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Some Remarks on the Weyl Asymptotics
by the Approximate Spectral Projection Method.

ERNESTO BUZANO

Sunto. – In questo lavoro studiamo il resto relativo della formula asintotica per gli au-
tovalori di un operatore differenziale in R n, ottenuta mediante il metodo delle
proiezioni spettrali approssimate ([3], Theorem 6.2). In un primo tempo diamo un
controesempio di un operatore di Schrödinger con potenziale a crescita algebrica,
per il quale il resto non è limitato. Quindi specifichiamo alcune condizioni addi-
zionali da imporre all’operatore in modo da avere un resto infinitesimo.

1. – Introduction.

The study of the asymptotic behavior of the eigenvalues of a differential
operator in Rn with compact resolvent has been the subject of several papers,
starting from the fifties. Among the various techniques employed to evaluate
the remainder in the asymptotic formula, there is the so-called approximate
spectral projection method. While this technique yields a weaker remainder
estimate than the hyperbolic operator method, it can be applied to a broader
number of cases.

The approximate spectral projection method was introduced by Tulovskiı̆
and Shubin in [9] (see also [8]) and improved and extended by several authors.
Concerning systems of differential operators in Rn a rather general result is
due to Feı̆gin [4, 5]. In the scalar case, i.e. for a single differential operator, the
result has been improved by Dencker [3]. Let us describe the Feı̆gin’s result
in the scalar case, with the Dencker’s improvement.

We employ the following notation: given two functions f , g : XKR, and a
subset A%X, we write

f (x) Tg(x) , (x�A ,

if there exists a constant C4C( f , g , A) such that

f (x) GCg(x) , (x�A .

We say that L� C1 (Rn , R) is a weight function if there exists

0 Gd 0 E1 ,
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such that

1 TL(x) ,(1)

N˜L(x)NTL(x)11d 0 ,(2)

for all x�Rn.
Consider a differential operator of order m in Rn :

Au(x) 4 !
NaNGm

aa (x) D a
x u(x)

with smooth coefficients. Assume that there exists

d 0 GdE1

such that for each b�Nn (1) we have

N¯b
x aa (x)NTL(x)m2NaN1dNbN , (x�Rn ,

then A is a properly supported pseudo-differential operator:

Au(x) 4 (2p)2nse (x2y) Qj ag 1

2
(x1y), jh u(y) dy dj ,

with Weyl symbol:

a(x , j) 4 !
NaNGm

!
bGa

g i

2
hNbNga

b
h ¯b

x aa (x)ja2b .(3)

If a is real valued, and a(x , j) KQ as NxN1NjNKQ, then A is a closed,
self-adjoint operator in L 2 (Rn ), with discrete spectrum diverging to 1Q. Let
(l j )jF1 be the sequence of the eigenvalues of A, repeated according to their
multiplicity, and define the counting function:

8(t) 4 !
l jGt

1 .

8(t) is the number of eigenvaues less or equal to t. The Feı̆gin’s result with
the Dencker’s improvement (see [3], Theorem 6.2 and Example 3.5), is the
following.

THEOREM 1. – Assume that a is real valued and that there exist

lD0 , d 0 GdErG1 ,

and RF0, such that

a(x , j) U (11NxN1NjN)l , for all NxN1NjNFR

(1) N4 ]0, 1 , R(.
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and for each a , b�Nn

N¯a
j ¯b

x a(x , j)NTa(x , j) (NjN1L(x) )2rNaN1dNbN ,(4)

for all NxN1NjNFR. Then

8(t) 4W(t)]11 O (Re (t) )( , as tKQ ,(5)

where

W(t) 4 (2p)2n s
a(x , j) Gt

dx dj ,

Re (t) 4
W(t1t 12e )2W(t2t 12e )

W(t)
,(6)

and

0 EeE
2(r2d)

3m
. r(7)

Observe that 2(r2d) /3mE1, since mF1, because a(x , j) is a polynomial
in j.

Under suitable non-degeneracy conditions, the asymptotic evaluation of
W(t) has been carried out by Boggiatto and Buzano in [1].

It is clear that the asymptotic formula (5) makes sense only when the rela-
tive remainder Re (t) vanishes as tKQ. This is far from being true: in the
next Section we give an example of a Schrödinger operator satisfying the hy-
potheses of Theorem 1, so that the asymptotic formula (5) is true, but

lim sup
tKQ

Re (t) 4Q ,

for every eE1.
In the third Section we specify some additional conditions to be imposed on

the symbol a in order to obtain that Re (t) K0 as tKQ.

