Bollettino

Unione Matematica Italiana

Federica Galluzzi

A geometric description of Hazama's exceptional classes

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 3-B (2000), n.3, p. 727-737.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2000_8_3B_3_727_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

A Geometric Description of Hazama's Exceptional Classes

Federica Galluzzi

Abstract

Sunto. - Sia X una varietà abeliana complessa di tipo Mumford. In queste note daremo una descrizione esplicita delle classi eccezionali in $B^{2}(X \times X)$ trovate da Hazama in [Ha] e le descriveremo geometricamente usando la grassmaniana delle rette di \mathbb{P}^{7}.

Introduction.

In this paper we will give an explicit description of the exceptional classes found by Hazama (see [Ha, 5.1]) in the product of two varieties of Mumfordtype.

Varieties of Mumford-type occur as general fibers of the 1-dimensional families of 4-dimensional polarized abelian varieties introduced by Mumford in [Mu2].

The main interest in studying these varieties comes from the fact that the Mumford-Tate group is strictly contained in $S p(8)$, while the Mumford-Tate group of the general abelian variety is the whole symplectic group. Moreover, varieties of Mumford-type gave the first example of abelian varieties not characterized by their endomorphism algebra and having a «small» Mumford-Tate group, in the sense just explained.

Let X be such a variety. In [Ha, 5.1.], Hazama found that $B^{i}(X) \cong \mathbb{Q}$, $i=0,1,2$ and he also proved that $B^{2}(X \times X) \neq \bigwedge^{2} B^{1}(X \times X)$.

We investigate the Hodge structure of X and, using some of the results contained in [Ga], we are able to describe explicitly the exceptional classes in $B^{2}(X \times X)$. Then, using the grassmanian $G r(1,7)$, we give a geometric description for these classes.

The paper is organized as follows.
In Section 1 we first recall some general definitions and properties of Mumford-Tate groups to introduce the techniques we use to find the exceptional classes of a variety of Mumford-type. If X is such a variety, we write $V=H^{1}(X, Q)$. The Mumford-Tate group $M T(X)$ of X is defined as a subgroup
of $G L(V)$, so it acts in a natural way on V and we can also consider the exterior powers of this representation on $\bigwedge^{n} V$. A classical result of [DMOS] tells us that the link between such representations and Hodge classes of X is that the (p, p)-Hodge classes $B^{p}(X)$ are precisely the invariants under the action of $M T(X)$ in $\bigwedge^{2 p} V$ (see Prop. 1.2).

In Section 2 we recall briefly some properties of varieties of Mumford-type and we focus on the fact that they have complex Mumford-Tate group isogeneous to $S L(2)^{3}$.

In Section 3 we introduce the techniques we use to study the Hodge structure of X. These techniques involve the study of the representations (over \mathbb{C}) of $S L(2)^{3}$ and $S p(8)$. Using these methods one sees that $B^{i}(X) \cong \mathbb{Q}$, $i=0,1,2$.

We find the exceptional classes in $B^{2}(X \times X) \subseteq \bigwedge^{2} V \otimes \bigwedge_{\wedge}^{2} V$ looking at the Killing form of the Lie algebra $\mathfrak{g l}(2)^{3}$. In Section 5 we give also an explicit description of such classes and thus we are also able to explain their geometry in terms of lines geometry in \mathbb{P}^{7} in Section 6.

Acknowledgements. - I would like to thank Prof. Bert van Geemen for discussions and valuable suggestions.

1. - Mumford-Tate groups of abelian varieties.

The Mumford-Tate group (or Hodge group) was introduced by Mumford in [Mu1] for abelian varieties but in general it is associated to rational Hodge structures. Since we are interested in polarized abelian varieties, we introduce the definition for this case only. Good references are [DMOS], [G] and [vG]. This group has proved to be a powerful tool for studying the Hodge structure of an abelian variety. Here we recall its construction for the convenience of the reader.

