide in general with the corresponding semigroups
defined in terms of operator ideals in Section 2.1.

1.1. Preliminaries.

Along the paper, X , Y and Z are Banach spaces, and we denote by X * and
X ** the dual space and the second dual of X , respectively. As usual, we iden-
tify X with a subspace of X **, and we say that the space X is reflexive if
X4X **.

We denote by L (X , Y ) the set of all (continuous linear) operators from X
into Y . For T� L (X , Y ), we denote by N(T) and R(T) the kernel and the range
of T , respectively. Moreover, T *� L (Y *, X *) denotes the conjugate operator
of T , and T **� L (X **, Y **) the second conjugate of T .

A subspace is always a closed linear subspace. Given a subspace M of X , we
denote by JM the inclusion of M into X , and by QM the quotient map from X on-
to X/M .

A series !
n41

Q

xn is a Banach space X is said to be weakly unconditionally

Cauchy if !
n41

Q

Nf (xn )NEQ for every f�X *. The series !
n41

Q

xn is uncondition-

ally convergent if every subseries !
k41

Q

xnk
is convergent.
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We denote by L the class of all operators between Banach spaces; i.e. the
union of all L (X , Y ), and by F the subclass of all finite dimensional range op-
erators. Given a subclass A % L, the components of A are the subsets

A(X , Y ) »4 AOL (X , Y ) .

In the case X4Y , we simply write A(X) for A(X , X).

DEFINITION 1.1 [82]. – A subclass A % L is said to be an operator ideal if it
satisfies the following conditions:

(a 1 ) F % A.

(a 2 ) A(X , Y ) is a subspace of L (X , Y ).

(a 3 ) If T� L (W , X), S� A(X , Y ) and R� L (Y , Z), then RST�
A(W , Z).

Observe that in the definition of operator ideal we may replace condition
(a 2 ) by

(a 82 ) S� A(W , Y ), T� A(X , Z) ` S5T� A(W5X , Y5Z) ,

where the operator S5T is defined by S5T(w , x) »4 (Sx , Tw).
The following classes of operators are well-known operator ideals that ad-

mit sequential characterizations.

DEFINITION 1.2. – An operator T� L (X , Y ) is said to be (weakly) compact
if it takes bounded sets into relatively (weakly) compact sets; equivalently, if
for every bounded sequence (xn ) in X , (Txn ) admits a (weakly) convergent
subsequence.

It is said to be weakly precompact if for every bounded sequence (xn ) in X ,
(Txn ) admits a weakly Cauchy subsequence.

It is said to be (weakly) completely continuous if it takes weakly Cauchy
sequences into (weakly) convergent sequences.

It is said to be unconditionally converging if it takes weakly uncondition-
ally Cauchy series into unconditionally convergent series.

We denote by K, W, R, C C, W C C and U the classes of all compact, weakly
compact, weakly precompact, completely continuous, weakly completely con-
tinuous and unconditionally converging operators, respectively.

Now we define the operator ideals that appeared in Fredholm theory.

DEFINITION 1.3. – An operator T� L (X , Y ) is said to be strictly singular if
no restriction TJM of T to an infinite dimensional subspace M of X is an
isomorphism.
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The operator T is said to be strictly cosingular if there is no infinite
codimensional subspace N of Y such that QN T is surjective.

We denote by S S and S C the classes of all strictly singular and strictly
cosingular operators, respectively.

The following result provides basic relations between K, S S and S C. The
converse implications are not true and the classes S S and S C are not compara-
ble [4].

PROPOSITION 1.4 [82]. – Let T� L (X , Y ).

(a) T� K ¨ T� S SOS C.

(b) T *� S C ¨ T� S S and T *� S S ¨ T� S C.

We denote by F the class of all finite dimensional Banach spaces.

DEFINITION 1.5 [82]. – A class A of Banach spaces is said to be a space ide-
al if it satisfies the following conditions:

(b 1 ) F%A .

(b 2 ) X , Y�A ` X5Y�A .

(b 3 ) X isomorphic to Y�A ¨ X�A .

An operator ideal A has associated a space ideal Sp (A), given by

Sp (A) »4]X : IX� A( .

The space ideals associated with the operator ideals W, R, C C, W C C and
U introduced in Definition 1.2 are the reflexive spaces, the spaces containing
no copies of l1 , the spaces with the Schur property, the weakly sequentially
complete spaces and the spaces containing no copies of c0 , respectively. For A

equal to K, S S or S C, we have Sp (A)4F [82].
For every operator ideal A, the dual operator ideal Ad of A is defined by

Ad4]T� L : T *� A( .

Observe that F, K and W are self-dual. Moreover, Sp (Ad )4]X : X *�
Sp (A)(.

DEFINITION 1.6 [82]. – Let A be an operator ideal.
A is closed if its components A(X , Y ) are closed subsets of L (X , Y ).
A is injective if given a subspace Y of Z , T�L(X , Y ), JY T�A ¨ T�A.
A is surjective if given a subspace Y of Z , T�L(Z/Y , X), TQY�A ¨ T�A.

The operator ideals K, W and R are closed, injective and surjective; C C,
W C C, U and S S are closed and injective, but not surjective; S C is closed and
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surjective, but not injective. Moreover, A injective (surjective) implies Ad sur-
jective (injective).

Now we recall the definition of the semigroups that appeared in Fredholm
theory.

DEFINITION 1.7. – An operator T� L (X , Y ) is said to be upper semi-Fred-
holm if R(T) is closed and N(T) is finite dimensional.

It is said to be lower semi-Fredholm if R(T) is finite co-dimensional,
hence closed.

It is said to be Fredholm if it is upper semi-Fredholm and lower
semi-Fredholm.

We denote by F 1 , F 2 and F the classes of all upper semi-Fredholm,
lower semi-Fredholm and Fredholm operators, respectively.

It easily follows from the basic relations of duality that an operator T is up-
per (lower) semi-Fredholm if and only if its conjugate T * is lower (upper)
semi-Fredholm.

For every operator T�F 1 (X , Y )NF 2 (X , Y ), we define the index
ind(T) by

ind(T) »4 dim N(T)2dim Y/R(T)�ZN ]6Q( .

The next result shows that the index is continuous.

THEOREM 1.8 [91, Theorem IV.13.8]. – For every operator T�F 1 (X , Y )N
F 2 (X , Y ), there exists a number d TD0 so that

A� L (X , Y ), VAVEd T ¨ T1A�F 1NF 2 and ind(T1A)4 ind(T) .

The study of the following classes of operators was initiated by Atkinson [14].

DEFINITION 1.9. – An operator T� L (X , Y ) is said to be left-Atkinson if
there exists A� L (Y , X) such that IX2AT� K(X).

It is said to be right-Atkinson if there exists B� L (Y , X) such that
IY2TB� K(Y ).

We denote by F l and F r the classes of all left-Atkinson and right-Atkin-
son operators, respectively.

In the definition of Atkinson operators we can replace K by F. Moreover,
Atkinson operators are semi-Fredholm as the following result shows.
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PROPOSITION 1.10 [91, IV.13 Problems]. – Let T� L (X , Y ).

(a) T�F l if and only if T�F 1 and R(T) is complemented.

(b) T�F r if and only if T�F 2 and N(T) is complemented.

(c) F(X , Y )4F l (X , Y )OF r (X , Y )4F 1 (X , Y )OF 2 (X , Y ).

The following class of operators appeared in the study of the perturbation
of Fredholm operators.

DEFINITION 1.11 [81] (see also [82, 4.3.5, 26.7.2]). – An operator T�
L (X , Y ) is said to be inessential if IX2ST�F(X), for every S� L (Y , X).

We denote by I(X , Y ) the set of all inessential operators from X into Y .

In the case X4Y , the class I was introduced by Kleinecke [70] as the radi-
cal of the approximable operators. This class admits some weaker characteri-
zations.

THEOREM 1.12 [81, 2, 3]. – For T� L (X , Y ) the following assertions are
equivalent:

(a) T is inessential.

(b) For every S� L (Y , X) the kernel N(IX2ST) is finite dimensional.

(c) For every S� L (Y , X) the cokernel XOR(IX2ST) is finite dimen-
sional.

(d) For every S� L (Y , X) the kernel N(IY2TS) is finite dimensional.

(e) For every S� L (Y , X) the cokernel YOR(IY2TS) is finite dimen-
sional.

Moreover, I is the closed operator ideal that properly contains the other
ideals K, S S and S C that occur in Fredholm theory [82, 26.7.3].

Apart from the semi-Fredholm and the Atkinson operators, the tauberian
and cotauberian operators are the semigroups that have been more studied.
Introduced in [69] and [87], they were considered in [96] as the counterparts of
upper and lower semi-Fredholm operators in a generalized Fredholm theory
in which the reflexive spaces play the role of the finite dimensional spaces in
the classical case.

DEFINITION 1.13 [69, 87]. – An operator T� L (X , Y ) is said to be tauberian
if its second conjugate T ** satisfies T **(X ** 0X)%Y ** 0Y .

It is said to be cotauberian if T * is tauberian.
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For every T� L (X , Y ), we consider the operator T co : X ** OXKY ** OY , given
by

T co (a1X)4T ** a1Y , a�X **.

Since we can identify (T co )* and (T *)co , we obtain the following result.

PROPOSITION 1.14. – Let T� L (X , Y ).

(a) T is tauberian if and only if T co is injective.

(b) T is cotauberian if and only if T co has dense range.

Fredholm theory is better understood for operators acting on spaces that
contain many complemented subspaces, like those introduced in the following
definition.

DEFINITION 1.15. – A Banach space X is said to be subprojective if every
infinite dimensional subspace of X contains an infinite dimensional, com-
plemented subspace of X .

The space X is said to be superprojective if every infinite codimensional
subspace of X is contained in an infinite codimensional, complemented sub-
space of X .

The spaces lp (1EpEQ) are subprojective and superprojective. More-
over, Lp [0 , 1 ] is subprojective for 2EpEQ and superprojective for 1EpE2
[95]. The spaces L1 [0 , 1 ] and C[0 , 1 ] are neither subprojective nor superpro-
jective. For further examples see [3].

2. – Fundamental results.

In this section we introduce a general notion of operator semigroup, and
give some basic properties and examples. Every operator ideal A has associat-
ed four semigroups A1 , A2 , Al and Ar in an analogous way as the classes F 1 ,
F 2 , F l and F r of classical Fredholm theory are associated with the operator
ideal K of all compact operators.

The semigroups A1 and A2 are defined in an algebraic manner. Some
properties of A can be characterized in terms of A1 and A2 , and this fact al-
lows us to define special classes of semigroups.

The semigroups Al and Ar are defined in terms of left and right invertibility
modulo A. The radical Arad of A admits a nice description in terms of Al and Ar .

We also define the perturbation class P S of a semigroup S and describe its
basic properties. In particular, P S(X) is a two-sided ideal in L (X).
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2.1. From operator ideals to operator semigroups.

The following Definition should be compared with that of operator ideal
(Definition 1.1). We denote G »4]T� L : T bijective(.