2. – A counterexample.

Consider two sequences of real numbers (tk )kF0 and (yk )kF0 which are
strictly increasing and diverging to 1Q as kKQ. Assume moreover that
there exists hD0, such that

tk11 2 tk D2h , (kF0 .
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Set

m k 4
yk11 2yk

tk11 2 tk

, for kF0

and

m 21 40 .

Choose a function f� CQ (R , R) such that

f(t) 40 ,

0 Ef(t) E1 ,

f(t) 41 ,

f 8 (t) D0 ,

for tG0 ,

for 0 E tE1 ,

for tF1 ,

for 0 E tE1 .

For each kF0 set

f k (t) 4
.
/
´

12fg t2 tk

h
h ,

0 ,

if m k21 Em k ,

if m k21 Fm k ,

c k (t) 4
.
/
´

12fg tk11 2 t

h
h ,

0 ,

if m k Dm k11 ,

if m k Gm k11 .

Define f� CQ (R , R) as

f (t) 4y0 ,

for tE t0 and

f (t)4yk1m k (t2 tk )1(m k21 2m k )(t2 tk ) f k (t)1 (m k11 2m k )(t2 tk11 ) c k (t) ,

for tk G tE tk11 and kF0.
It is elementary to prove the following

LEMMA 1. – We have

1) f (tk ) 4yk , for all kF0,

2) f 8 (t) D0, for tD t0 ,

3) for each l�N, there exists Cl D0 such that

Nf (l) (t)NGCl max ]m k21 , m k , m k11 ( ,

for tk G tE tk11 and kF0. r
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Now we choose the sequences (tk )kF0 and (yk )kF0 in the following way.
Fix

0 EpEq , rD1 ,(8)

and let by induction

t0 40 ,

t1 4 (3 /2)pq/n(rq2p) ,

t2k 4 t2k21
q/p ,

t2k11 4 t2k
r ,

y0 41 ,

y2k21 4 t2k21
n/p ,

y2k 4 t2k
n/q 1

1

2
t2k

n/kq .

We have

tk11 D tk , yk11 Dyk ,

for all kF0, and

tk KQ , yk KQ , tk11 2 tk KQ ,

as kKQ. Let f be the function associated to (tk )kF0 and (yk )kF0 and consider
the potential

V(x) 4 f (NxN) .

By using Lemma 1 it is elementary to prove the following

PROPOSITION 1. – We have

1) V� CQ (Rn , R),

2) (11NxN)n/rq TV(x) T (11NxN)nr/p , (x�Rn,

3) for each a�Nn we have

N¯a
x V(x)NTV(x)11d 1 NaN , (x�Rn ,

with

d 1 4 kg n

p
21h rq

n
21l

1

. r

From this Proposition it follows in a standard way
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PROPOSITION 2. – Assume that

g n

p
21h rq

n
E

3

2
,(9)

then

1) L(x) 4V(x)1/2 is a weight function, i.e. it satisfies (1) and (2)
with

d 0 42d 1 E1 ,

2) The Schrödinger operator A42D1V(x) is a differential operator
of second order with Weyl symbol a(x , j) 4NjN2 1V(x) which satifies the hy-
potheses of Theorem 1 with

l4 minm1,
n

2rq
n , r41 , d4d 0 42d 1 E1 . r

From this Proposition and Theorem 1 we obtain that

8(t) 4W(t)]11 O (Re (t) )( , as tKQ ,

with

W(t) 4 (2p)2n s
NjN21V(x) Gt

dx dj4
v n

(2p)n
s (t2V(x) )n/2

1 dx ,(10)

Re given by (6), and

0 EeE
122d 1

3
.

In (10), we denote by v n the volume of the unit ball in Rn.

PROPOSITION 3. – Let

t k 4 t2k21
n/p 4y2k21 , for kF1 .

Then, if

q2pD
n

2
,(11)

we have that

lim
kKQ

Re (t k ) 4Q ,

for any 0 EeE1.
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PROOF. – Set

M(t) 4 s
V(x) Gt

dx

4nv n s
0

f 21 (t)

t n21 dt

4v n ( f 21 (t) )n .

Hence

f 21 (t) 4g 1

v n

M(t)h1/n

and

f (t) 4M 21 (v n t n ) .