Let X be a complex abelian variety, we write

$$
V=H^{1}(X, \mathbb{Q}), \quad V_{\mathbb{R}}=H^{1}(X, \mathbb{R})
$$

A complex structure on V_{R} is a \mathbb{R}-linear map

$$
J: H^{1}(X, \mathbb{R}) \rightarrow H^{1}(X, \mathbb{R}) \quad \text { such that } J^{2}=-I .
$$

A polarization for X is a cycle $E \in B^{1}(X) \subseteq H^{2}(X$, Q $)$, i.e. a map $E^{\prime}: \Lambda^{2} H_{1}(X, \mathbb{Q}) \rightarrow \mathbb{Q}$ that satisfies Riemann's Relations:

$$
\dot{E}^{\prime}\left(J^{\prime} x, J^{\prime} y\right)=E^{\prime}(x, y), \quad E^{\prime}\left(x, J^{\prime} x\right) \geqslant 0
$$

where J^{\prime} is the dual of J. We introduce the representation of real algebraic groups

$$
\begin{aligned}
& h: S^{1} \rightarrow G L\left(V_{\mathrm{R}}\right), \\
& a+i b \mapsto a I+b J,
\end{aligned}
$$

where $S^{1}=\left\{z \in \mathbb{C}^{*}:|z|=1\right\}$. For all n there are representations

$$
\wedge^{n} h: S^{1} \rightarrow G L\left(\wedge^{n} H^{1}(X, \mathbb{R})\right)=G L\left(H^{n}(X, \mathbb{R})\right)
$$

Definition 1.1. - The special Mumford-Tate group (also called Hodge group) $M T(X)$ of the abelian variety X is the smallest algebraic subgroup $G \subseteq G L(V)$ which is defined over Q , such that

$$
h\left(S^{1}\right) \subseteq G(\mathbb{R}) .
$$

Let $\operatorname{Sp}(E)$ be the algebraic subgroup of $\operatorname{SL}(V)$ which fixes a polarization E of X. It can be easily proved that

$$
M T(X)(\mathbb{R}) \subseteq S p(E)(\mathbb{R})
$$

indeed $S p(E)$ is defined over \mathbb{Q} and $h\left(S^{1}\right) \subseteq S p(E)(\mathbb{R})$. Thus $M T(X) \subseteq S p(E)$. It can be proved that for the general abelian variety the isomorphism holds.

Mumford-Tate groups are useful tools to study the space

$$
B^{p}(X):=H^{2 p}(X, \mathbb{Q}) \cap H^{n, n}(X)\left(H^{2 p}(X, \mathrm{C})\right)
$$

of the Hodge classes of a complex abelian variety. Indeed we have the following results

Theorem 1.2. - Let $\varrho_{k}: G L(V) \rightarrow G L\left(\bigwedge^{k} V\right)$ be the $k^{\text {th }}$-exterior power of the standard representation ϱ_{1} of $G L(V)$. For all p the space of Hodge classes of X is the subspace of $M T(X)$-invariants in $H^{2 p}(X, \mathbb{Q})$, i.e.

$$
B^{p}(X)=H^{2 p}(X, \mathbb{Q})^{M T(X)}
$$

Proof. - See [DMOS] and also [G, 2.4].
Proposition 1.3. - There is a bijection (see [DMOS] and also [G, 2.4.])

$$
\left\{\begin{array}{c}
M T(X) \\
\text { Q-subrepresentations } \\
\text { of } V^{\otimes n}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { Hodge substructures } \\
\text { of } V^{\otimes n}
\end{array}\right\}
$$

Remark 1.4. - As $M T(X)(C)$ is a connected reductive group (see [G, 2.3, 2.5]), its representations (or the representations of its Lie algebra) are well known. So one can study the representations of $M T(X)(\mathbb{C})$ over $V^{\otimes n}$ and, if these representations are defined over Q , one gets rational Hodge substructures in $V^{\otimes n}$. Moreover, one has

$$
B^{p}(X) \otimes_{\mathrm{Q}} \mathrm{C}=\left(H^{2 p}(X, \mathrm{C})\right)^{M T(X)(\mathrm{C})} .
$$

So, to find the Hodge classes in $H^{2 p}(X, \mathbb{Q})=\bigwedge^{2 p} V \subset V^{\otimes n}$ one first studies the invariants on $\bigwedge^{2 p} V_{\mathrm{C}}$ and then one tries to find the invariants defined over Q .

