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A Geometric Description of Hazama’s Exceptional Classes

FEDERICA GALLUZZI

Sunto. – Sia X una varietà abeliana complessa di tipo Mumford. In queste note dare-
mo una descrizione esplicita delle classi eccezionali in B 2 (X3X) trovate da Haza-
ma in [Ha] e le descriveremo geometricamente usando la grassmaniana delle rette
di P7.

Introduction.

In this paper we will give an explicit description of the exceptional classes
found by Hazama (see [Ha, 5.1]) in the product of two varieties of Mumford-
type.

Varieties of Mumford-type occur as general fibers of the 1-dimensional
families of 4-dimensional polarized abelian varieties introduced by Mumford
in [Mu2].

The main interest in studying these varieties comes from the fact that the
Mumford-Tate group is strictly contained in Sp(8), while the Mumford-Tate
group of the general abelian variety is the whole symplectic group. Moreover,
varieties of Mumford-type gave the first example of abelian varieties not char-
acterized by their endomorphism algebra and having a «small» Mumford-Tate
group, in the sense just explained.

Let X be such a variety. In [Ha, 5.1.], Hazama found that B i (X) `Q ,

i40, 1 , 2 and he also proved that B 2 (X3X) cR
2

B 1 (X3X).
We investigate the Hodge structure of X and, using some of the results

contained in [Ga], we are able to describe explicitly the exceptional classes in
B 2 (X3X). Then, using the grassmanian Gr(1 , 7 ), we give a geometric de-
scription for these classes.

The paper is organized as follows.
In Section 1 we first recall some general definitions and properties of

Mumford-Tate groups to introduce the techniques we use to find the excep-
tional classes of a variety of Mumford-type. If X is such a variety, we write
V4H 1 (X , Q). The Mumford-Tate group MT(X) of X is defined as a subgroup
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of GL(V), so it acts in a natural way on V and we can also consider the exterior

powers of this representation on R
n

V . A classical result of [DMOS] tells us
that the link between such representations and Hodge classes of X is that the
(p , p)-Hodge classes B p (X) are precisely the invariants under the action of

MT(X) in R
2p

V (see Prop. 1.2).
In Section 2 we recall briefly some properties of varieties of Mumford-type

and we focus on the fact that they have complex Mumford-Tate group isoge-
neous to SL(2)3 .

In Section 3 we introduce the techniques we use to study the Hodge struc-
ture of X . These techniques involve the study of the representations (over C)
of SL(2)3 and Sp(8). Using these methods one sees that B i (X) `Q ,
i40, 1 , 2 .

We find the exceptional classes in B 2 (X3X) ’R
2

V7R
2

V looking at the
Killing form of the Lie algebra aX(2)3 . In Section 5 we give also an explicit de-
scription of such classes and thus we are also able to explain their geometry in
terms of lines geometry in P7 in Section 6.

Acknowledgements. – I would like to thank Prof. Bert van Geemen for dis-
cussions and valuable suggestions.

1. – Mumford-Tate groups of abelian varieties.

The Mumford-Tate group (or Hodge group) was introduced by Mumford
in [Mu1] for abelian varieties but in general it is associated to rational Hodge
structures. Since we are interested in polarized abelian varieties, we introduce
the definition for this case only. Good references are [DMOS], [G] and [vG].
This group has proved to be a powerful tool for studying the Hodge structure
of an abelian variety. Here we recall its construction for the convenience of the
reader.

Let X be a complex abelian variety, we write

V4H 1 (X , Q) , VR4H 1 (X , R) .

A complex structure on VR is a R-linear map

J : H 1 (X , R) KH 1 (X , R) such that J 2 42I .

A polarization for X is a cycle E�B 1 (X) ’H 2 (X , Q), i.e. a map
E 8 : L2 H1 (X , Q) KQ that satisfies Riemann’s Relations:

E
.
8 (J 8 x , J 8 y) 4E 8 (x , y) , E 8 (x , J 8 x) F0 ,
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where J 8 is the dual of J . We introduce the representation of real algebraic
groups

h : S 1 KGL(VR ) ,

a1 ibOaI1bJ ,

where S 1 4 ]z�C*: NzN41(. For all n there are representations

Rn h : S 1 KGL(Rn H 1 (X , R) )4GL(H n (X , R) ) .