Thus we have

W(t) 4
v n

(2p)n
s (t2V(x) )n/2

1 dx

4
nv n

2

(2p)n
s
0

f 21 (t)

(t2 f (t) )n/2 t n21 dt

4
nv n

2

(2p)n
s
0

f 21 (t)

(t2M 21 (v n t n ) )n/2 t n21 dt

4
v n

(2p)n
s
0

M(t)

(t2M 21 (u) )n/2 du .
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It follows that

Re (t) 4
W(t1t 12e )2W(t2t 12e )

W(t)

4

s
0

M(t1t12e)

(t1t 12e2M 21(u))n/2du2 s
0

M(t2t12e)

(t2t 12e2M 21(u))n/2du

s
0

M(t)

(t2M 21(u))n/2du

F

s
M(t2t12e )

M(t1t12e )

(t1t 12e2M 21 (u) )n/2 du

t n/2 M(t)

F

s
M(t)

M(t1 (1 /2) t12e )

(t1t 12e2M 21 (u) )n/2 du

t n/2 M(t)

F
(dt 12e )n/2 ]M(t1dt 12e )2M(t)(

t n/2 M(t)

F
M(t1dt 12e )2M(t)

2n/2 t ne/2 M(t)
.

Now observe that

t k 1
1

2
t k

1/k 4 t2k21
n/p 1

1

2
t2k21

n/kp

4 t2k
n/q 1

1

2
t2k

n/kq

4y2k .



SOME REMARKS ON THE WEYL ASYMPTOTICS ETC. 783

It follows that

Mgt k 1
1

2
t k

12ehFMgt k 1
1

2
t k

1/kh
4v n ( f 21 (y2k ) )n

4v n t2k
n

4v n t2k21
nq/p , for kF

1

12e
,

and

M(t k ) 4v n ( f 21 (y2k21 ) )n

4v n t2k21
n .

Therefore

Re (t k ) F
M(t k 1dt k

1/k )2M(t k )

2n/2 t k
(n/2 )(121/k) M(t k )

4
v n t2k21

nq/p 2v n t2k21
n

2(n/2 ) t2k21
(n/p)(n/2 )(121/k) v n t2k21

n

4 t2k21
(n/p) (q2p2 (n/2 )(121/k) ) 22n/2 (12 t2k21

n(12q/p) ) KQ ,

as kKQ. r

It is easy to ascertain that the inequalities (8), (9), and (11) are consistent.
In this way we have shown that there are operators satisfying the hypotheses
of Theorem 1, for which the relative remainder Re (t) in the asymptotic formu-
la (5) is unbounded as tKQ.

3. – Some operators with vanishing remainder in the asymptotic formula.

Throughout this section we consider a differential operator A with Weyl
symbol a(x , j) satisfying all the hypotheses of Theorem 1, so that the asymp-
totic formula (5) is true. We employ the following notation: given n�Rn

1 (2), t�
R1 , and j�Rn, we set

t n j4 (t n 1 j 1 , R , t n n j n ) .

(2) R14 ]x�R : xD0(.
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PROPOSITION 4. – Let

V(x) 4a(x , 0 ) ,

M(t) 4 s
V(x) Gt

dx ,

and

a0 (x , j) 4a(x , j)2a(x , 0 ) .

Assume there exist

n , nA �Rn
1 , CF1 , 1 D t0 D0 , t 0 D0 ,

and a measurable function

f : Rn KR ,

such that

a0 (x , t n j) FC 21 ta0 (x , j), for t� (0 , t0 ), x , j�Rn ,(12)

a0 (x , (11 t)nA j)F (11C 21 t) a0 (x , j), for t� (0 , t0 ), x , j�Rn ,(13)

V(x) F0, for x�Rn ,(14)

0 G f (j) Ga0 (x , j), for x , j�Rn ,(15)

a0 (x , j)1V(x) GC( f (j)1V(x) ) , for x , j�Rn ,(16)

M(2t) GCM(t), for tFt 0 .(17)

Then

Re (t) 4 O (t2NnNe/(NnN11) ), as tKQ ,(18)

and therefore

8(t) 4W(t)]11 O(t2NnNe/(NnN11) )(, as tKQ .

REMARK. – Condition (17) is the Tauberian condition of Rozenbljum, see [7].

PROOF. – The estimate (18) is a consequence of the following Lemma which
is a reworking of a Lemma of Rozenbljum ([7], Lemma 1.1).