2. - Varieties of Mumford-type.

In [Mu2] Mumford defines a family of 4-dimensional polarized abelian varieties where the Mumford-Tate group of any fiber is not $S p(8)$ but the general fiber does have no nontrivial endomorphisms. Over C the Mumford-Tate group of these fibers is isogenous to $S L(2, \mathrm{C})^{3}$, we call these fibers variety of Mumford-type.

If X is such a variety, the Mumford-Tate group is defined using a quaternion algebra A that is, a central simple algebra of dimension four over its center.

Mumford chooses the algebra A so that its cener is a totally real cubic number field K. We can write an element $a \in A$ as

$$
a=a_{0}+a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+a_{3} \varepsilon_{3}, \quad a_{i} \in K
$$

with $\varepsilon_{1}^{2}, \varepsilon_{2}^{2} \in K$ and $\varepsilon_{1} \varepsilon_{2}=-\varepsilon_{2} \varepsilon_{1}=\varepsilon_{3}$. The Mumford-Tate group of X is defined as

$$
M T(X):=\left\{x \in A^{*}: x \bar{x}=1\right\},
$$

where the «一» stands for the canonical involution in A : if $a=a_{0}+a_{1} \varepsilon_{1}+$ $a_{2} \varepsilon_{2}+a_{3} \varepsilon_{3} \in A$, then $\bar{a}=a_{0}-a_{1} \varepsilon_{1}-a_{2} \varepsilon_{2}-a_{3} \varepsilon_{3}$. Over C, this group is isogeneous to $S L(2)^{3}$.

The complex structure for an abelian variety of Mumford-type is given by the real representation

$$
\begin{gathered}
h: S^{1} \rightarrow S U(2) \times S U(2) \times S L(2, \mathbb{R}) \sim S O(4, \mathbb{R}) \times S L(2, \mathbb{R}) \hookrightarrow G L(8, \mathbb{R}), \\
e^{i \theta} \mapsto\left(I, I,\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)
\end{gathered}
$$

In this case, the multiplication by i on \mathbb{R}^{8} is given by $J=h(i)$.

3. - Representations of $\mathfrak{s l}(2)^{3}$ and $\mathfrak{s p}(8)$.

It is possible to study the Hodge structure of a variety of Mumford-type following the strategy explained in Remark 1.4. In our case this means that we have to study representations of $S L(2)^{3}$ as a subgroup of $S p(8)$. To do this, we look at the Lie algebras $\mathfrak{F l}(2)^{3}$ and $\mathfrak{g p}(8)$. We recall here some of the results of [Ga] that allow us to find the exceptional classes we are looking for.

Let W_{n} be the irreducible $(n+1)$-dimensional representation of $\mathfrak{s l}(2)$, the Lie algebra of $S L(2)$, so $W_{n}=S^{n} W_{1}$. If V_{1}, V_{2}, V_{3} are irreducible representations of $\mathfrak{g l}(2)$, then we denote by $V_{1} \boxtimes V_{2} \boxtimes V_{3}$ the representation of $\mathfrak{S l}(2)^{3}$ on $V_{1} \otimes V_{2} \otimes V_{3}$ where $\left(g_{1}, g_{2}, g_{3}\right) \in \mathfrak{g l}(2)^{3}$ acts by g_{i} on the i-th tensor component. We write

$$
W_{a, b, c}:=W_{a} \boxtimes W_{b} \boxtimes W_{c} \text { with } a, b, c \in \mathbb{Z}_{\geqslant 0}
$$

and any irreducible $\mathfrak{\xi l}(2)^{3}$-representation is of this type. We write $W:=W_{1}$ with standard basis $\left\{e^{1}, e^{-1}\right\}$ and we denote the products $e^{i} \boxtimes e^{j} \boxtimes e^{k}$ with $e^{i j k}$. Let \langle,$\rangle be the alternating form on W$ which is invariant for $S L(2)$ and which is represented by the matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