DEFINITION 1.1. – The special Mumford-Tate group (also called Hodge
group) MT(X) of the abelian variety X is the smallest algebraic subgroup
G’GL(V) which is defined over Q , such that

h(S 1 ) ’G(R) .

Let Sp(E) be the algebraic subgroup of SL(V) which fixes a polarization E of
X . It can be easily proved that

MT(X)(R) ’Sp(E)(R) ,

indeed Sp(E) is defined over Q and h(S 1 ) ’Sp(E)(R). Thus MT(X) ’Sp(E).
It can be proved that for the general abelian variety the isomorphism
holds.

Mumford-Tate groups are useful tools to study the space

B p (X) »4H 2p (X , Q)OH n , n (X) (H 2p (X , C) )

of the Hodge classes of a complex abelian variety. Indeed we have the follow-
ing results

THEOREM 1.2. – Let r k : GL(V) KGL(R
k

V) be the k th-exterior power of the
standard representation r 1 of GL(V). For all p the space of Hodge classes of X
is the subspace of MT(X)-invariants in H 2p (X , Q), i.e.

B p (X) 4H 2p (X , Q)MT(X) .

PROOF. – See [DMOS] and also [G, 2.4].

PROPOSITION 1.3. – There is a bijection (see [DMOS] and also [G, 2.4.])

.
/
´

MT(X)

Q-subrepresentations

of V 7n

ˆ
¨
˜

D
.
/
´

Hodge substructures

of V 7n

ˆ
¨
˜

.
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REMARK 1.4. – As MT(X)(C) is a connected reductive group (see [G, 2.3,
2.5]), its representations (or the representations of its Lie algebra) are well
known. So one can study the representations of MT(X)(C) over V 7n and, if
these representations are defined over Q , one gets rational Hodge substruc-
tures in V 7n . Moreover, one has

B p (X)7Q C4 (H 2p (X , C) )MT(X)(C) .

So, to find the Hodge classes in H 2p (X , Q) 4R
2p

V%V 7n one first studies

the invariants on R
2p

VC and then one tries to find the invariants defined
over Q .

2. – Varieties of Mumford-type.

In [Mu2] Mumford defines a family of 4-dimensional polarized abelian vari-
eties where the Mumford-Tate group of any fiber is not Sp(8) but the general
fiber does have no nontrivial endomorphisms. Over C the Mumford-Tate
group of these fibers is isogenous to SL(2 , C)3 , we call these fibers variety of
Mumford-type.

If X is such a variety, the Mumford-Tate group is defined using a quater-
nion algebra A that is, a central simple algebra of dimension four over its
center.

Mumford chooses the algebra A so that its cener is a totally real cubic num-
ber field K . We can write an element a�A as

a4a0 1a1 e 1 1a2 e 2 1a3 e 3 , ai �K ,

with e 1
2 , e 2

2 �K and e 1 e 2 42e 2 e 1 4e 3 . The Mumford-Tate group of X is de-
fined as

MT(X) »4 ]x�A *: xx 41( ,

where the «2» stands for the canonical involution in A : if a4a0 1a1 e 1 1

a2 e 2 1a3 e 3 �A , then a 4a0 2a1 e 1 2a2 e 2 2a3 e 3 . Over C , this group is isoge-
neous to SL(2)3 .

The complex structure for an abelian variety of Mumford-type is given by
the real representation

h : S 1 KSU(2)3SU(2)3SL(2 , R) ASO(4 , R)3SL(2 , R) %KGL(8 , R) ,

e iu OgI , I ,g cos u

2sin u

sin u

cos u
hh .

In this case, the multiplication by i on R8 is given by J4h(i).
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3. – Representations of aX(2)3 and a](8).

It is possible to study the Hodge structure of a variety of Mumford-type
following the strategy explained in Remark 1.4. In our case this means that we
have to study representations of SL(2)3 as a subgroup of Sp(8). To do this, we
look at the Lie algebras aX(2)3 and a](8). We recall here some of the results
of [Ga] that allow us to find the exceptional classes we are looking for.

