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Minimal length coset representatives for
quotients of parabolic subgroups in Coxeter groups.

FABIO STUMBO

Sunto. – In questo lavoro viene trovata un’espressione esplicita per i rappresentanti
dei laterali di sottogrupi parabolici di gruppi di Coxeter aventi lunghezza minima:
dato un sistema di Coxeter (W , S) ed un suo sottogruppo parabolico (WI , I), con
I%S , si determina esplicitamente in ogni laterale WI w di WI un elemento avente
lunghezza minima. Nella sezione 2 trattiamo i casi classici, i.e. W4An , Bn e Dn .
Dopo ciò, nella sezione 3, diamo una procedura per risolvere il problema nei re-
stanti casi eccezionali, insieme a qualche esempio. Nell’ultima sezione, applichia-
mo i risultati ottenuti alle fattorizzazioni del polinomio di Poincaré di un gruppo
di Coxeter. Le espressioni trovate sono utili per scrivere algoritmi che permettano
il calcolo su computer della coomologia dei gruppi di Artin, come osservato alla
fine dell’articolo.

1. – Introduction.

Let (W , S) be an irreducible Coxeter system (see [1], [6]), that is, a group
which is generated by the elements s�S subject only to relations of the
kind

(ss 8 )m(s , s 8 ) 41 ,(1)

where m(s , s) 41, m(s , s 8 ) 4m(s 8 , s) F2 for scs 8 in S . The parabolic sub-
groups of W are those subgroups which are conjugate to subgroups WI gener-
ated by a subset of I%S . Let I%S be such a subset. Then it is known that
(WI , I) is itself a Coxeter system and its length function is just the restriction
of the length function of W . Moreover, for any coset Ww there is a unique
v�Ww of minimal length.

In this paper, we provide explicitly the minimal length representatives of
the cosets of WI in W . These expressions are the smallest in the lexicographic
order, among all the reduced expressions for the minimal length representa-
tive of the given coset. We also provide some examples and applications. In
section 2 we treat the classical cases, i.e. W a finite Coxeter group belonging to
one of the three families An , Bn and Dn . Then, in section 3, we use some ideas
from [5] to solve the exceptional cases. In the last section, we apply the results
of section 2 to obtain an easy proof of the well-known formula for the Poincaré
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polynomial of W . These results have been used in [10] to compute the cohomol-
ogy of Artin groups: it follows from [3] that the knowledge of the reduced ex-
pressions of minimal coset representatives is a key ingredient in order to per-
form effective computations.

2. – Minimal length cosets representatives, classical cases.

First of all, some notations. In place of S4 ]s1 , R , sn (, we shall often
write S4 ]1, R , n(. If G’G 8’S , then WG will denote the parabolic subgroup
generated by G and WG

G 8 will denote a complete system of representatives for
the cosets of WG in WG 8 , each of which having minimal length in its coset, see
[1]. This property is equivalent to l(sh w) D l(w) for each h in G .

We say that w�WG
G 8 is reduced mod WG . Elements which are reduced

mod WG for G4R , are simply called reduced. They are called normal if their
expression in term of the generators ]s1 , R , sn ( is the smallest with regard to
the lexicographic ordering in 1 , R , n .

In order to find a useful expression for the elements w in the set WG
G 8 , we

first prove the following lemma, which holds in a more general context.

LEMMA 1. – Let (W , S) be a Coxeter system, with

S4 (s1 , R , sn ) and I4 ]1, R , n( .

Let also H and K be subsets of I and consider the three subgroups WH , WK

and WHOK . If

WHOK
K 4 ]a j ( , WHOK

H 4 ]b k ( , WK
I 4 ]g l ( and WH

I 4 ]d m ( ,

then the set of minimal length representatives of the cosets of WHOK in W is

WHOK
I 4 ]a j g l ( 4 ]b k d m ( .

PROOF. – It is enough to see that ]a j g l ( is the set of representatives with
minimal length for the cosets of WHOK in W .

By hypothesis, we have l(si a j ) D l(a j ) for every i�HOK and l(si g l ) D

l(g l ) for every i�K . Moreover, l(vg l ) D l(g l ) for every v�WK . We have to
show that l(si a j g l ) D l(a j g l ) for each i in HOK . Let us suppose the contrary,
for a particular triple i , j , l . By the Exchange conditions (see [1] and [6]) we
have (omitting the subscripts)

sag4
.
/
´

a×g

ag×
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where, if a4si1
R sim

then

a× vsi1
R sih21

sih11
R sim

vsi1
R sih21

s×ih
sih11

R sim

for some 1 GhGm denotes the omission of one of the generators. We give a
similar meaning to g×.

In the first case, we obtain sa4 a× and l(sa) E l(a) with s in WHOK , against
our hypothesis. So the second case must hold. Then g× 4a21 sag; but a , s and
a21 are all in WK so that

WK g× 4WK a21 sag4WK g .

This means that g and g× are in the same coset of WK and l(g×) E l(g), which con-
tradicts our choice of the g’s. r

With the aid of this lemma, we can solve the problem of finding canonical
expressions for the elements in the sets WK

I in the case of finite Coxeter
groups: the lemma tells us that it is enough to restrict our attention to the
principal case, in which W4 as1 , R , sn b, I4 ]1, R , n( and K4I0]i(. We
treat separately the three cases W4An , Bn and Dn .