On the eight dimensional space $V=W \boxtimes W \boxtimes W$ we have an alternating form defined as follows

$$
E\left(e^{i j k}, e^{i^{\prime} j^{\prime} k^{\prime}}\right)=\left\langle e^{i}, e^{i^{\prime}}\right\rangle\left\langle e^{j}, e^{j^{\prime}}\right\rangle\left\langle e^{k}, e^{k^{\prime}}\right\rangle \quad i, \ldots, k^{\prime} \in\{-1,1\}
$$

One has

$$
E(-,-)= \begin{cases}0 & \text { if } i=i^{\prime} \text { or } j=j^{\prime} \text { or } k=k^{\prime} \\ \pm 1 & \text { if } i \neq i^{\prime}, \quad j \neq j^{\prime}, \quad k \neq k^{\prime}\end{cases}
$$

Let now $\mathfrak{g l}(2)^{3}:=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}$ where $\mathfrak{g}_{i}:=\mathfrak{g l}(2)$. Let \mathfrak{h}_{i} be the standard Cartan algebra of \mathfrak{g}_{i} and $\mathfrak{h}=\mathfrak{h}_{1} \oplus \mathfrak{h}_{2} \oplus \mathfrak{h}_{3}$ a Cartan algebra of $\mathfrak{F l}(2)^{3}$. For $i, j, k \in \mathbb{Z}$ we define a weight $(i, j, k) \in \mathfrak{h}^{*}$ by

$$
\begin{gathered}
(i, j, k): \mathfrak{h} \rightarrow \mathrm{c} \\
\left(H_{1}, H_{2}, H_{3}\right) \mapsto i s_{1}+j s_{2}+k s_{3}
\end{gathered}
$$

where $H_{i}=\left(\begin{array}{cc}s_{i} & 0 \\ 0 & -s_{i}\end{array}\right) \in \mathfrak{h}_{i}$. We choose a symplectic basis $\left\{f_{1}, \ldots, f_{8}\right\}$ for (V, E) and consider $S p(8):=S p(V, E)$. By definition, $S L(2)^{3} \subset S p(8)$. Let $\tilde{\mathfrak{h}}$ be the Cartan algebra of $\mathfrak{s p}(8)$. It has basis $\left\{H_{1}, \ldots, H_{4}\right\}$ with $H_{i}=E_{i, i}-$ $E_{4+i, 4+i}$ and $E_{4+i, 4+i}$ is an elementary matrix. Let $\left\{L_{1}, \ldots, L_{4}\right\} \subseteq \tilde{\mathfrak{h}}^{*}$ be the
dual basis. Given $H \in \tilde{\mathfrak{h}}$ one has

$$
\left\{\begin{array}{l}
H f_{i}=L_{i}(H) f_{i}, \\
H f_{i+4}=-L_{i}(H) f_{i+4}, \quad i=1, \ldots, 4
\end{array}\right.
$$

In this way we can restrict the weigths to $\mathfrak{g l}(2)^{3}$ and we get
Proposition 3.1 [Ga, 3.1.]. - The C-linear restriction map $\tilde{\mathfrak{h}}^{*} \rightarrow \mathfrak{h}^{*}$ acts on the roots in the following way

$$
\begin{aligned}
& L_{1} \mapsto(1,1,1), \\
& L_{2} \mapsto(1,-1,-1), \\
& L_{3} \mapsto(-1,1,-1), \\
& L_{4} \mapsto(-1,-1,1) .
\end{aligned}
$$

Proof. - If $X, Y \in \mathfrak{\xi l}(2), v, w \in W$, one has

$$
(X, Y)(v \boxtimes w)=(X v) \boxtimes w+v \boxtimes(Y w) .
$$

For example, $H f_{1}=L_{1}(H) f_{1}$ gives $H\left(e^{111}\right)=L_{1}(H) e^{111}$, and in general from the above formulas we get

$$
\left(H_{1}, H_{2}, H_{3}\right)\left(e^{i j k}\right)=\left(a s_{1}+b s_{2}+c s_{3}\right)\left(e^{i j k}\right) .
$$

Hence, the weights of the representation $W \boxtimes W \boxtimes W$ under the action of \mathfrak{G} are ($\pm 1, \pm 1, \pm 1$).