Let Wn be the irreducible (n11)-dimensional representation of aX(2), the
Lie algebra of SL(2), so Wn 4S n W1 . If V1 , V2 , V3 are irreducible representa-
tions of aX(2), then we denote by V1 p3V2 p3V3 the representation of aX(2)3 on
V1 7V2 7V3 where (g1 , g2 , g3 ) �aX(2)3 acts by gi on the i-th tensor component.
We write

Wa , b , c »4Wa p3Wb p3Wc with a , b , c�ZF0

and any irreducible aX(2)3-representation is of this type. We write W»4W1

with standard basis ]e 1 , e 21 ( and we denote the products e i p3e j p3e k with
e ijk . Let a, b be the alternating form on W which is invariant for SL(2) and
which is represented by the matrix

g 0

21

1

0
h .

On the eight dimensional space V4W p3W p3W we have an alternating
form defined as follows

E(e ijk , e i 8 j 8 k 8 ) 4 ae i , e i 8 bae j , e j 8 bae k , e k 8 b i , . . . , k 8� ]21, 1( .

One has

E(2 , 2) 4
.
/
´

0

61

if i4 i 8 or j4 j 8 or k4k 8 ,

if ic i 8 , jc j 8 , kck 8 .

Let now aX(2)3 »4S1 5S2 5S3 where Si »4aX(2). Let Ti be the standard Car-
tan algebra of Si and T4T1 5T2 5T3 a Cartan algebra of aX(2)3 . For i , j , k�Z
we define a weight (i , j , k) �T* by

(i , j , k): TKc ,

(H1 , H2 , H3 ) Ois1 1 js2 1ks3 ,

where Hi 4gsi

0

0

2si
h�Ti . We choose a symplectic basis ] f1 , R , f8 ( for

(V , E) and consider Sp(8) »4Sp(V , E). By definition, SL(2)3 %Sp(8). Let T
A

be
the Cartan algebra of a](8). It has basis ]H1 , R , H4 ( with Hi 4Ei , i 2

E41 i , 41 i and E41 i , 41 i is an elementary matrix. Let ]L1 , R , L4 ( ’ T
A

* be the
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dual basis. Given H� T
A

one has

.
/
´

Hfi 4Li (H) fi ,

Hfi14 42Li (H) fi14 , i41, R , 4 .

In this way we can restrict the weigths to aX(2)3 and we get

PROPOSITION 3.1 [Ga, 3.1.]. – The C-linear restriction map T
A

*KT* acts on
the roots in the following way

L1 O (1 , 1 , 1 ) ,

L2 O (1 , 21, 21) ,

L3 O (21, 1 , 21) ,

L4 O (21, 21, 1 ) .

PROOF. – If X , Y�aX(2), v , w�W , one has

(X , Y)(v p3w) 4 (Xv) p3w1v p3(Yw) .

For example, Hf1 4L1 (H) f1 gives H(e 111 ) 4L1 (H)e 111 , and in general from
the above formulas we get

(H1 , H2 , H3 )(e ijk ) 4 (as1 1bs2 1cs3 )(e ijk ) .

Hence, the weights of the representation W p3W p3W under the action of T are
(61, 61, 61). r

COROLLARY 3.2 [Ga, 3.2.]. – The standard representation V4W p3W p3W
is irreducible under the action of aX(2)3 with highest weight (1 , 1 , 1 ).

Using this result one can understand how tensor powers of the representa-
tion V decompose under the action of SL(2)3 .

4. – Exceptional classes.

We recall that the Hodge classes in H 2p (X , Q) 4R
2

V are precisely the in-
variants under the action of the Mumford-Tate group. Thus, in our case, we
are looking for invariants for SL(2)3 which are not invariants for Sp(8).

We can prove the following (see [Ga, 3.4])
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PROPOSITION 4.1 [Ga,3.4.-3.6.]. – There is an isomorphism of a](8)-repre-
sentations

R
2

V`P2 5W0, 0 , 0 ,

where P2 is the irreducible representation of a](8) containing the highest

weight vector of R
2

V . Moreover, P2 decomposes as aX(2)3-representation:

P2 `W2, 2 , 0 5W2, 0 , 2 5W0, 2 , 2 .