LEMMA 2. – There exist

KD0 , 0 Eu 0 G1, t 1 Ft 0 ,
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such that

W((11u) t)G (11Ku NnN/(NnN11) ) W(t) ,(19)

W((12u) t)F (12Ku NnN/(NnN11) ) W(t) ,(20)

for 0 EuGu 0 and tFt 1 .

PROOF. – Set

W((11u) t)4W1 1W2

with

W1 4 (2p)2n s
a01VG (11u) t

VG (12u s ) t

dx dj ,

W2 4 (2p)2n s
a01VG (11u) t

(12u s ) tEV

dx dj ,

where

s4
1

NnN11
.

Let us estimate W1 . On the domain of integration we have:

u s tGt2V .

Hence

a0 Gt2V1utG (11u 12s )(t2V) .

Therefore

W1 G (2p)2n s
a0G (11u12s )(t2V)

dx dj .

Let

j4 (11Cu 12s )nA h ,

where C is the constant which appears in (12) and (13). We have

a0 (x , j) F (11u 12s ) a0 (x , h)
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and

W1 G (2p)2n (11Cu 12s )NnAN s
a0 (x , h) Gt2V(x)

dx dh

4 (11Cu 12s )NnAN W(t) .

Now we estimate W2 . On the domain of integration we have

VG (11u) t2a0 G2t ,

a0 G (11u) t2VG (u1u s ) tG2u s t .

Therefore

W2 G (2p)2n s
a0G2u s t

VG2t

dx dj .

Let

j4 (4C 2 u s )n h ,

then, from (12) we have

a0 (x , j) F4Cu s a0 (x , h) ,

and

W2 G (2p)2n (4C 2 u s )NnN s
a0 (x , h) Gt/2C

V(x) G2t

dx dh

G (2p)2n 4NnN C 2NnN u sNnN s
f (h) Gt/2C
V(x) G2t

dx dh

4 (2p)2n 4NnN C 2NnN u sNnN s
V(x) G2t

dx s
f (h) Gt/2C

dh

G (2p)2n 4NnN C 2NnN u sNnN C N s
V(x) Gt/2C

dx s
f (h) Gt/2C

dh

G (2p)2n 4NnN C 2NnN1N u sNnN s
C( f1V) Gt

dx dh

G (2p)2n 4NnN C 2NnN1N u sNnN s
a01VGt

dx dh

44NnN C 2NnN1N u sNnN W(t), for tF2N t 0 ,
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where N is such that

2N F2C ,

i.e.

M(2t) GCM(t) GRGC N M(t/2N ) GC N M(t/2C) .

Now observe that

sNnN4
NnN

NnN11
412s ,

and that, for u 0 sufficiently small, we have

(11u 12s )NnANG11 (NnAN11)u NnN/(NnN11) , for 0 EuGu 0 .

This proves the estimate (19) with KFK 8, where K 8 is large enough. In order
to prove (20), we observe that we can choose u 0 so small that

W(t) 4Wgg11
u

12u
h(12u) th

G y11K 8g u

12u
hNnN/(NnN11)z W((12u) t) ,

for 0 EuGu 0 and tFt 1 4 (12u 0 )21 2N t 0 . But this implies

W((12u) t)Fg11K 8g u

12u
hNnN/(NnN11)h21

W(t)

F (12K 9 u NnN/(NnN11) ) W(t) ,

for a suitable K 9FK 8. Thus (20) is proven with KFK 9. r

Now we can prove estimate (18). It suffices to put

u4t2e

into (19) and (20). We obtain

W(t1t 12e ) G (11Kt2NnNe/(NnN11) ) W(t) ,

W(t2t 12e ) F (12Kt2NnNe/(NnN11) ) W(t) ,

and therefore

Re (t) G2Kt2NnNe/(NnN11) , for tFt 1 . r
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Now we show two classes of potentials which meet the Tauberian condition
(17).

PROPOSITION 5. – If there exixt uD0 and RF0 such that

V(u21 x) F (11u) V(x) , (NxNFR ,

then M(t) satisfies (17).

PROOF. – Let

t 1 4 maxm 11u

2
V(x): NxNGRn ,

then we have

M(2t) 4u2n s
V(u21 x) G2t

dx

Gu2n{ s
NxNGR

dx1 s
V(u21 x) G2t

NxNDR

dx}
Gu2n{ s

NxNGR

dx1 s
V(x) G (2 /(11u) ) t

NxNDR

dx}
4u2n s

V(x) G (2 /(11u) ) t

dx

4u2n Mg 2

11u
th, for tFt 1 .