DEFINITION 2.1. – A subclass S % L is said to be an operator semigroup (a
semigroup, for short) if it satisfies the following conditions:

(s 1 ) G % S.

(s 2 ) S� S(W , Y ) and T� S(X , Z) if and only if S5T�
S(W5X , Y5Z).

(s 3 ) If T� S(X , Y ) and S� S(Y , Z), then ST� S(X , Z).

REMARKS 2.2. – (a) Although the definitions of operator ideal and operator
semigroup are similar, these are opposite concepts. Indeed, for a Banach space
X , the zero operator 0X belongs to every ideal, and the identity operator IX be-
longs to every semigroup.

(b) As a consequence of (s 1 ) and (s 3 ), a semigroup is stable under multi-
plication by isomorphisms; in particular, by non-zero scalars.

(c) The class G is the smallest semigroup. Moreover, the classes F , F 1 ,
F 2 , F l and F r of Fredholm theory are also semigroups.

DEFINITION 2.3. – Let A be an operator ideal. We define the class A1 by

A1 »4]T� L : S� L, TS� A ¨ S� A( ;

i.e., T� L (X , Y ) belongs to A1 if and only if for every Banach space Z and
every operator S� L (Z , X), if TS� A then S� A.

Analogously, we define the class A2 by

A2 »4]T� L : S� L, ST� A ¨ S� A( .

PROPOSITION 2.4. – The classes A1 and A2 are operator semigroups and
F% A1OA2 .

PROOF. – We shall give the proof only for A1 , since the proof for A2 is
analogous.

(s 1 ): We show that F% A1 . Assume T�F , S� L and TS� A. Then
there exists U� L such that K»4IX2UT� F % A. Hence S4UTS1KS� A.

(s 2 ): Assume S , T� A1 , R� L and (S5T)R� A. Writing R4 (R1 , R2 ),
by (a 2 ) we have SR1 , TR2� A. Since S , T� A1 we have R1 , R2� A; hence
R� A.

Conversely, if (S5T)� A1 , R� L and SR� A, we have (S5T)(R , 0 )� A.
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Then (R , 0 )� A, hence R� A and we conclude S� A1 . Analogously, we have
T� A1 .

(s 3 ): Assume S , T� A1 , A� L and STA� A. Since S� A1 we obtain
TA� A; hence A� A, because T� A1 . r

REMARKS 2.5. – (a) Let JX : XKX ** denote the natural injection. An oper-
ator ideal A is said to be regular if T� L (X , Y ), JY T� A ¨ T� A [82]. Note
that A is regular if and only if JX� A1 for every X .

(b) If S1 and S2 are semigroups, then S1OS2 is clearly a semigroup.

EXAMPLE 2.6. – Here we describe some semigroups associated with the op-
erator ideals introduced in Definition 1.2 and with the finite dimensional oper-
ators F.

(a) The semigroups of classical Fredholm theory are associated with the
compact operators K:

K14F 1 , K24F 2 and K1OK24F [71] .

(b) The semigroups W1 and W2 associated with the weakly compact op-
erators W coincide with the tauberian and the cotauberian operators, respect-
ively [55, 56].

(c) For A the completely continuous C C, the weakly completely continu-
ous W C C, the unconditionally converging U, or the weakly precompact opera-
tors R, the semigroups A1 and ]T� L : T *� A1( were studied in [55, 56, 58,
44] (see section 3.4).

(d) It is not difficult to see that for the finite dimensional operators F we
obtain

F14]T� L : dim N(T)EQ( and F24]T� L : dim YOR(T)EQ( .

EXAMPLE 2.7. – There are semigroups that contain F , but cannot be ob-
tained as A1 or A2 for any operator ideal A. An example is the class of those
operators T� L such that the second conjugate T ** has finite dimensional
kernel.

Indeed, assume that A14]T� L : dim N(T **)EQ(. If S� L (l2 , Y ) has
infinite dimensional range, composing if necessary with a suitable operator on
l2 we may assume that S is also injective. Clearly, T� A1 , K� A ¨ T2K�
A1 . In our case S� A1 ; hence S� A, because the zero operator in L (l2 , Y )
does not belong to A1 . Thus A(l2 , Y )4 F (l2 , Y ) for every Banach space Y .

Moreover, the operator T� L (l1 , l1 ) given by T(xn )4 (xn /n) satisfies
dim N(T)EQ and dim N(T **)4Q . Since F14]T� L: dim N(T)EQ(,
there exist a Banach space X and an operator S� A(X , l1 ), so that TS� A and
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R(TS) is infinite dimensional. Now, it is not difficult to obtain an operator U�
L (l2 , X) so that TSU� A and R(TSA) is infinite dimensional. This is a
contradiction.

An interesting example of operator semigroup is the class of all strongly
tauberian operators, studied by Rosenthal [84], which consists of those T�
L (X , Y ) such that T co� L (X ** /X , Y ** /Y ) is an isomorphism (into). It is not
difficult to see that strongly tauberian operators are tauberian, but the con-
verse implication fails.

QUESTION 1. – We do not know if there exists an operator ideal A such that
A1 coincides with the strongly tauberian operators.

The following result shows that A1 and A2 satisfy certain cancellation
properties. Its proof is a direct application of the definitions.

PROPOSITION 2.8. – Let A be an operator ideal. If S� L (Y , Z) and T�
L (X , Y ), then

(a) ST� A1 ¨ T� A1 .

(b) ST� A2 ¨ S� A2 .

DEFINITION 2.9. – We say that a semigroup S is left stable if ST� S implies
T� S. We say that S is right stable if ST� S implies S� S.

Note that F 1 is left but not right stable, F 2 is right but not left stable,
and F is neither left nor right stable.

Now we associate a class of Banach spaces to a semigroup in a similar way
that an operator ideal A has associated its space ideal Sp (A).

DEFINITION 2.10. – Given an operator semigroup S we define

Sp (S) »4]X : 0X� A( .

It is immediate to check that Sp (S) is a space ideal when F 0% S. This fact and
the following result show that the definition of Sp (S) is natural.

PROPOSITION 2.11. – For every operator ideal A we have Sp (A)4
Sp (A1 )4Sp (A2 ).

PROOF. – If X�Sp (A), then any operator defined on X or taking values in X
belongs to A; hence X�Sp (A1 )OSp (A2 ). On the other hand, if 0X� A1 (X),
since 0X IX� A, we get IX� A; and analogously when 0X� A2 (X). r

Recall that in the preliminaries we included the definitions of injective and
surjective operator ideal.
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PROPOSITION 2.12. – Let A be an operator ideal.

(a) A is injective if and only if F 1% A1 .

(b) A is surjective if and only if F 2% A2 .

PROOF. – (a) Clearly A is injective if and only if the isomorphic embed-
dings belong to A1 . So, assume that A is injective and T�F 1 (X , Y ). We can
write X4M5N(T), where M is a finite codimensional (closed) subspace such
that the restriction TNM is an isomorphic embedding. Thus, if P is a projection
from X onto M and TK� A then PK� A and (I2P) K is finite dimensional;
hence K� A and we conclude that T� A1 .

The proof of (b) is analogous. r

DEFINITION 2.13. – We say that a semigroup S is injective if F 1% S. We
say that S is surjective if F 2% S.

PROPOSITION 2.14. – Let S be an operator semigroup.

(a) If S is injective and left stable, then T� S(X , Y ) ¨ N(T)�
Sp (S).

(b) If S is surjective and right stable, then T� S(X , Y ) ¨ YOR(T)�
Sp (S).

PROOF. – (a) If T� S(X , Y ) and J : N(T)KX is the inclusion, we have J� S

because S is injective. Then TJ40� S. Since S is left stable we get 0N(T)� S;
i.e., N(T)�Sp (S).

(b) Analogous. r

COROLLARY 2.15. – Let A be an operator ideal and let T� L (X , Y ).

(a) A injective, T� A1 ¨ N(T)�Sp (A).

(b) A surjective, T� A2 ¨ YOR(T)�Sp (A).

We say that a class of Banach spaces A satisfies the three-space property if
given a subspace M of a Banach space X we have M , X/M�A ¨ X�A .

Many classes of Banach spaces, like the reflexive spaces and the weakly se-
quentially continuous spaces have the three-space property. On the other
hand, the class of spaces isomorphic to a Hilbert space fails this property. We
refer to [25] for a complete survey on the three space property in Banach
spaces.

Sometimes, we can characterize the operators T with closed range R(T)
which belong to a semigroup S in terms of their kernel N(T) or their cokernel
Y/R(T). In such a case Sp (S) has the three-space property.



PIETRO AIENA - MANUEL GONZÁLEZ - ANTONIO MARTÍNEZ-ABEJÓN170

DEFINITION 2.16. – We say that an operator semigroup S satisfy the left
three-space property if every T� L (X , Y ) with R(T) closed and N(T)�Sp (S)
belongs to S.

We say that S satisfy the right three-space property if an operator T�
L (X , Y ) with R(T) closed and Y/R(T)�Sp (S) belongs to S.

REMARKS 2.17. – (a) It is easy to see that if S satisfies the left (right) three-
space property and is left (right) stable, then Sp (S) has the three-space
property.

(b) If A is one of the operator ideals K, W, R, C C, W C C or U of Defini-
tion 1.2, then A1 satisfies the left three-space property and Ad

2 satisfies the
right three-space property. From these facts, it easily follows that Sp (A) has
the three-space property.

QUESTION 2. – To determine the operator ideals A such that A1 satisfies
the left three-space property or A2 satisfies the right three-space property.
In particular, what happens with R2 and Rd

1?
Note that if A1 satisfies the left three-space property then A is injective; if

A2 satisfies the right three-space property then A is surjective and in both
cases Sp (A) has the three-space property.

DEFINITION 2.18. – We say that a semigroup S is open if the components
S(X , Y ) are open in L (X , Y ).

The semigroups K1 and K2 of semi-Fredholm operators are open, as well
as some semigroups A1 and A2 considered in section 4.1. However, the fol-
lowing example shows that the semigroups W1 and W2 of tauberian and co-
tauberian operators are not open.

EXAMPLE 2.19 [87]. – Let X be a non-reflexive Banach space, and consider
the operators T and Tn defined in l2 (X) by

T(xk ) »4 (xk /k); and Tn (xk ) »4 (x1 , x2 /2 , Rxn /n , 0 , 0 , R) .

It is not difficult to see that T is tauberian and cotauberian (see Definition
1.13). However, Tn is neither tauberian nor cotauberian and VT2TnVE1/n ,
for every integer n . Thus W1 (l2 (X) ) and W2 (l2 (X) ) are not open in
L (l2 (X) ) .

The following result shows that the operators in A are admissible pertur-
bations for the semigroups A1 and A2 . Its proof is immediate.
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PROPOSITION 2.20. – Let A an operator ideal and let K� A(X , Y ).

(a) T� A1 (X , Y ) ¨ T1K� A1 (X , Y ).

(b) T� A2 (X , Y ) ¨ T1K� A2 (X , Y ).