Corollary 3.2 [Ga, 3.2.]. - The standard representation $V=W \boxtimes W \boxtimes W$ is irreducible under the action of $\mathfrak{\xi l}(2)^{3}$ with highest weight $(1,1,1)$.

Using this result one can understand how tensor powers of the representation V decompose under the action of $S L(2)^{3}$.

4. - Exceptional classes.

We recall that the Hodge classes in $H^{2 p}(X, \mathbb{Q})=\bigwedge^{2} V$ are precisely the invariants under the action of the Mumford-Tate group. Thus, in our case, we are looking for invariants for $S L(2)^{3}$ which are not invariants for $S p(8)$.

We can prove the following (see [Ga, 3.4])

Proposition 4.1 [Ga,3.4.-3.6.]. - There is an isomorphism of $\mathfrak{G p (8) \text { -repre- } - 1 . 0 |}$ sentations

$$
\bigwedge^{2} V \cong P_{2} \oplus W_{0,0,0}
$$

where P_{2} is the irreducible representation of $\mathfrak{G p (8)}$ containing the highest weight vector of ${ }_{\wedge}^{2} V$. Moreover, P_{2} decomposes as $\mathfrak{\xi l}(2)^{3}$-representation:

$$
P_{2} \cong W_{2,2,0} \oplus W_{2,0,2} \oplus W_{0,2,2}
$$

Thus, from this Proposition follows that in $\bigwedge^{2} V$ there is an invariant represented by $W_{0,0,0}$ and we know that it has to be the polarization $E \in \stackrel{2}{\wedge} V$ which is invariant also for $S p(8)$.

Using similar results, in [Ga, 3.7] we showed that $B^{2}(X) \cong \mathrm{Q}$ for $i=0,1,2$ so, there are not exceptional classes in $B^{i}(X)$ and this was also proved by Hazama in [Ha, 5.1.]. Now, if we look at $\bigwedge^{2} V \otimes \bigwedge_{\bigwedge}^{2} V$, we note that there are some special elements in it . More precisely, consider

$$
P_{2} \otimes P_{2} \subseteq \bigwedge^{2} V \otimes \bigwedge^{2} V
$$

We have

$$
\begin{equation*}
W_{2,2,0} \otimes W_{2,2,0} \cong\left(W_{2} \otimes W_{2}\right) \boxtimes\left(W_{2} \otimes W_{2}\right) \boxtimes W_{0} \tag{1}
\end{equation*}
$$

In $W_{2} \otimes W_{2} \cong S^{2} W \otimes S^{2} W$ there is the invariant coming from the Killing form of $\mathfrak{H l}(2)$:

$$
v=\left(e^{1} \odot e^{-1}\right) \otimes\left(e^{1} \odot e^{-1}\right)-1 / 2\left[\left(e^{1} \odot e^{1}\right) \otimes\left(e^{-1} \odot e^{-1}\right)+\right.
$$

$$
\left.\left(e^{-1} \odot e^{-1}\right) \otimes\left(e^{1} \odot e^{1}\right)\right]
$$

(the \odot denotes the symmetric product in $W_{2}=S^{2} W_{1}$). Thus the vector

$$
\phi_{1}=v \boxtimes v \boxtimes 1 \quad \text { with } \quad 1 \in \mathrm{C}=W_{0}
$$

is an element of $\left(P_{2} \otimes P_{2}\right)^{S L(2)^{3}}$. In the same way we obtain the invariants

$$
\begin{aligned}
& \phi_{2}=v \boxtimes 1 \boxtimes v \in W_{2,0,2} \otimes W_{2,0,2}, \\
& \phi_{3}=1 \boxtimes v \boxtimes v \in W_{0,0,2} \otimes W_{0,0,2} .
\end{aligned}
$$