Thus, from this Proposition follows that in R
2

V there is an invariant repre-

sented by W0, 0 , 0 and we know that it has to be the polarization E�R
2

V which
is invariant also for Sp(8).

Using similar results, in [Ga, 3.7] we showed that B 2 (X) `Q for i40, 1 , 2
so, there are not exceptional classes in B i (X) and this was also proved by

Hazama in [Ha, 5.1.]. Now, if we look at R
2

V7R
2

V , we note that there are
some special elements in it . More precisely, consider

P2 7P2 ’R
2

V7R
2

V .

We have

W2, 2 , 0 7W2, 2 , 0 ` (W2 7W2 ) p3(W2 7W2 ) p3W0 .(1)

In W2 7W2 `S 2 W7S 2 W there is the invariant coming from the Killing form
of aX(2):

v4 (e 1 Ue 21 )7 (e 1 Ue 21 )21/2[ (e 1 Ue 1 )7 (e 21 Ue 21 )1

(e 21 Ue 21 )7 (e 1 Ue 1 ) ]

(the U denotes the symmetric product in W2 4S 2 W1 ). Thus the vector

f 1 4v p3v p31 with 1 �C4W0

is an element of (P2 7P2 )SL(2)3
. In the same way we obtain the invariants

f 2 4v p31 p3v�W2, 0 , 2 7W2, 0 , 2 ,

f 3 41 p3v p3v�W0, 0 , 2 7W0, 0 , 2 .

We have the following
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PROPOSITION 4.2 [Ga, 3.8.]

i) f 1 , f 2 , f 3 are a basis of (P2 7P2 )SL(2)3
,

ii) (P2 7P2 )Sp(8)
`C ,

iii) if G is a connected Lie group with SL(2)3 %G%Sp(8) such that f 1 ,
f 2 , f 3 are invariant for G , then G4SL(2)3 .

Thus, the f i’s represent exceptional classes in B 2 (X3X). The fact that

B 2 (X3X) cR
2

B 1 (X3X) for X a variety of Mumford-type was also proved
by Hazama in [Ha, 5.1.].

5. – Explicit description of classes f 1 , f 2 , f 3.

We give now an explicit formula for the invariants f 1 , f 2 , f 3 in

R
2

V7R
2

V . In this section we write W4 ax , yb and we use polynomial nota-
tions for symmetric products in W2 . We want to give an explicit isomor-
phism

R
2

VK
`

a
W2, 2 , 0 5W2, 0 , 2 5W0, 2 , 2 5W0, 0 , 0

using bases. By symmetry we work with f 1 4v p3v p31 only. In this basis

v4xy7xy21/2[x 2 7y 2 1y 2 7x 2 ] .

The standard basis for R
2

V is ] fij »4 fi R fj , iE j(. First we choose a basis
for P2

B4 ] fij : jc i14(N ] f15 2 f26 , f15 2 f37 , f15 2 f48 ( .

We consider the vector

(x 2 p3x 2 p31)7 (y 2 p3y 2 p31)

which is a summand of f 1 . We have

x 2 p3x 2 p31 �W2, 2 , 0 of weight (2 , 2 , 0 ) ,

y 2 p3y 2 p31 �W2, 2 , 0 of weight (22, 22, 0 ) .
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There are f18 , f45 only which have the same weigths in the basis of P2 ,
thus

a21 (x 2 p3x 2 p31) � a f18 b , a21 (y 2 p3y 2 p31) � a f45 b .

Analogously

a21 (x 2 p3y 2 p31) � a f27 b , a21 (y 2 p3x 2 p31) � a f36 b .

We have to proceed in a different way for the other summands of f 1 since we
have many vectors of the same weight in B . We denote x1 , x2 the vectors in the
basis of aX2 which are represented by

g0

0

1

0
h , g0

1

0

0
h .