Some semigroups admit a perturbative characterization; for example, those
associated with the operator ideals presented in Definition 1.2.

PROPOSITION 2.21. – Let A be one of the operator ideals K, W, R, C C, W C C

or U of Definition 1.2. Then for every T� L (X , Y ), we have

(a) T� A1 if and only if N(T1K)�Sp (A) for every K� K(X , Y ).

(b) T� Ad
2 if and only if T *� A1 .

(c) T� Ad
2 if and only if YOR(T1K)�Sp (Ad ) for every K�

K(X , Y ).

PROOF. – (a) The case of the compact operators K is classic [71]. For the
unconditionally converging operators U see [44], and for the remaining cases
see [58].

(b) Assume that T *� A1 and BT� Ad . We have (BT)*4T * B *� A.
Then B *� A, hence B� Ad , and we conclude that T� Ad

2 .
Conversely, assume that T� Ad

2 (X , Y ). It was proved in [44] and [58] that
T *� A1 if and only if YOR(T1K)�Sp (Ad ) for every K� K(X , Y ). Clearly,
T1K� Ad

2 for every compact operator K . So it is enough to prove that
YOR(T)�Sp (Ad ).

If Q denotes the quotient map from Y onto YOR(T), we have QT40� Ad .
Then Q� Ad and, since the operator ideals Ad are surjective, we conclude that
YOR(T)�Sp (Ad ).

(c) It follows from (b) and the perturbative characterization, mentioned
in the proof of (b), of the operators T such that T *� A1 . r

DEFINITION 2.22. – Let A be an operator ideal. We say that A1 admits a
perturbative characterization if for every pair X , Y ,

A1 (X , Y )4]T� L (X , Y ) : N(T1K)�Sp (A) for every K� K(X , Y )( .

We say that A2 admits a perturbative characterization if for every pair
X , Y ,

A2 (X , Y )4]T� L (X , Y ) : YOR(T1K)�Sp (A) for every K� K(X , Y )( .

REMARKS 2.23. – Let A be an operator ideal. If A1 (A2) admits a perturba-
tive characterization, then A is injective (surjective).
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QUESTION 3. – To determine the operator ideals A such that A1 or A2 ad-
mits a perturbative characterization. In particular, for the weakly precompact
operators R, does a similar characterization exists for Rd

1 and R2?
Note that R and Rd are injective and surjective.

QUESTION 4. – Given an operator ideal A, let Ak and Ac be the classes de-
fined by

Ak (X , Y ) »4]T� L (X , Y ) : N(T1K)�Sp (A), for every K� K(X , Y )( ,

Ac (X , Y ) »4]T� L (X , Y ) : YOR(T1K)�Sp (A), for every K� K(X , Y )( .

Are Ak and Ac operator semigroups?

NOTES AND REMARKS 2.24. – In [71] the authors study the upper semi-
Fredholm operators and some related classes by means of an abstract notion
of semigroup in a Banach algebra. This treatment and the theory of operator
ideals [82] are the main sources of inspiration for our definition of operator
semigroup.

2.2. Invertibility modulo an operator ideal.

Here we consider semigroups that are defined in terms of left or right in-
vertibility, modulo the elements of an operator ideal. The classical examples of
semigroups of this kind are the left Atkinson and the right Atkinson, present-
ed in Definition 1.9, which are invertible modulo the compact operators.

DEFINITION 2.25. – Let A be an operator ideal and let T� L (X , Y ). We de-
fine the classes Al and Ar as follows:

T� Al if there exists A� L (Y , X) such that IX2AT� A(X).

T� Ar if there exists B� L (Y , X) such that IY2TB� A(Y ).

REMARKS 2.26. – Clearly Al (X , Y )c¯ if and only if Ar (Y , X)c¯ .

PROPOSITION 2.27. – For every operator ideal A, the classes Al and Ar are
operator semigroups. Moreover, F l% Al% A1 and F r% Ar% A2 .

PROOF. – The fact that Al and Ar are semigroups can be proved in a similar
way as Proposition 2.4. Moreover, we have F l4 Fl and F r4 Fr [23]. Hence
F l% Al and F r% Ar .

In order to show that Al% A1 , assume that T� Al (X , Y ) and take A�
L (Y , X) such that IX2AT� A(X). If B� L (Z , X) and TB� A, then B(IX2
AT)4B2ATB� A; hence B� A.

The proof of Ar% A2 is analogous. r
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PROPOSITION 2.28. – For every operator ideal A, the semigroup Al is left
stable and the semigroup Ar is right stable; i.e., given S� L (Y , Z) and T�
L (X , Y ), we have

(a) ST� Al ¨ T� Al ,

(b) ST� Ar ¨ S� Ar .

PROOF. – It immediately follows from the definitions. r

REMARKS 2.29. – Observe that both classes A1OA2 and AlOAr are semi-
groups. They coincide for A 4 K, since K1OK24 KlOKr4F , but are dif-
ferent in general.

Let us see that W1OW2c WlOWr :
We saw in Proposition 2.6 that an operator T� L (X , Y ) is tauberian (co-

tauberian) if and only if the associated operator T co� L (X **/X , Y **/Y ) is in-
jective (has dense range). In particular, T� W1OW2 if T co is bijective.

On the other hand, it was proved in [59] that, if X4Y4 l2 (J), where J is
James’ quasireflexive space, then X **/X4 l2 and T� L (X) belongs to WlO
Wr if and only if T co is regular with respect to the usual lattice structure in l2 .

Now, it is not difficult to find examples of operators T� L (X , X) such that
T co is bijective but not regular. Hence T� W1OW2 0WlOWr . We refer to
[59] for the details.

Recall that the radical Arad of an operator ideal A is defined [82, 4.3.1] as
follows:

Arad(X, Y )»4mT�L (X, Y ) :
for every S�L (Y, X), there exists U�L (X),
so that IX2U(IX2ST)�A

n .

Arad is a closed operator ideal that contains A and satisfies Sp (Arad )4
Sp (A) [82, Section 4.3]. Observe that the definition of Arad and some charac-
terizations given in [82] can be written in a more compact form, in terms of Al

and Ar .

PROPOSITION 2.30. – Let A be an operator ideal. For T� L (X , Y ), the fol-
lowing assertions are equivalent:

(a) T� Arad (X , Y ).

(b) For every S� L (Y , X), IX2ST� Al .

(c) For every S� L (Y , X), IX2ST� Ar .

(d) For every S� L (Y , X), IY2TS� Ar .

(e) For every S� L (Y , X), IY2TS� Al .
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COROLLARY 2.31. – We have Krad4 I, the inessential operators.

PROOF. – It is enough to look to the definition of I, and observe that
F4F lOF r . r

Now we show that the radical Arad consists of admissible perturbations for
the semigroups Al and Ar .

PROPOSITION 2.32 [8]. – Let A an operator ideal and let K�
Arad (X , Y ).

(a) T� Al (X , Y ) ¨ T1K� Al (X , Y ).

(b) T� Ar (X , Y ) ¨ T1K� Ar (X , Y ).

PROPOSITION 2.33 [8]. – For every operator ideal A we have Al4 Arad
l and

Ar4 Arad
r .

Moreover, the semigroups Al and Ar are open.

NOTES AND REMARKS 2.34. – The semigroups F l and F r of operators which
are invertible modulo the compact operators were introduced by Atkinson
[14]. Moreover, Yang [97] studied the operators that are left or right invertible
modulo the weakly compact operators.

2.3. Perturbation class of an operator semigroup

We define the perturbation class for a semigroup in a similar way as Lebow
and Schechter [71] did for some subsets of Banach spaces.

DEFINITION 2.35. – Let S be an operator semigroup and let X , Y be Banach
spaces such that S(X , Y )c¯ . The component P S(X , Y ) of the perturbation
class P S of S is defined by

P S(X , Y ) »4]K� L (X , Y ) : T1K� S(X , Y ) for every T� S(X , Y )( .

REMARKS 2.36. – (a) For every operator semigroup S, the components
P S(X , Y ) are (not necessarily closed) linear subspaces of L (X , Y ).

(b) The perturbation class of the operator semigroup G of all bijective
operators is the class ]0( of all null operators.

PROPOSITION 2.37. – Let S be an operator semigroup.

(a) The components P S(X) on single Banach spaces of the perturbation
class P S are two-sided ideals in L (X).

(b) If S(X , Y ) is an open subset of L (X , Y ), then P S(X , Y ) is
closed.
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PROOF. – (a) Clearly P S(X) is a subspace of L (X). Moreover, if K�P S(X),
A� L (X) is invertible and T� S(X), then T1AK4A(A 21 T1K)� S. Conse-
quently AK�P S(X).

Now, since every A� L (X) is the sum of two invertible elements A4 tIX1
(A2 tIX ), we obtain that P S is a left ideal. Analogously we may prove that it is
a right ideal.

(b) Assume Kn�P S(X) converges to K� L (X). Given T� S(X) there
exists cD0 so that T1A� S(X) for every A� L (X) with VAVEc . Now, writing
T1K4T1Kn1 (K2Kn ), it is clear that T1K� S(X). Hence A�
P S(X). r

Proposition 2.37 shows that the following Remarks can be applied to the
components P S(X) of the perturbation class of a semigroup S.

REMARKS 2.38. – It was observed in [82, Proposition 1.1.3] that if we have a
two-sided ideal A(X)c ]0( for every Banach space X , then these sets are the
components of a unique operator ideal A if and only if the following condition
of compatibility holds:

A� L (X , Y ), B� L (Y , X), K� A(X) ¨ AKB� A(Y ) .(1)

In this case, the components A(X , Y ) are determined by

T� L (X , Y ) belongs to A if and only if g0

T

0

0
h� A(X5Y ) .(2)

So the question arises:

QUESTION 5. – Assume that P S(X)c ]0( for every Banach space X . Do the
components P S(X) satisfy the condition of compatibility 1?

This is an open problem even for the perturbation classes of the semi-
Fredholm operators F 1 and F 2 .

For many semigroups S, P S(X)c¯ for every non-zero Banach space X .

PROPOSITION 2.39 [8]. – Let S be an operator semigroup such that F% S.
Then F (X , Y )%P S(X , Y ), whenever S(X , Y )c¯ .

REMARKS 2.40. – The converse to Proposition 2.39 fails: The semigroup F 0

of Fredholm operators with index equal to 0 is a counterexample. See [8] for
details.

Lebow and Schechter [71] proved that the answer Question 5 is positive for
the semigroups of Atkinson operators. We derive this fact from our previous
results.
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PROPOSITION 2.41 [71, Theorem 2.7]. – We have PF(X)4PF l (X)4
PF r (X)4 I(X), for every Banach space X .

PROOF. – It follows from Corollary 2.31 that I(X)4 Krad (X). Since F l4 Kl ,
F r4 Kr and F4 KlOKr , it follows from Proposition 2.32 that I(X) is con-
tained in the three perturbation classes.

On the other hand, Proposition 2.37 tells us that PF(X) is a two-sided ideal.
Therefore, if T�PF(X) and S� L (X), then IX2ST�F ; hence T� I.