We have the following

Proposition 4.2 [Ga, 3.8.]
i) $\phi_{1}, \phi_{2}, \phi_{3}$ are a basis of $\left(P_{2} \otimes P_{2}\right)^{S L(2)^{3}}$,
ii) $\left(P_{2} \otimes P_{2}\right)^{S p(8)} \cong \mathrm{C}$,
iii) if \boldsymbol{G} is a connected Lie group with $S L(2)^{3} \subset \boldsymbol{G} \subset S p(8)$ such that ϕ_{1}, ϕ_{2}, ϕ_{3} are invariant for \boldsymbol{G}, then $\boldsymbol{G}=S L(2)^{3}$.

Thus, the ϕ_{i} 's represent exceptional classes in $B^{2}(X \times X)$. The fact that $B^{2}(X \times X) \neq \bigwedge_{\wedge}^{2} B^{1}(X \times X)$ for X a variety of Mumford-type was also proved by Hazama in [Ha, 5.1.].
5. - Explicit description of classes $\phi_{1}, \phi_{2}, \phi_{3}$.

We give now an explicit formula for the invariants $\phi_{1}, \phi_{2}, \phi_{3}$ in $\bigwedge^{2} V \otimes \stackrel{2}{\bigwedge} V$. In this section we write $W=\langle x, y\rangle$ and we use polynomial notations for symmetric products in W_{2}. We want to give an explicit isomorphism

$$
\bigwedge_{\wedge}^{V} V \underset{a}{\cong} W_{2,2,0} \oplus W_{2,0,2} \oplus W_{0,2,2} \oplus W_{0,0,0}
$$

using bases. By symmetry we work with $\phi_{1}=v \boxtimes v \boxtimes 1$ only. In this basis

$$
v=x y \otimes x y-1 / 2\left[x^{2} \otimes y^{2}+y^{2} \otimes x^{2}\right]
$$

The standard basis for $\bigwedge^{2} V$ is $\left\{f_{i j}:=f_{i} \wedge f_{j}, i<j\right\}$. First we choose a basis for P_{2}

$$
B=\left\{f_{i j}: j \neq i+4\right\} \cup\left\{f_{15}-f_{26}, f_{15}-f_{37}, f_{15}-f_{48}\right\}
$$

We consider the vector

$$
\left(x^{2} \boxtimes x^{2} \boxtimes 1\right) \otimes\left(y^{2} \boxtimes y^{2} \boxtimes 1\right)
$$

which is a summand of ϕ_{1}. We have

$$
\begin{aligned}
& x^{2} \boxtimes x^{2} \boxtimes 1 \in W_{2,2,0} \quad \text { of weight }(2,2,0), \\
& y^{2} \boxtimes y^{2} \boxtimes 1 \in W_{2,2,0} \quad \text { of weight }(-2,-2,0) .
\end{aligned}
$$

There are f_{18}, f_{45} only which have the same weigths in the basis of P_{2}, thus

$$
\alpha^{-1}\left(x^{2} \boxtimes x^{2} \boxtimes 1\right) \in\left\langle f_{18}\right\rangle, \quad \alpha^{-1}\left(y^{2} \boxtimes y^{2} \boxtimes 1\right) \in\left\langle f_{45}\right\rangle .
$$

Analogously

$$
\alpha^{-1}\left(x^{2} \boxtimes y^{2} \boxtimes 1\right) \in\left\langle f_{27}\right\rangle, \quad \alpha^{-1}\left(y^{2} \boxtimes x^{2} \boxtimes 1\right) \in\left\langle f_{36}\right\rangle .
$$

We have to proceed in a different way for the other summands of ϕ_{1} since we have many vectors of the same weight in B. We denote x_{1}, x_{2} the vectors in the basis of $\mathfrak{\xi l}_{2}$ which are represented by