Now we can iterate:

M(2t) Gu2nN Mg 2

(11u)N
th ,

for

tFt N 4 max{ (11u)N

2
V(x): NxNGR} .

Then, if we choose N such that (11u)N /2 G1, we obtain the result. r
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PROPOSITION 6. – Assume there exists a real valued polynomial g(x), three
constants LF1, RF0, t 1 D0 and a strictly increasing function f : R1K

R1 , such that

lim
tKQ

f(t) 4Q ,

f(2t) GLf(t), for tFt 1 ,(21)

L 21 g(x) Gf(V(x) )GLg(x), for NxNFR .(22)

Then M(t) meets (17).

PROOF. – Recall the following estimate due to Nilsson [6], Theorem 1:

THEOREM 2. – Given a real valued polynomial g(x) such that g(x) KQ , as
NxNKQ , there exist CF1, t 8D0, sD0 and k�N such that

C 21 t s ( log t)k G s
g(x) Gt

dxGCt s ( log t)k , for tFt 8 . r(23)

Because f(t) KQ as tKQ, there exists t 0 Ft 8 , t 1 , such that

L 21 f(t) Ft 8

for tFt 0 . Moreover we can take t 0 so large that

V(x) Gt and g(x) GL 21 f(t) ,

for

NxNGR and tFt 0 .

Because f is strictly increasing we have

M(2t) 4 s
V(x) G2t

dx4 s
f(V(x) ) Gf(2t)

dx .(24)

For tFt 0 , we have

s
f(V) Gf(2t)

dx4 s
NxNGR

dx1 s
f(V) Gf(2t)

NxNDR

dx .(25)
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By (21) and (22) we have

s
f(V) Gf(2t)

NxNDR

dxG s
f(V) GLf(t)

NxNDR

dx(26)

G s
gGL 2 f(t)

NxNDR

dx , for tFt 0 .

By (24), (25), and (26) we have

M(2t) G s
gGL 2 f(t)

dx , (tFt 0 .(27)

Now g(x) KQ as NxNKQ, hence by (23) we have

s
gGL 2 f(t)

dxT (L 21 f(t) )s (log (L 21 f(t) ))k

T s
gGL 21 f(t)

dx , (tFt 0 .

Therefore, from (27) we have

M(2t) T s
gGL 21 f(t)

dx

G s
NxNGR

dx1 s
L 21 f(V) GL 21 f(t)

NxNDR

dx

4M(t) . r

We end the paper with a simple example in R 2. Consider

A4Dx
6 1Dx

4 Dy
2 1Dy

4 1 (11x 2 1y 2 1x 2 y 2 )1/2 .

The Weyl symbol is a4a0 1V with

a0 (j , h) 4j 6 1j 4 h 2 1h 4 ,

and

V(x , y) 4 (11x 2 1y 2 1x 2 y 2 )1/2 .
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a0 is multi-quasi-elliptic, (see [2], page 62), so

N¯a
z a0 (z)NTa0 (z)12 (1 /8)NaN ,

moreover

¯a
z V(z)NTV(z) ,

with

z4 (j , h) , z4 (x , y) .

It follows that

a(z , z) G (NzN1L(z) )6 ,

N¯a
z ¯b

z a(z , z)NTa(z , z) (NzN1L(z) )2(1 /2)NaN ,

where

L(x , y) 4 (11x 2 1y 2 1x 2 y 2 )1/12 .

Moreover, if we set

n4g 1

8
,

1

4
h , nA 4g 1

6
,

1

4
h ,

then we have

a0 (t n z) 4 t 3/4 j 6 1 tj 4 h 2 1 th 4

F ta0 (z) ,

and

a0 ((11 t)nA z)4 (11 t)j 6 1 (11 t)7/6 j 4 h 2 1 (11 t) h 4

F (11 t) a0 (z) ,

for 0 E tE1.

Finally, it is obvious to see that V satisfies the hypotheses of Proposition
6 with g(z) 4 (11x 2 )(11y 2 ), f(t) 4kt, L4k2, and t 1 41. Therefore,
by Propositions 4 and 6 we have

8(t) 4W(t)]11 O(t23e/11 )( , as tKQ ,
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where

0 EeE
1

18
.
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