For PF l (X) and PF r (X) the proof is analogous. r

REMARKS 2.42. – Let A be an operator ideal. It follows from Propositions
2.20 and 2.32 that

A %P A1OP A2 and Arad%P AlOP Ar .

QUESTION 6. – Is it possible to characterize the perturbation classes for A1

and A2?
For which operator ideals A we have P(A1 )4 A or P(A2 )4 A?

QUESTION 7. – Is it true that Arad4P Al4P Ar for every operator ideal A?
We have seen that the answer is positive in the case A 4 K.
It is a well-known open question whether Arad is the biggest operator ideal

whose space ideal coincides with Sp (A) [82]. The answer is not known even in
the case A 4 K.

NOTES AND REMARKS 2.43. – The concept of perturbation class was intro-
duced by Lebow and Schechter [71]. They also proved that the perturbation
class for the Fredholm operators F and for the Atkinson operators F l and F r

is the operator ideal of inessential operators.

2.4. Back to operator ideals from operator semigroups.

Now we associate some operator ideals to the semigroups A1 and A2 ,
whenever they admit a perturbative characterization.

DEFINITION 2.44. – Let A be an operator ideal. We define the classes A S,
A C by

A S(X , Y ) »4]K� L (X , Y ) : A� L (Z , X), KA� A1 ¨ A� A( ,

A C(X , Y ) »4]K� L (X , Y ) : B� L (Y , Z), BK� A2 ¨ B� A( .

Recall that A1 admits a perturbative characterization if T� L (X , Y ) be-
longs to A1 whenever N(T1K) belongs to Sp (A) for every compact operator
K� K(X , Y ); and A2 admits a perturbative characterization if T� L (X , Y )
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belongs to A2 whenever YOR(T1K) belongs to Sp (A) for every compact oper-
ator K� K(X , Y ). See Proposition 2.21 for examples of semigroups of this
kind.

PROPOSITION 2.45. – Let A be an operator ideal.

(a) If A1 admits a perturbative characterization then A S is an opera-
tor ideal and A(X , Y )% A S(X , Y )%P A1 (X , Y ), whenever A1 (X , Y )c¯ .

(b) If A2 admits a perturbative characterization then A C is an opera-
tor ideal and A % A C %P A2 , whenever A2 (X , Y )c¯ .

PROOF. – (a) First we show that A % A S. We take K� A(X , Y ) and A�
L (Z , X), and assume that KA� A1 . Then IZ� A; hence A� A, and we con-
clude K� A S(X , Y ). In particular, A S satisfies the property (a 1 ) in the defini-
tion of operator ideal.

In order to prove (a 2 ), assume K , L� A S(X , Y ) and A� L (Z , X). If A� A,
then KA and LA are not in A1 . Since A1 admits a perturbative characteriza-
tion, we can find a subspace M of Z such that M� A and KAJM is compact.
Moreover LAJM� A1 ; otherwise, by the definition of A S we would have
AJM� A; then AJM belongs both to A1 and A; hence M�Sp (A), a contradic-
tion. Thus (K1L) AJM� A1 ; hence (K1L)A� A1 , and we have proved that
K1L� A S.

Suppose K� A S(X , Y ) and A� L (Z , X). If S� L (W , Z) and KAS� A1 ,
then doing as in the previous paragraph we can show that W�Sp (A); hence
S� A and we conclude that KA� A S. Analogously, given K� A S(X , Y ) and
A� L (Y , Z), if S� L (W , X) and AKS� A1 , we get that W�Sp (A), and we
conclude AK� A S. In this way we have proved that A S is an operator
ideal.

It remains to show that A S %P A1 . In order to do that, we take T�
A1 (X , Y ) and K� L (X , Y ), and assume that T1K� A1 . Since A1 admits a
perturbative characterization, we can find a subspace M of X such that M� A

and (T1K) JM is compact. Since TJM� A1 we have KJM� A1 (they differ in a
compact operator). However, JM� A; hence K� A S.

Moreover, if K� A S(X , Y ), T� A1 (X , Y ) and T1K� A1 , then we can
find A� L (Z , X) such that (T1K)A� A but A� A.

(b) It is similar. r

COROLLARY 2.46. – Let A be an operator ideal.

(a) If A1 admits a perturbative characterization then Sp (A S)4
Sp (A).

(b) If A2 admits a perturbative characterization then Sp (A C)4
Sp (A).
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PROOF. – (a) Observe that, by the compatibility condition presented in Re-
mark 2.38, we have A % A S; hence Sp (A)%Sp (A S). Moreover, if X�Sp (A S),
then IX� A1 implies IX� A; i.e., X�Sp (A).

The proof of (b) is analogous. r

REMARKS 2.47. – It is not difficult to see that for the compact operators K,
we have K S 4 S S and K C 4 S C.

QUESTION 8. – To characterize the operator ideals A for which A S or A C

are operator ideals.

NOTES AND REMARKS 2.48. – For the class W of weakly compact operators,
the operator ideal W S is the natural candidate to be the smallest ideal con-
tainig the almost weakly compact operators introduced in [67].

3. – Examples in the literature.

In this section we describe the properties and applications of some semi-
groups that have been previously considered in the literature, because they
could be taken as models for further development of the theory of operator
semigroups.

A detailed study of the semigroups F 1 , F 2 , F l , F r and F may be found
in several monographies [23, 36, 63, 91]. Moreover, they are «trivial» from the
point of view of Banach space theory. Therefore, we only give a brief descrip-
tion of their perturbation classes and of the semigroups I1 and I2 associated
with the inessential operators I.

We give some properties and applications of tauberian operators and refer
to [37] for a survey about this topic. We also describe the semigroups A1 and
A2 for the operator ideals A presented in Definition 1.2. These semigroups,
studied in [20, 44, 55, 56, 58], have similar properties to that of the tauberian
and the cotauberian operators.

We also show that although the semiembeddings and the Gd-embeddings
do not form semigroups, they are contained in semigroups that share their
nice properties.

3.1. Semigroups in classical Fredholm theory.

Recall that S S and S C denote the operator ideals of all strictly singular and
strictly cosingular operators, respectively. We have S S %PF 1 and S C %PF 2 .
However, the following question remains open.

QUESTION 9. – It is not known whether S S 4PF 1 and S C 4PF 2 .
The answer to this question is positive in the case in which one of the
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spaces has many projections; more precisely, if one of the spaces is subprojec-
tive or superprojective (see Section 2 for definitions and examples).

THEOREM 3.1. – Let X and Z be Banach spaces.

(a) If X is subprojective, then S S(X , Y )4PF1(X , Y ) for every space Y .

(b) If Z is superprojective, then S C(Y , Z)4PF2(Y , Z) for every space Y .

Gowers and Maurey [60, 61] constructed spaces admitting only trivial pro-
jections, for which we have a positive answer to Question 9, as we shall see in
Theorem 3.3.

DEFINITION 3.2. – A Banach space X is said to be indecomposable if there
is no infinite dimensional subspaces M and N of X so that MON4]0( and
M1N4X .

A result of Weis [93] characterizes the Banach spaces such that any opera-
tor either is semi-Fredholm or belongs to the corresponding perturbation
class, in terms of the decomposability of their subspaces and quotients.

THEOREM 3.3 [93]. – Let X and Z be a Banach space.

(a) We have L(X , Y )4 S S(X , Y )NF 1 (X , Y ) for every Banach space Y
if and only if all the subspaces of X are indecomposable.

(b) We have L(Y , Z)4 S C(Y , Z)NF 2 (Y , Z) for every Banach space Y
if and only if all the quotients of Z are indecomposable.

We observe that, at the time Weis proved this result, the existence of inde-
composable Banach spaces, proved in [61], was open problem.

EXAMPLE 3.4 [61]. – There exists a complex, infinite dimensional, reflexive
Banach space XGM such that all of its subspaces are indecomposable.
Therefore,

L(XGM , Y )4 S S(XGM , Y )NF 1 (XGM , Y ) for every Banach space Y, and

L(XGM )4]zI1K : z�C , K� S S(XGM )( .

Moreover, the dual space XGM* satisfies L(Y , XGM* )4 S C(Y , XGM* )N
F 2 (Y , XGM* ) for every Banach space Y , and L(XGM* )4]zI1K : z�C , K�
S C(XGM* )(.

We showed in Proposition 2.41 that the perturbation class of the semigroup
F , in the case X4Y , coincides with the class I of inessential operators. Since I

is an operator ideal, the whole class is determined by the components I(X) act-
ing on a single space, as we observed in Remarks 2.38. In the following result
we show that in the complex case I(X) admits spectral characterizations.
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Let X be a complex Banach space. Recall that T� L (X) is said to be a Riesz
operator if for every non-zero complex number z we have zIX2T�F(X).

We denote by V(X) the set of all T� L (X) such that for no infinite dimen-
sional, invariant subspace M of T , the restriction TM : MKM is bijective.

THEOREM 3.5 [1]. – For a complex Banach space X , the class I(X) is the
largest ideal contained in V(X); equivalently, it is the largest ideal in L (X)
consisting of Riesz operators.

On the other hand, we have the following related problem.

QUESTION 10. – Is it true that I is the biggest operator ideal whose space
ideal is F , the finite dimensional spaces?

A well-known result of classical Fredholm theory tells us that Il4 Kl , the
left-Atkinson operators, and Ir4 Kr , the right Atkinson operators. However,
the semigroups I1 and I2 are not comparable with F 1 and F 2 .

PROPOSITION 3.6 [8]. – Let M and N be subspaces of lQ such that lQ /M`

N` l2 . Then QN� I1 and JM� I2 .

The operator ideal I is neither injective nor surjective. So it follows from
Propositions 2.12 and 3.6 that I1 and I2 are not comparable with the semi-
Fredholm operators:

F 1+ I1+F 1 and F 2+ I2+F 2 .

QUESTION 11. – Is it possible to give a good description of I1 and I2?
Are these semigroups open?
In the next result we show that the class of inessential operators has a cer-

tain symmetry.

PROPOSITION 3.7 [39, Proposition 1]. – Given a pair X , Y of Banach spaces,
we have

L (X , Y )4 I(X , Y ) if and only if L (Y , X)4 I(Y , X) .

Let us see that the I is a much bigger class than the compact operators.
Here H Q denotes the space of all bounded analytic functions on the disc.

THEOREM 3.8 [3, 39]. – We have L (X , Y )4 I(X , Y ) in the following
cases:

(a) X is reflexive and Y has the Dunford-Pettis property;

(b) X has the reciprocal Dunford-Pettis property and Y has the Schur
property;
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(c) X contains no copies of lQ and Y4 lQ , H Q or C(K) with K
s-stonian;

(d) X contains no copies of c0 and Y4C(K);

(e) X contains no complemented copies of c0 and Y4C[0 , 1 ];
(f ) X contains no complemented copies of l1 and Y4L1 ( m);

(g) X contains no complemented copies of lp and Y4Lp [0 , 1 ], or lp

1EpEQ .