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

We consider the vector $x^{2} \boxtimes x y \boxtimes 1$ of weight (2, 0,0). There are f_{78} e f_{12} which have the same weight in P_{2}. Now let the Lie algebra $\mathfrak{s l}_{2}^{3}$ acts. We see

$$
\left(0,0, x_{1}\right)\left(f_{78}+f_{12}\right)=0, \quad\left(0,0, x_{2}\right)\left(f_{78}+f_{12}\right)=0
$$

Thus $\alpha\left(\left\langle f_{78}+f_{12}\right\rangle\right) \subset W_{2,2,0}$. We proceed in the same way with the other vectors and we construct the isomorphism up to constants. We choose this constants in such a way that ϕ_{1} is invariant in the new basis too. Put

$$
\begin{array}{ll}
A=f_{15}-f_{37}+f_{48}-f_{26}, & \\
B=\left(f_{78}+f_{12}\right) \otimes\left(f_{34}+f_{56}\right), & \bar{B}=\left(f_{34}+f_{56}\right) \otimes\left(f_{78}+f_{12}\right), \\
C=\left(f_{13}+f_{68}\right) \otimes\left(f_{57}+f_{24}\right), & \bar{C}=\left(f_{57}+f_{24}\right) \otimes\left(f_{13}+f_{68}\right), \\
D=f_{18} \otimes f_{45}, & \bar{D}=f_{45} \otimes f_{18}, \\
E=f_{27} \otimes f_{36}, & \bar{E}=f_{36} \otimes f_{27} .
\end{array}
$$

Now we have the invariant as a vector of ${ }_{\wedge}^{2} V \otimes \bigwedge^{2} V$

$$
\phi_{1}=A \otimes A+2[B+\bar{B}+C+\bar{C}]+4[D+\bar{D}+E+\bar{E}] .
$$

6. - Some geometry.

We want to give an interpretation in terms of projective geometry of the invariants $\phi_{1}, \phi_{2}, \phi_{3}$. Let $G r\left(\mathbb{C}^{2}, V\right)$ be the grassmanian of 2-planes in V, i.e. straight lines in $\mathbb{P}(V)$, with the Plücker map

$$
G r(1, \mathbb{P}(V)) \hookrightarrow P\left(\bigwedge^{2} V\right), \quad\left\langle v_{1}, v_{2}\right\rangle \mapsto v_{1} \wedge v_{2}
$$

We take now the symplectic vector space (V, E) with the symplectic basis of Section 3 and the Segre-like map

$$
\begin{gathered}
X=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\psi} \mathbb{P}^{7}=\mathbb{P}(V), \\
\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right),\left(z_{1}: z_{2}\right)\right) \mapsto\left(\ldots: x_{i} y_{j} z_{k}: \ldots\right) .
\end{gathered}
$$

Proposition 6.1. - For any $\{\underline{x}\},\{y\} \in \mathbb{P}^{1}$ the rational curve given by $\psi\left(\{\underline{x}\} \times\{y\} \times \mathbb{P}^{1}\right)$ is an isotropic straight line in \mathbb{P}^{7} w.r.t. the symplectic form E and this is also true for the curves $\psi\left(\{\underline{x}\} \times \mathbb{P}^{1} \times\{\underline{z}\}\right)$ and $\psi\left(\mathbb{P}^{1} \times\right.$ $\{\underline{y}\} \times\{z\})$.

Proof. - We write a generic point of the first family in a suitable way

$$
\left(\left(x_{1}: x_{2}\right),\left(y_{1}, y_{2}\right),(s: t)\right) \mapsto s\left(\ldots: x_{2} y_{2}: 0 \ldots: 0\right)+t\left(\ldots: 0: x_{1} y_{1}: \ldots\right)
$$

and we make computations using the bilinearity of E. The second assertion follows by symmetry.

Each of the above families can be considered as a $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in $\operatorname{Gr}\left(1, \mathbb{P}^{7}\right)$, we denote them with Q_{1}, Q_{2}, Q_{3}.