We consider the vector x 2 p3xy p31 of weight (2 , 0 , 0 ). There are f78 e f12 which
have the same weight in P2 . Now let the Lie algebra aX2

3 acts. We see

(0 , 0 , x1 )( f78 1 f12 ) 40 , (0 , 0 , x2 )( f78 1 f12 ) 40 .

Thus a(a f78 1 f12 b )%W2, 2 , 0 . We proceed in the same way with the other vec-
tors and we construct the isomorphism up to constants. We choose this con-
stants in such a way that f 1 is invariant in the new basis too. Put

A4 f15 2 f37 1 f48 2 f26 ,

B4 ( f78 1 f12 )7 ( f34 1 f56 ) ,

C4 ( f13 1 f68 )7 ( f57 1 f24 ) ,

D4 f18 7 f45 ,

E4 f27 7 f36 ,

B 4 ( f34 1 f56 )7 (f78 1 f12 ) ,

C 4 ( f57 1 f24 )7 ( f13 1 f68 ) ,

D 4 f45 7 f18 ,

E 4 f36 7 f27 .

Now we have the invariant as a vector of R
2

V7R
2

V

f 1 4A7A12[B1B1C1C]14[D1D1E1E] .

6. – Some geometry.

We want to give an interpretation in terms of projective geometry of the
invariants f 1 , f 2 , f 3 . Let Gr(C2 , V) be the grassmanian of 2-planes in V , i.e.
straight lines in P(V), with the Plücker map

Gr(1 , P(V) ) %KP(R
2

V) , av1 , v2 b Ov1 Rv2 .
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We take now the symplectic vector space (V , E) with the symplectic basis of
Section 3 and the Segre-like map

X4P1 3P1 3P1K
c

P7 4P(V) ,

((x1 : x2 ), (y1 : y2 ), (z1 : z2 ) )O (R : xi yj zk : R) .

PROPOSITION 6.1. – For any ]x(, ]y( �P1 the rational curve given by
c(]x(3 ]y(3P1 ) is an isotropic straight line in P7 w.r.t. the symplectic
form E and this is also true for the curves c(]x(3P1 3 ]z( ) and c(P1 3

]y(3 ]z( ) .

PROOF. – We write a generic point of the first family in a suitable
way

((x1 : x2 ), (y1 , y2 ), (s : t) )Os(R : x2 y2 : 0R : 0 )1 t(R : 0 : x1 y1 : R)

and we make computations using the bilinearity of E . The second assertion
follows by symmetry. r

Each of the above families can be considered as a P1 3P1 in Gr(1 , P7 ), we
denote them with Q1 , Q2 , Q3 .

Now we use the Plücker map to see the relations between the Qi’s and the
irreducible representations Wa , b , c in P2 . As usual, we work with Q1 . From the
results above follows

PROPOSITION 6.2. – The image of Q1 ’Gr(1 , P7 ) under the Plücker map is

contained in P(W2, 2 , 0 ) ’P2 ’P(R
2

V).

We use now the Veronese and the Segre map to clarify the geometric
situation

Q1 4P1 3P1 KP2 3P2 KP8 4P(W 2, 2 , 0 ) ’P(R
2

V) ,

((x1 : x2 ), (y1 : y2 ) )O((x1
2 : . .), (y1

2 : . .) )O (. . : xi xj yk yl : . .) ,

((. . : vi : . .)(. . : wj : . .) )O (. . : vi wj : . .) .

Consider now the induced restrictions

H 0 (P8 , O(1) )KH 0 (P2 3P2 , O(2 , 2 ) )KH 0 (P1 3P1 , O(4 , 4 ) )

and the subvariety of P2 3P2

(C1 3P2 )N (P2 3C2 ) »4 (v1 v3 2v2
2 )(w1 w3 2w2

2 ) 40 .
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Note that v1 v3 2v2
2 �S 2 (W2, 2 , 0 ) corresponds to the Killing form. Then

f 1 »4 (v1 v3 2v2
2 )(w1 w3 2w2

2 ) 40 �S 2 (W2, 2 , 0 )

is the equation for a variety in P8 which cuts P2 3P2 in (C1 3P2 )N
(P2 3C2 ).
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