Observe that the available characterizations of inessential operators, like
those in Definition 1.11 and Theorem 1.12, are not intrinsic: They depend on
the properties of the products of the given operator by operators in a large
set.

If T� I(X , Y ), then there is no infinite dimensional subspace of M of X
such that the restriction TJM is an isomorphism and T(M) is complemented in
Y . It was conjectured by Tarafdar [90] (see also [5]) that this property charac-
terizes the inessential operators. However, it was proved in [6] that the conjec-
ture was not correct. Therefore, the following question remains.

QUESTION 12. – Is it possible to give an intrinsic characterization of
inessential operators?

NOTES AND REMARKS 3.9. – In [94] Weis studied the perturbation classes
for not necessarily continuous, closed semi-Fredholm operators, but his re-
sults cannot be applied to our situation, because the perturbation classes of the
closed semi-Fredholm operators could be smaller than that of the correspond-
ing classes of continuous operators.

The investigation of the semigroups I1 and I2 associated with the inessen-
tial operators may be interesting, in view of the wealth of cases in which
L (X , Y )4 I(X , Y ).

3.2. Tauberian operators.

Besides of the semigroups of Fredholm theory, the classes of tauberian
and cotauberian operators are the operator semigroups that have received
more attention in the literature. Moreover, since these semigroups are non-
trivial, they constitute good models for the theory of operator semi-
groups.

Recall that an operator T� L (X , Y ) is tauberian if T **(X ** 0X)%Y ** 0Y ;
equivalently, if T� W1 . Moreover, T is cotauberian if T * is tauberian; equiva-
lently, if T� W2 .

The semigroup W1 has some shortcomings. We showed in Example 2.19
that, given a a non-reflexive Banach space X , the component W1 (l2 (X) ) is not
open. Moreover, W1 has an asymmetric behaviour under duality.
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EXAMPLE 3.10 [9]. – There exists a tauberian operator T� W1 such that
T **� W1 .

Here we use a construction due to Bellenot [18]. Let Xn denote the sub-
space of l1 generated by the first n elements of the unit basis. We consider the
space

J(Xn )4](xn ) : xn�Xn , Vxn V1K0 and V(xn )VJEQ( ,

where V QV1 is the norm in l1 and V QVJ is given by

V(xn )VJ4supmVxnk
V1

21 !
i41

k21

Vxni11
2xni

V1
2 : n1En2ERnkn1/2

.

(J(Xn ), V QVJ ) is a Banach space and J(Xn )**/J(Xn )` l1 [18]. Moreover, the
operator

T : (xn )�J(Xn )K (xn /n)�J(Xn )

satisfies T� W1 , but T **� W1 . We refer to [9] for details.

REMARKS 3.11. – The last result shows an «asymmetry» for an apparently
perfectly symmetric class, the weakly compact operators W. For every qT�
L (X , Y ) we have T� W if and only if T *� W, and the associated semigroups
W1 , W2 admit «symmetric» characterizations:

T� W1 if and only if TA� W ¨ A� W ,

T� W2 if and only if BT� W ¨ B� W .

However, the duality relations between W1 and W2 are not symmetric. We
have

T� W2 ` T *� W1 and T *� W2 ¨ T� W1 ,

but T� W1 Ö T *� W2 .
It is not difficult to show that an operator T� L (X , Y ) is tauberian if and

only if N(T **)4N(T) and T(BX ) is closed, where BX is the closed unit ball of
X . Moreover, Neidinger and Rosenthal obtained the following refinement.

THEOREM 3.12 [80, Theorem 2.3]. – For a non-zero operator T� L (X , Y ),
the following assertions are equivalent:

(a) T is tauberian.

(b) T(BE ) is closed, for all subspaces E of X.

(c) T(K) is (weakly) closed, for all weakly closed bounded subsets of X .

(d) T(K) is closed, for all closed convex bounded subsets of X .
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Theorem 3.12 should be compared with the following well-known re-
sults.

PROPOSITION 3.13. – Let T� L (X , Y ) be a non-zero operator.

(a) T is an into isomorphism if and only if T(K) is closed, for all closed
K%X .

(b) T�F 1 if and only if T(K) is closed, for all closed bounded subsets
K%X .

QUESTION 13. – Let A be an injective operator ideal; hence F 1% A1 , by
Proposition 2.12.

Is it possible to find a suitable class of closed bounded sets so that T� A1 if
and only if T(K) is closed for every set K in the class?

Holub obtained several characterizations of tauberian operators in terms
of their action over basic sequences. We include below some of them.

THEOREM 3.14 [68]. – For T� L (X , Y ), the following assertions are
equivalent:

(a) T is tauberian.
(b) If (xn ) is a normalized basic sequence in X for which (Txn ) is

(weakly) convergent, then (xn ) is weakly null.

(c) If (xn ) is a bounded basic sequence in X for which !
n41

Q

VTxn VEQ ,

then (xn ) is (both shrinking and) boundedly complete.

Now, following [41], we show that the shortcomings of tauberian operators
do not appear for operators acting on L1 ( m), where m is a finite measure. The
class of all tauberian operators from L1 ( m) into Y is open and the second conju-
gate of a tauberian operator T : L1 ( m)KY is tauberian. We also present sev-
eral characterizations of tauberian operators T : L1 ( m)KY and we show that
the corresponding perturbation class consists of weakly precompact operators.

THEOREM 3.15 [41]. – For T� L (L1 ( m), Y) , the following statements are
equivalent:

(a) T is tauberian;

(b) T ** is tauberian;
(c) N(T)4N(T **);
(d) lim inf

n
VTfn VD0 for every normalized disjoint sequence ( fn ) in

L1 ( m);
(e) there exists rD0 such that lim inf

n
VTfn VDr for every normalized

disjoint sequence ( fn ) in L1 ( m).
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It easily follows from Theorem 3.15 (e) that W1 (L1 ( m), Y) is open, and
that it is non-empty if and only if Y contains a subspace isomorphic to
L1 ( m).

Recall that the dyadic tree in [0 , 1 ] is given by the following multiples of
the characteristic functions of the dyadic intervals

x n , i »42n x ( (i21) /2n , i/2n ) , where n40, 1 , 2 , R and i41, R , 2n .

It is well-known [32] that an operator T : L1 [0 , 1 ]KY is determined by the
values of ]Tx n , i : n40, 1 , 2 , R and i41, R , 2n(.

THEOREM 3.16 [41]. – An operator T : L1 [0 , 1 ]KY is tauberian if and
only if for every sequence ( fn ) in the dyadic tree of L1 [0 , 1 ] equivalent to the
unit basis of l1 , there is some k so that (Tfn )nFk is also equivalent to the unit
basis of l1 .

Finally, we observe that the perturbation class of W1 (L1 ( m), Y) consists
of weakly precompact operators.

PROPOSITION 3.17 [41]. – P W1 (L1 ( m), Y)4 R (L1 ( m), Y) for every Y .

It follows as a consequence of the Dunford-Pettis property of L1 ( m) that
R (L1 ( m) )4 S S (L1 ( m) ) , which coincides with PF(L1 ( m) ) [93]. These facts and
some of the previous results about W1 (L1 ( m), Y) suggest the following
question.

QUESTION 14. – Is it true that F 1 (L1 ( m) )4 W1 (L1 ( m) )?
A special case of this question: Given an infinite dimensional reflexive sub-

space R of L1 ( m), is the quotient L1 ( m) /R isomorphic to a subspace of
L1 ( m)?

For more information about these questions, we refer to [43].

NOTES AND REMARKS 3.18. – The tauberian operators have been studied in
other contexts different from the one considered here. For example, Cross has
studied not necessarily continuous tauberian operators [26, 27, 28, 29] and
tauberian linear relations [30]. Bonet and Ramanujan [22] have considered
tauberian operators acting between Fréchet locally convex spaces, and Mar-
tínez and Pellón [77] have analyzed tauberian operators in the context of non-
archimedean analysis.

The class of those operators T such that T ** is injective has many of the
properties of tauberian operators. It was studied by Neidinger in his Ph.D.
Thesis [79].
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3.3. Applications of tauberian operators.

Tauberian operators were introduced by Kalton and Wilansky [69] as the
abstract counterpart for a property of conservative matrices, in order to solve
a summability problem. Since then, they have found many applications in Ba-
nach space theory: preservation of isomorphic properties [79], refinements of
James’ characterization of reflexive spaces [80], equivalence between the
Radon-Nikodym property and the Krein-Milman property [85], and factoriza-
tion of operators [31], for example. Here we describe these applications. Addi-
tional information may be found in [79] and [37]. We begin with some results of
Neidinger concerning the preservation of isomorphic properties.

THEOREM 3.19 [79]. – Let G be one of the following properties: Reflexivity,
weak sequential completeness, Radon-Nikodym property, containing no
copies of l1 or containing no copies of c0 . If Y has G and there exists a tauberi-
an operator T� L (X , Y ), then X has G.

Most of the results of Theorem 3.19 can be «localized»; i.e., tauberian oper-
ators preserve some isomorphic properties of bounded sets. See [79] for
details.

In Theorem 3.12 we presented a remarkable characterization of tauberian
operators, due to Neidinger and Rosenthal [80]. As an application, they ob-
tained a refinement of James’ characterization of reflexive Banach spaces as
those spaces X such that every element of X * attains its norm (in the unit ball
of X). Observe that, if X is non-reflexive, then any nonzero f�X * is a non-
tauberian operator, and f attains its norm if and only if f (BX ) is closed.

THEOREM 3.20 [80]. – Let X be a non-reflexive Banach space and let f�X *,
fc0. Then there exists a subspace Y of X such that the restriction fNY does not
attain its norm.

The following result allows us to construct tauberian operators in certain
cases. For a simpler proof we refer to [39].

THEOREM 3.21 [85]. – If there exists an injective tauberian operator
i : X3XKX , then there exists an injective tauberian operator j : l2 (X)KX .

COROLLARY 3.22 [85]. – If there exists an injective tauberian operator
i : X3XKX , then X has the Radon-Nikodym property if and only if it has
the Krein-Milman property.
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The main source of non-trivial examples of tauberian and cotauberian oper-
ators is the celebrated factorization of operators obtained by Davis, Figiel,
Johnson and PelCczyński.

THEOREM 3.23 [31]. – For every T� L (X , Y ), there exists a Banach space Z
and operators A� L (X , Z) and j� L (Z , Y ) so that j is tauberian, A is co-
tauberian and T4 jA .

COROLLARY 3.24. – Every weakly compact operator factors through a re-
flexive Banach space.

Let us say that an operator ideal A has the interpolation property if for
every T� A(X , Y ), the intermediate space Z in the factorization of Theorem
3.23 belongs to Sp (A). Using essentially Theorem 3.19, Heinrich proved the
following result.

THEOREM 3.25 [66]. – The operator ideals of all weakly compact, weakly
precompact, decomposing and Banach-Saks operators have the interpolation
property.