Now we use the Plücker map to see the relations between the Q_{i} 's and the irreducible representations $W_{a, b, c}$ in P_{2}. As usual, we work with Q_{1}. From the results above follows

Proposition 6.2. - The image of $Q_{1} \subseteq G r\left(1, \mathrm{P}^{7}\right)$ under the Plücker map is contained in $\mathbb{P}\left(W_{2,2,0}\right) \subseteq P_{2} \subseteq \mathbb{P}\left({ }_{\wedge}^{2} V\right)$.

We use now the Veronese and the Segre map to clarify the geometric situation

$$
\begin{gathered}
Q_{1}=\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{8}=\mathbb{P}(W 2,2,0) \subseteq \mathbb{P}\left(\bigwedge^{2} V\right) \\
\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \mapsto\left(\left(x_{1}^{2}: \ldots\right),\left(y_{1}^{2}: \ldots\right)\right) \mapsto\left(\ldots: x_{i} x_{j} y_{k} y_{l}: \ldots\right), \\
\left(\left(\ldots: v_{i}: \ldots\right)\left(\ldots: w_{j}: \ldots\right)\right) \mapsto\left(\ldots: v_{i} w_{j}: \ldots\right)
\end{gathered}
$$

Consider now the induced restrictions

$$
H^{0}\left(\mathbb{P}^{8}, \mathcal{O}(1)\right) \rightarrow H^{0}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}, \mathcal{O}(2,2)\right) \rightarrow H^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(4,4)\right)
$$

and the subvariety of $\mathbb{P}^{2} \times \mathbb{P}^{2}$

$$
\left(C_{1} \times \mathbb{P}^{2}\right) \cup\left(\mathbb{P}^{2} \times C_{2}\right):=\left(v_{1} v_{3}-v_{2}^{2}\right)\left(w_{1} w_{3}-w_{2}^{2}\right)=0
$$

Note that $v_{1} v_{3}-v_{2}^{2} \in S^{2}\left(W_{2,2,0}\right)$ corresponds to the Killing form. Then

$$
\phi_{1}:=\left(v_{1} v_{3}-v_{2}^{2}\right)\left(w_{1} w_{3}-w_{2}^{2}\right)=0 \in S^{2}\left(W_{2,2,0}\right)
$$

is the equation for a variety in \mathbb{P}^{8} which cuts $\mathbb{P}^{2} \times \mathbb{P}^{2}$ in $\left(C_{1} \times \mathbb{P}^{2}\right) \cup$ $\left(\mathbb{P}^{2} \times C_{2}\right)$.

REFERENCES

[DMOS] P. Deligne - J. S. Milne - A. Ogus - K. Shih, Hodge Cycles, Motives and Shimura Varieties, LNM 900, Springer-Verlag (1982).
[F-H] W. Fulton-J. Harris, Representation Theory, GTM 129, Springer-Verlag (1991).
[Haz] F. Hazama, Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 487-520.
[Ga] F. Galluzzi, Hodge structure of an abelian fourfold of Mumford-type, preprint.
[G] B. B. Gordon, A survey of the Hodge conjecture for Abelian Varieties, Duke preprint alg-geom 9709030, to appear in the second edition of «A survey of the Hodge conjecture» by James D. Lewis.
[Mu1] D. Mumford, Families of abelian varieties, in Algebraic Groups and Discontinuous Subgroup, Proc. Sympos.Pure Math., 9, Amer. Math. Soc., Providence, R.I. (1966), 347-351.
[Mu2] D. Mumford, A note of Shimura's Paper «Discontinuous Groups and Abelian Varieties», Math. Ann., 181, (1969), 345-351.
[vG] B. van Geemen, An introduction to the Hodge Conjecture for abelian varieties, Algebraic cycles and Hodge Theory, Torino 1993 Lect. Notes in Math. 1594, Springer, Berlin, etc., (1994), 233-252.

Dipartimento di Matematica, Università di Torino
Via Carlo Alberto 10-10123 Torino
e-mail: galluzzi@dm.unito.it

[^0]
[^0]: Pervenuta in Redazione
 il 31 marzo 1999