Analyzing the duality properties of the factorization in Theorem 3.23, it is
possible to extend the class of operator ideals with the interpolation
property.

Recall that T� L (X , Y ) has associated an operator T co�
L (X **/X , Y **/Y ). Given an operator ideal A, it is not difficult to see that
Aco »4]T� L : T co� A( defines a new operator ideal.

THEOREM 3.26 [38]. – Let A be an operator ideal with the interpolation
property. Then Ad and Aco have the interpolation property.

NOTES AND REMARKS 3.7. – Bombal and Fierro [19] have studied relatively
weakly compact sets in vector-valued Orlicz spaces, using the fact that the nat-
ural embedding into the corresponding vector-valued L1 ( m)-space is a tauberi-
an operator.

3.4. Lifting results and «sequential» semigroups.

The semigroups A1 associated with the operator ideals A presented in
Definition 1.2 admit a sequential characterization [55, 44], that is similar to
Lohman’s lifting [73]: Let X be a Banach space and let M be a subspace of X .
If M contains no copies of l1 , then every weakly Cauchy sequence in X/M ad-
mits a subsequence that can be lifted to a weakly Cauchy sequence in X ;
equivalently, the quotient map from X onto X/M belongs to R1 .

In [57, 44] several lifting results for sequences were obtained.
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THEOREM 3.28 [57, 44]. – Let (xn ) be a sequence in X . Let M be a subspace
of X and let q : XKX/M and p : X *KX * /M » denote the quotient
maps.

(a) If M is reflexive (respectively finite dimensional, contains no
copies of l1 ), (xn ) is bounded and (qxn ) is weakly convergent (respectively con-
vergent, weakly Cauchy), then (xn ) admits a weakly convergent (respectively
convergent, weakly Cauchy) subsequence.

(b) If M is weakly sequentially complete (respectively Schur), (xn ) is
weakly Cauchy and (qxn ) is weakly convergent (respectively convergent),
then (xn ) admits a weakly convergent (respectively convergent) subse-
quence.

(c) If X/M is Grothendieck (respectively has no quotients isomorphic to
c0 ), ( fn ) is a weak*-convergent sequence in X * and (pfn ) is weakly convergent
(respectively weakly Cauchy), then ( fn ) admits a weakly convergent (respect-
ively weakly Cauchy) subsequence.

(d) If M contains no copies of c0 , !
n41

Q

xn is a weakly unconditionally

Cauchy and !
n41

Q

qxn is unconditionally converging, then !
n41

Q

xn is uncondi-

tionally converging.

REMARKS 3.29. – Let A be one of the operator ideals K, W, R, C C, W C C or
U. It follows from parts (a), (b) and (d) of Theorem 3.28 that the semigroup A1

has the left-three space property.

QUESTION 15. – To study the semigroups associated with part (c) in Theo-
rem 3.28.

The semigroup R1 associated with the weakly precompact operators ad-
mits a nice characterization in terms of the kernel of the second conjugate of
the operators. Given a Banach space X , we denote by B1 (X) the set of all first
Baire class elements of X **; i.e., the elements of X ** that can be obtained as
weak*-limits of sequences in X .

THEOREM 3.30 [20]. – Let X be a separable Banach space. For every T�
L (X , Y ), the following assertions are equivalent:

(a) T� R1 .

(b) (T **)21 (Y )% B1 (X).

(c) ker (T **)% B1 (X).

In the non-separable, we can obtain an analogous result. We refer to [20]
for the definitions of the relevant concepts.
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THEOREM 3.31 [20, Theorem 3.3 and Corollary 3.4]. – For an operator T�
L (X , Y ), the following assertions are equivalent:

(a) T� R1 .

(b) Every element of (T **)21 (Y ) is universally measurable on K .

(c) Every z�ker (T **) is universally measurable on (BX * , w *).

We saw in Proposition 2.21 that if A is one of the operator ideals K, W, R,
U, C C or W C C, then the semigroups A1 and Ad

2 admit a perturbative charac-
terization. As a consequence we can derive some relations between the semi-
groups. For example, taking account that the reflexive Banach spaces contain
no copies of c0 , we obtain that for every couple X , Y of Banach spaces we
have

K1(X, Y )%W1(X, Y )%U1(X, Y ) and K2(X, Y )%W2(X, Y )%U2(X, Y ) .

From these inclusions we derive characterizations of some classes of Banach
spaces.

PROPOSITION 3.32 [44, Propositions 2.13 and 2.23]. – (a) X is hereditarily c0

if and only if K1 (X , Y )4 U1 (X , Y ) for every space Y .

(b) Non-reflexive subspaces of X contain copies of c0 if and only if
W1 (X , Y )4 U1 (X , Y ) for every space Y .

(c) Reflexive subspaces of X are finite dimensional if and only if
K1 (X , Y )4 W1 (X , Y ) for every space Y .

(a8) Quotients of X containing no complemented copies of l1 are finite
dimensional if and only if K2 (Z , X)4 U2 (Z , X) for every space Z .

(b8) Quotients of X containing no complemented copies of l1 are reflex-
ive if and only if W2 (Z , X)4 U2 (Z , X) for every space Z .

(c8) Reflexive quotients of X are finite dimensional if and only if
K2 (Z , X)4 W2 (Z , X) for every space Z .

NOTES AND REMARKS 3.33. – The operators in the semigroup R1 were ap-
plied in [75] to characterize semi-Fredholm operators acting on a Banach
space that contains no copies of l1 . They were called semitauberian operators
in [20].

3.5. Semiembeddings and Gd-embeddings.

The semiembeddings and the Gd-embeddings of Banach spaces have
been studied in [21, 34, 35]. These concepts are weaker than that of
isomorphim (into), but yet the operators of these classes preserve some
isomorphic properties of Banach spaces. For example, if a Banach space



OPERATOR SEMIGROUPS IN BANACH SPACE THEORY 189

X semiembeds in another Banach space with the Radon-Nikodym property,
then X has the Radon-Nikodym property.

DEFINITION 3.34. – An operator T� L (X , Y ) is said to be a semiembedding
if T is injective and T(BX) is closed, where BX is the (closed) unit ball of X .

It is said to be a Gd-embedding if T is injective and for every closed bound-
ed subset A of X , T(A) is a Gd-set in Y .

The concept of semiembedding is isometric, but there is an isomorphic ver-
sion. An injective operator T� L (X , Y ) is a semiembedding under some equiv-
alent norm of X if and only if T(U ) is a Fs-set for all open subsets U of X [21,
Proposition 1.6]. These operators are called Fs-embeddings.

We have that every semiembedding of a separable space is a Gd-embedding
[21, Proposition 1.8]. Moreover, the Gd-embeddings are obviously stable by
equivalent renormings of the spaces and they satisfy one of the properties that
characterizes the operator semigroups.

PROPOSITION 3.25 [34, Proposition III.6]. – Let Ti� L (Xi , Yi ) be a Gd-em-
bedding for i41, 2 . Then T15T2 is a Gd-embedding.

However, the product of two Gd-embeddings is not a Gd-embedding, in
general.

The Gd-embeddings were applied to investigate the presence of copies of
L1 , the space of all integrable functions on the unit interval, in Banach
spaces.

THEOREM 3.36 [21]. – Let T : L1KX be a Gd-embedding. Then there exists
a subspace Y of L1 isomorphic to l1 so that the restriction TNY is an
isomorphism.

If additionally X is isomorphic to a dual space or to a subspace of L1 , then
X contains a copy of L1 .

However, Talagrand showed that this is a very subtle problem.

THEOREM 3.37 [89, Theorem 1.4]. – There exist Banach spaces X and Y that
do not contain copies of L1 but such that L1 embeds in X3Y in such a way
that the restrictions to L1 of the projections onto X and Y are semiembed-
dings.

The Gd-embeddings share some properties with the operators in C C1 .
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PROPOSITION 3.38 [35, Theorem II.6]. – Let T� L (X , Y ) be a Gd-embedding.
If S� L (L1 , X) and TS is completely continuous, then S is completely
continuous.

The Gd-embeddings preserve in some way the separable dual sub-
spaces.

THEOREM 3.39 [34, Theorem I.2]. – Let X be a separable Banach space.
Then every Gd-embedding of X into any Banach space is an isomorphism if
and only if X does not contain any infinite dimensional subspace isomor-
phic to a separable dual.

COROLLARY 40 [34]. – If there exists a Gd-embedding T� L (X , Y ) and the
space Y is hereditarily separable dual, then X is hereditarily separable
dual.

Semiembeddings have a close relation with the semigroup U1 associated
with the unconditionally converging operators U.

THEOREM 3.41 [44, Theorem 3.1]. – A Banach space contains no copies of
lQ if and only if every semiembedding of X under any equivalent norm be-
longs to U1 .

This result shows that for a large family of Banach spaces X , the semiem-
beddings of X are examples of operators in U1 . Note that, for 1GpEQ , the
natural inclusion of LQ [0 , 1 ] into Lp [0 , 1 ] is a semiembedding that does not
belong to U1 .

Semiembeddings have been applied to characterize scattered compact
spaces.

THEOREM 3.42 [74, Theorem 11]. – Let K be a compact space. Then K is
scattered if and only if every semiembedding of C(K) into a Banach space is
an isomorphism.

NOTES AND REMARKS 3.43. – Semiembeddings were introduced by Lotz,
Peck and Porta [74] and Gd-embeddings by Bourgain and Rosenthal [21].

Ghoussoub [33] studied the operators T whose conjugates T * are Gd-em-
beddings. He called them semi-quotient maps.

Other similar concepts, like the Hd-embeddings and the nice Gd-embed-
dings have been introduced to study Banach spaces. We refer to [34] for more
information.
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4. – Methods to define operator semigroups.

In this section we present some methods that allow us to define new semi-
groups or to characterize the old ones.

We consider some semigroups that can be characterized as the ultrapowers
of the semigroups A1 and A2 associated to the ideals W, R and U. In general
they have better behaviour than their classic counter-parts.

We describe other semigroups associated with the total incomparability
[83] and the total coincomparability [10, 54] of Banach spaces. These semi-
groups satisfy a kind of three-space property and admit a perturbative charac-
terization. Moreover, they allow us to characterize the concepts of incompara-
bility.

We also show how to define semigroups in terms of certain operational
quantities associated to a space ideal. Since these semigroups are open, they
do not coincide in general with the corresponding semigroups A1 and A2 .

REMARKS 4.1. – There are procedures to define new operator ideals from a
given one A. Several of them have already appeared in the paper, like Ad and
Aco . Other examples may be found in [82, Chapter 4]. Many of these proce-
dures can be also applied to operator semigroups.

4.1. Ultrapowers of operators.

We have already observed that W1 is not open [87] and that there are
tauberian operators T such that T ** is not tauberian [9]. However, Tacon [87,
88] introduced a subclass of the tauberian operators, the supertauberian oper-
ators, and its dual class, the cosupertauberian operators that have a better be-
haviour. Let us denote SX »4]x�X : VxV41(.

An operator T� L (X , Y ) is said to be supertauberian if for every 0EeE1
there exists a positive integer n for which there do not exist finite sets
]x1 , R , xn( in SX and ] f1 , R , fn( in SX * for which fk (xl )De for 1GkG lGn ,
fk (xl )40 for 1G lEkGn , and VTxk VE1/k for k41, R , n .

An operator T is said to be cosupertauberian if the conjugate T * is
supertauberian.

Ultrapowers of Banach spaces are useful to study these operators. Given
an ultrafilter U on an infinite set I , we denote by lQ (I , X) the Banach space of
all bounded families (xi )i�I in X endowed with the supremum norm, and by
NU (X) the subspace of the null families (xi )i�I following U. The ultrapower of
X following U is defined as the quotient

XU »4
lQ (I , X)

NU (X)
.
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Note that XU contains an isometric copy of X generated by the constant fami-
lies. Moreover, every operator T� L (X , Y ) admits a natural extension TU�
L (XU , YU ). For more details about ultrapowers, we refer to [65].

For the rest of this section, we assume that U is a countably incomplete ul-
trafilter on a set I ; i.e., there is a countable partition of I whose elements do
not belong to U. Given an operator ideal A, it is immediate to show that the
class

Aup »4]T : TU� A for all ultrafilters U(

is also an operator ideal. For the weakly compact operators W, W up is the
class of all superweakly compact operators [64], called uniformly convexify-
ing operators in [16].

Recall that an operator ideal A is regular if for every Banach space X , the
natural inclusion of X into X ** belongs to A1 . In this case we have (Aup )d4
(Ad )up [65]. Note that W, R and U are regular. Moreover, W 4 W d .

In [40], the class of the supertauberian operators is identified with the
semigroup %%%W up

1 , and the class of the cosupertauberian operators is iden-
tified with W up

2 . These facts suggest that the semigroups Aup
1 and (Ad )up

2 may
have, in general, better behaviour than A1 and A2 . In the case A is one of the
operator ideals W, R or U, some recent results about finite representability,
described below, allow us to confirm it.

Recall that X is finitely representable in Y if for every 0EeE1 and every
finite dimensional subspace E of X , there is a e-isometry T : EKY ; i.e., an op-
erator L� L (E , Y ) so that (12e)VxVEVLxVE (11e)VxV , for every x�E .

DEFINITION 4.2 [45]. – Given a subspace E of a dual space X *, we say that
X * is finitely representable in E preserving the duality ( f.d.-r. in short) if for
every couple of finite dimensional subspaces F of X * and G of X , and for
every 0EeE1, there is an e-isometry L : FKE such that (Lx)(y)4x(y) for
all x�F and all y�G .

Let X be a Banach space and k , l two positive integers. A linear function
f : RkKR l , represented by a matrix (aij )i41

l
j41

k , induces an operator

fX : X3Rk 3XKX3Rl 3X

in the natural way fX (xi ) »4g!
j41

k

aij xjh. Note that ( fX )*4 f *X * . We denote by

l1
k (X) and lQk (X) the space X3Rk 3X , endowed with the norms !

j41

k

Vxj V and

sup
1G jGk

Vxj V , respectively. Given a subset B%X *, we denote B7»4]z�

X : Nf (z)NG1 for all f�B(.
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DEFINITION 4.3 [45]. – A subspace Z of a dual space X * is said to have the
polar property if for every k , l in N and every linear function f : RkKRl , we
have

fX (Bl1
k (X))4 ( f *X * NlQl (Z)

21 BlQk (Z) ) 7 .

Next we show that the concepts introduced in Definitions 4.2 and 4.3
coincide.

THEOREM 4.4 [45]. – A subspace Z of a dual space X * has the polar proper-
ty if and only if X * is f.d.-r. in Z .

The polar property turns out to be a powerful test to check if X * is f.d.-r. in
Z . For instance, an easy application of the Hahn-Banach Theorem shows that
every Banach space X has the polar property as a subspace of X **, so we get
the main result of the Principle of Local Reflexivity: X ** is f.d.-r. in X .

Recall that for every space X , the ultrapower of its conjugate X *U is con-
tained in XU*. Hence TU* is an extension of T *U for every T� L (X , Y ). Using
Theorem 4.4 and a similar result for a generalization of the polar property, we
obtain the following result.

PROPOSITION 4.5 [45]. – For every operator T� L (X , Y ), we have:

(a) N(TU*) is finitely dual representable in N(T *U ).

(b) N(T **U ) is finitely representable in N(TU ).

In order to apply the previous results about finite representability, we
need the following characterization of the semigroups W up

1 , Rup
1 and Uup

1 in
terms of the kernel of the ultrapowers of the operators.

PROPOSITION 4.6 [40, 47]. – Let A be one of the operator ideals W, R or U.
Then the following statements are equivalent:

(a) T� Aup
1 ;

(b) N(TU )�Sp (Aup );

(c) N(TU )�Sp (A).

Note that Sp (W up ) is the ideal of all superreflexive subspaces, Sp (Uup ) is
the ideal of all Banach spaces which do not uniformly contain copies of lQn for
every n�N , and Sp (Rup ) is the ideal of all spaces which do not uniformly con-
tain copies of l1

n for every n�N .
Propositions 4.6 and 4.5(b) lead to the following symmetry under duality.
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PROPOSITION 4.7 [40, 45, 47]. – Let A be one of the operator ideals W, R or
U. Then

(a) T� Aup
1 ` T *� (Ad )up

2 ` T **� Aup
1 .

(b) T� (Ad )up
2 ` T *� Aup

1 .

We can also characterize the semigroups Aup
1 and (Ad )up

2 in terms of
ultrapowers.

PROPOSITION 4.8 [40, 47]. – Let A be one of the operator ideals W, R or U.
Then we have:

Aup
1 4]T : TU� A1( and (Ad )up

2 4]T : TU� Ad
2( .

Moreover, these semigroups have good topological properties and admit a
perturbative characterization.

PROPOSITION 4.9 [40, 47]. – Let A be one of the operator ideals W, R or U.
Then Aup

1 and (Ad )up
2 are open, and for every T� L (X , Y ), we have:

(a) T� Aup
1 ` N(T1K)�Sp (Aup ) for every K� K(X , Y );

(b) T� (Ad )up
2 ` YOR(T1K)�Sp((Ad )up ) for every K� K(X , Y ).

An immediate consequence of this result is that

W up
1 % Rup

1 % Uup
1 and Wup

2 % (Rd )up
2 % (Ud )up

2 .

We can also characterize the operators T� (Ad )up
2 in terms of the kernels

N(T *U ). Note that the same results are true with N(TU*) instead of
N(T *U ).

PROPOSITION 4.10 [47]. – Let A be one of the operator ideals W, R or U.
Then the following statements are equivalent:

(a) T� (Ad )up
2 ;

(b) N(T *U )�Sp (Aup );

(c) N(T *U )�Sp (A).

For cosupertauberian operators we have a better result.

PROPOSITION 4.11 [45]. – An operator T� W up
2 if and only if N(T *U )4

N(TU*).

Recently, Rosenthal has characterized supertauberian operators in terms
of wide-(s) finite sequences. Recall [84, Definition 3] that given lD0, a finite
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sequence x1 , R , xn�X is said to be a l-wide-(s) sequence if

(a) V !
i41

k

ci xiVG2lV !
i41

n

xiV for all kEn and scalars c1 , R , cn ,

(b) Vxi VGl for every i , and

(c) N !
i4k

n

ciNGlV !
i41

n

ci xiV for all 1GkGn and scalars c1 , R , cn .

THEOREM 4.12 [84]. – An operator T� L (X , Y ) is not supertauberian if
and only if for every eD0 there are finite (11e)-wide-(s) sequences of arbit-
rary lenght whose images have norm at most e .

The ultrapower L1 ( m)U can be decomposed as L1 ( m)U4L1 ( m U )5L1 (n U ),
where L1 ( m U ) consists of all f�L1 ( m)U which admit an equiintegrable repre-
sentative, and L1 (n U ) consists of those f4 ( fi )i�I such that lim

iK U
m(]fic0()40

[48].

For operators T : L1 ( m)KL1 ( m), the decomposition of L1 ( m)U induces the
following matricial representation of TU :

TU4uTU
11

0

TU
12

TU
22
v ,

Using this decomposition, we can characterize the supertauberian operators
on L1 ( m).

THEOREM 4.13 [46]. – For T : L1 ( m)KY , the following statements are
equivalent:

(1) T is supertauberian;
(2) N(TU )%L1 ( m U );

(3) TU NL1 (n U ) is an isomorphism;
(4) TU NL1 (n U ) is injective.

(5) TU
22 is an isomorphism.

Finally, we give some examples of operators in the semigroups Aup
1 and

(Ad )up
2 .

EXAMPLES. – (a) Semi-Fredholm operators: For the operator ideal of com-
pact operators we have that K 4 Kup . Thus,

F 14 Kup
1 and F 24 Kup

2 .

(b) Operators with closed range: Let T� L (X , Y ) be an operator with
closed range. Then T� Aup

1 if and only if N(T)�Sp (Aup ). Moreover, T� (Ad )up
2

if and only if Y/R(T)�Sp (Ad ) [47].
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(c) Operators on L1 ( m): Since a subspace of L1 ( m) is either superreflex-
ive or contains a copy of l1 [17], Theorem 3.15 and Propositions 2.21 and 4.9
yield

W1 (L1 ( m), Y)4 W up
1 (L1 ( m), Y)4 R1 (L1 ( m), Y)4 Rup

1 (L1 ( m), Y)

for every Banach space Y .

(d) Let 8* be the original Tsirelson space. Since 8* is reflexive, every
operator T : 8*KY is tauberian. However, since l1 is finite representable in
every infinite dimensional subspace of 8* [24], we have that F 1 (8*, Y )4
Rup

1 (8*, Y ) for every Banach space Y .
(e) The natural inclusion i : JKc0 of the classical James space into c0 is

tauberian. However, i� Uup
1 [47].

NOTES AND REMARKS 4.14. – The supertauberian operators were studied by
Tacon [87, 88] using nonstandard analysis. Further study using ultrapowers
was done in [15, 40, 76].

4.2. Incomparable Banach spaces.

Fredholm theory has been fruitfully applied to the study of Banach spaces
throughout the concept of incomparability between Banach spaces. We refer
to [52] for a description of these applications. Here we follow [7] to show that
using these concepts we can define some operator ideals whose associated
semigroups have a good behaviour: they admit a perturbative characterization
and the operators T� L (X , Y ) with closed range R(T) in the semigroups can
be characterized in terms of the properties of the kernel N(T) or the cokernel
Y/R(T) of the operator.

DEFINITION 4.15 [83, 54]. – We say that two Banach spaces X and Y are to-
tally incomparable if there is no infinite dimensional subspace of X isomor-
phic to a subspace of Y .

We say that X and Y are totally coincomparable if there is no infinite di-
mensional quotient of X isomorphic to a quotient of Y .

EXAMPLE 4.6. – (a) The spaces l1 and lp are totally incomparable but not to-
tally coincomparable for 1EpEQ .

(b) lQ and lq are totally coincomparable but not totally incomparable for
2EqEQ .

(c) lp and lq are totally incomparable and totally coincomparable for
1EpEqEQ .

Indeed, every separable Banach space is isomorphic to a quotient of l1 and
to a subspace of lQ . Moreover, every operator from lq into lp is compact [72,
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Proposition 2.c.3] for pEqEQ , and every infinite dimensional subspace of lp

contains a complemented subspace isomorphic to lp [72, Proposition 2.a.2].
These results imply (a).

We can prove (b) and (c) in a similar way.
It is easy to see that if X * and Y * are subspace (quotient) incomparable

then X and Y are quotient (subspace) incomparable, but the converse implica-
tions fail [54].

These concepts admit the following structural characterization.

THEOREM 4.17 ([83, Theorem 2] and [54]). – (a) X and Y are totally incom-
parable if and only if for every Banach space Z with subspaces M and N iso-
morphic to X and Y , the sum M1N is closed.

(b) X and Y are totally coincomparable if and only if for every Banach
space Z with subspaces M and N such that Z/M and Z/N are isomorphic to X
and Y , the sum M1N is closed.

For a class of Banach spaces A , the incomparability classes Ai and Ac are de-
fined by

As »4]X : X totally incomparable with every Y�A( and

Aq »4]X : X totally coincomparable with every Y�A( .

We can repeat the procedure and define Ass , Acc , etc. It is not difficult to
see that A%Ass , AsOAss4F , the finite dimensional spaces, As4Asss , and we
have analogous results for Aq .

PROPOSITION 4.18 [10]. – For every class of Banach spaces A , the incompa-
rability class As (respectively, Aq ) is an injective (respectively, surjective)
space ideal which satisfies the three-space property.

The incomparability classes of a space ideal Sp (A) can be characterized in
terms of the semigroups A1 and A2 for some operator ideals. In the next
Proposition we assume A closed so that A contains the nuclear operators.

PROPOSITION 4.19 [7]. – Let A be a closed operator ideal.

(a) If A is injective and satisfies the left three-space property, then

Sp (A)s4]X : A1 (X , Y )4F 1 (X , Y ) for every space Y ( .

(b) If A is surjective and satisfies the right three-space property,
then

Sp (A)q4]X : A2 (Z , X)4F 2 (Z , X) for every space Z( .
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Using these concepts of incomparability, for every class A of Banach
spaces, we define the A-singular operators A S and the A-cosingular operators
A C, that are generalizations of the strictly singular and the strictly cosingular
operators, in the following way:

A S(X , Y ) »4]T� L (X , Y ) : TJM isomorphism ¨ M�A( ,

A C(X , Y ) »4]T� L (X , Y ) : QN T surjective ¨ Y/N�A( .

PROPOSITION 4.20 [11]. – Let A be a space ideal.

(a) If A4Ass , then A S is an operator ideal and Sp (A S)4A .

(b) If A4Aqq , then A C is an operator ideal and Sp (A C)4A .

EXAMPLE 4.21. – (a) The class Nc0 of Banach spaces containing no copies of
c0 satisfies Nc04Nc0

ss and Nc0 S 4 U, the unconditionally converging opera-
tors.

(b) The class Nl1 of Banach spaces containing no copies of l1 satisfies
Nl14Nl1

ss and Nl1 S 4 R, the weakly precompact operators.

QUESTION 16. – If A does not satisfy A4Ass (respectively, A4Acc ), we do
not know if A S(X , Y ) (respectively, A C(X , Y ) ) is always a subspace of
L (X , Y ).

The problem for A the class of reflexive Banach spaces was raised in
[67].

Next we show that, in some cases, the semigroups A S1 and A C2 admit al-
gebraic and perturbative characterizations.

THEOREM 4.22 [7]. – Let A be a space ideal satisfying A4Ass . Then for T�
L (X , Y ), the following assertions are equivalent:

(a) T�A S1 ;

(b) N(T1K)�A for every � K(X , Y );

(c) TJM�F 1 for every subspace M�As .

THEOREM 4.23 [7]. – Let A be a space ideal satisfying A4Aqq . Then for T�
L (X , Y ), the following assertions are equivalent:

(a) T�A C2 ;

(b) YOR(T1K)�A for every � K(X , Y );

(c) QN T�F 2 for every subspace N such that Y/N�Aq .

From these characterizations we derive that the semigroups have the left
(or the right) three-space property.
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COROLLARY 4.24 [7]. – Let T� L (X , Y ) be an operator with R(T)
closed.

(a) If A4Ass and N(T)�A , then T�A S1 .
(b) If A4Aqq and Y/R(T)�A , then T�A C2 .

EXAMPLE 4.25. – In the case A4Nc0 we have A S14 U1 , where U is the
ideal of the unconditionally converging operators.

For A4Nl1 we have A S14 R1 , where R is the ideal of the weakly pre-
compact operators. These semigroups were considered in Section 3.4.

QUESTION 17. – Do the semigroups A S2 and A Sd
1 admit a perturbative char-

acterization in the case A4Ass ?
Do they have the left (or the right) three-space property?
The same questions can be asked for A C1 and A Cd

2 in the case
A4Aqq ?

NOTES AND REMARKS 4.26. – For other notions of incomparability we refer
to [52].

4.3. Operational quantities.

Here we show that it is possible to define operator ideals and operator
semigroups in terms of operational quantities.

Semi-Fredholm operators and strictly singular (cosingular) operators have
been studied by means of some operational quantities. Let us denote by
n(T) »4VTV the norm of T� L (X , Y ). Schechter [86] (with a different nota-
tion) considered the operational quantities in and sin , defined as follows:

in (T) »4 inf ]n(TJM ) : dimM4Q( ,

sin (T) »4 sup ]in(TJM ) : dimM4Q( ,

and for K , T� L (X , Y ), he proved that T�F 1 if and only if in(T)D0, T� S S

if and only if sin(T)40 and

sin (K)E in (T) ¨ T1K is upper semi2Fredholm .

The last result unifies and improves previous results about the stability of up-
per semi-Fredholm operators under perturbation by small-norm and strictly
singular operators. Note that in the definition of in and sin we need the space
X to be infinite dimensional.

Lower semi-Fredholm operators and strictly cosingular operators may be
also characterized in terms of operational quantities derived from the norm,
using quotients instead of subspaces. We refer to [4, Section 3] for a brief de-
scription. Moreover, similar results have been obtained for operational quanti-
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ties derived from the injection modulus, the surjection modulus and other
operational quantities [78, Section 3].

These operational quantities that characterize the classes of operators of
Fredholm theory are defined in terms of the class F of finite dimensional
spaces. Using other space ideals instead of F , other operational quantities
were introduced in [50, 51], that allowed to obtain operator semigroups.

Given a space ideal A , we say that X is hereditarily in A if every subspace of
X belongs to A . We say that X is co-hereditarily in A if every quotient of X be-
longs to A .

Now, assuming that X is not hereditarily in a space ideal A , for every oper-
ator T� L (X , Y ) we define the operational quantities sjA and isjA by

sjA (T) »4 sup ] j(TJM ) : M�A( ,

isjA (T) »4 inf ]sjA (TJM ) : M�A( .

Moreover, assuming that Y is not co-hereditarily in A , we define the opera-
tional quantities sqA and isqA by

sqA (T) »4 sup ]q(QN T) : Y/N�A( ,

isqA (T) »4 inf ]sqA (QN T) : Y/N�A( .

In the case A4F , the finite dimensional spaces, these quantities charac-
terize the operators in classical Fredholm theory:

T�F 1 ` isjF (T)D0; T� S S ` sjF (T)40 ;

T�F 2 ` isqF (T)D0; and T� S C ` sjF (T)40 .

Moreover, it is not difficult to see that the quantities sjA and sqA characterize
the classes A S and A C introduced in section 4.2 in the following way:

T�A S ` sjA (T)40; T�A C ` sqA (T)40 .

The following result shows that these quantities are suitable to define
semigroups in the form

]T� L : isjA (T)D0( or ]T� L : isqA (T)D0( .

THEOREM 4.27 [51, Theorem 2.5]. – Let A be a space ideal, and let T�
L (X , Y ) and S� L (Y , Z).

(a) If X and Y are not hereditarily in A , then isjA (S) Q isjA (T)G
isjA (ST).

(b) If Y and Z are not co-hereditarily in A , then isqA (S) Q isqA (T)G
isqA (ST).



OPERATOR SEMIGROUPS IN BANACH SPACE THEORY 201

The semigroups obtained in this way are clearly open; hence they do not
coincide with the semigroups A S1 and A C2 of section 4, in general. Indeed, if
A is either the class of Banach spaces containing no copies of l1 or the class of
Banach spaces containing no copies of c0 , the semigroup A S1 is R1 or U1

(Example 4.25), which are not open.

NOTES AND REMARKS 4.28. – It is possible to define ideal variations associ-
ated with an operator ideal [12, 92], which in turn allow us to define semi-
groups. Some of these semigroups, in the case of the weakly compact opera-
tors, were considered in [13].
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[11] T. ALVAREZ - M. GONZÁLEZ - V. M. ONIEVA, Characterizing two classes of operator

ideals, in Contribuciones Matemáticas. Homenaje Prof. Antonio Plans, Univ.
Zaragoza 1990, 7-21.

[12] K. ASTALA, On measures of noncompactness and ideal variations in Banach
spaces, Ann. Acad. Sci. Fennicae Ser. A I Math., Dissertationes, 29 (1980), 42
pp.

[13] K. ASTALA - H.-O. TYLLI, Seminorms related to weak compactness and to tauberi-
an operators, Math. Proc. Cambridge Phil. Soc., 107 (1990), 365-375.

[14] F. ATKINSON, Relatively regular operators, Acta Sci. Math. Szeged, 15 (1953),
38-56.

[15] M. BASALLOTE, Representabilidad finita por cocientes y operadores, Doctoral The-
sis, Univ. Sevilla, 1998.
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[25] J. M. F. CASTILLO - M. GONZÁLEZ, Three-space problems in Banach space theory,
Springer Lecture Notes in Math. 1667, 1997.

[26] R. W. CROSS, Linear transformations of tauberian type in normed spaces, Note di
Mat. volume dedicated to Prof. Köthe (1980), 193-203.

[27] R. W. CROSS, On a theorem of Kalton and Wilansky concerning tauberian opera-
tors, J. Math. Anal. Appl., 171 (1992), 156-170.

[28] R. W. CROSS, A characterisation of almost-reflexive normed spaces, Proc. R. Ir.
Acad. A, 92 (1992), 225-228.

[29] R. W. CROSS, F1-operators are tauberian, Quaestiones Math., 18 (1995), 129-
132.

[30] R. W. CROSS, Multivalued linear operators, M. Dekker Pure and Appl. Math.
Series 213, 1998.

[31] W. J. DAVIS - T. FIGIEL - W. B. JOHNSON - A. PE LC CZYŃSKI, Factoring weakly com-
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