Let us first consider W4An . We use the canonical presentation for this
group:

W4 as1 , R , sn N(sj sj 8 )m( j , j 8 ) 41 b .

with m( j , j) 41, m( j , j 8 ) 42 for Nj2 j 8 ND1 and m( j , j11) 43 for j4

1, R , n21. We also define wj (lj ) vsj sj21 R sj2 lj11 (provided that lj G j).

THEOREM 2. – If W4An then, with the preceding notations,

WI0]i(
I 4 ]wi (li ) R wn (ln )N0 G lj G j and lj11 G lj ( .

PROOF. – We first consider the case i4n . Let w4sn R s1 4wn (n). We
claim that it is one of the elements of WI0]n(

I . To prove this, we have to show
that l(sj w) D l(w) if jcn . If l(sj w) E l(w), then

sj w4sn R s×h R s1

and

sj sn R sh 4sn R sh11 .

If jGh21 then

sn R sh11 sj sh 4sn R sh11 ,

which implies sj sh 41, absurd.
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So jFh must hold and we get

sj sj11 sj R sh 4sj11 sj R sh11

which means

sj11 sj sj11 R sh 4sj11 sj R sh11 .

Now, sj11 commutes with sj21 , R , sh so that we obtain sj11 sh 41, which is in-
compatible with the relations defining our group.

We have thus found one of the elements of WI0]n(
I . But if w is reduced

mod WI0]n( then it is easy to see that so is also each of its substrings
sn sn21 R sj . In this way we account for n11 elements in WI0]n(

I . On the other
hand, this set has exactly n11 elements, so that we have found all of
them.

We now consider the general case K4I0]i(, with iEn . We use lemma 1
with H4I0]n(. So we are given WH

I 4 ]d m ( and WHOK
H 4 ]b k (. Omitting the

subscript, we must see for which bd it holds bd�WK
I (for, since

WHOK
I 4 ]a j g l ( 4 ]b k d m ( ,

then ]g l ( is contained in WK
I ).

We know the d’s by the preceding case and the b’s are known by
induction:

]d m ( 4 ]wn (ln ) for 0 G ln Gn( ,

]b k ( 4 ]wi (li ) R wn21 (ln21 ) for 0 G lj G j and lj11 G lj ( .

We have to show that bd is reduced mod WK if, and only if, ln G ln21 .
Suppose ln D ln21 . Then we must show that there exists a jc i such

that

l(sj bd) E l(bd) ,

that is, sj bd is not reduced.
Since bd is reduced mod WHOK , it is clear that this can eventually hold only

for j4n . So let us look closer at sn bd . In the expression of wj (lj ) there is no
occurrence of sn nor sn21 , when jGn21, thus it is enough to show that
sn wn21 (ln21 ) wn (ln ) is not reduced. Moreover, given that ln D ln21 , it is
enough to prove that sn wn21 (ln21 ) wn (ln21 11) is not reduced. We have then
restricted the problem to proving that expressions of the form

sn sn21 R sh sn R sh

are not reduced. We prove this by (reverse) induction on h .
If h4n , (i.e., ln21 40) sn sn 41 is not reduced.
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If 0 EhEn , then from

sh sn R sh 4sn R sh12 sh sh11 sh

4sn R sh12 sh11 sh sh11

follows

sn sn21 R sh sn R sh 4sn sn21 R sh11 sn R sh11 sh sh11

and, by the inductive hypothesis, sn sn21 R sh11 sn R sh11 is not reduced. We
have thus proved that ]g l ( ’ ]b k d m Nln G ln21 (.

On the other side, the first set has gn11
i
h elements, whereas the second

has as many elements as the set of non-increasing applications (li , R , ln ) from

]i , R , n( to ]0, R , i(. The latters are exactly gn11
i
h and so ]g l ( 4

]b k d m Nln G ln21 (. r

REMARK 3. – In the canonical homomorphism An K Sn11 , the permutations
corresponding to the images of the elements that we have found in Theorem 2
are also called the «shuffle» permutations of ]1, R , i( and ]i11, R , n(.

Similar results hold in the cases W4Bn , Dn , but the corresponding formu-
las are quite more complicated. We study first the case W4Dn . To simplify
notations, we use a convention slightly different from usual: we consider a
canonical numbering of its generators inverted with respect to the usual one.
That is:

Dn 4 as1 , R , sn N(s1 s3 )3 41, (s1 si )2 41 for ic3,

si
2 41 (i , (si si11 )3 41 for iD1

si sj 4sj si for Ni2 jND1, i , jD1 b

which correspond to the Coxeter graph

We also use elements wj (lj ) in the same way as in the proof of case An , but
they are defined in a different way. Namely, we set

wj vsj sj21 R s4 s3 s1 s2 s3 s4 R sn21 sn

and with wj (lj ) we indicate, this time, the (left) substring of wj having length lj ,
with 0 G lj Gn1 j22. We remark that in the definition of wj it makes no dif-
ference whether we write R s1 s2 R or R s2 s1 R .
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THEOREM 4. – If W4Dn and iF3 then, with the preceding notations,

WI0]i(
I 4 ]wi (li ) R wn (ln )(

with li , R , ln satisfying

i) 0 G lj G j1 i22

ii) lj11 G lj 11

iii) lj11 G lj if lj G j22

iv) if lj11 4 lj 11 4 j then wj (lj ) and wj11 (lj11 ) must be chosen in such
a way that one has s1 as final element and the other has s2 .

REMARK 5. – If lj 4 j21 then, with our notation, wj ( j21) is not uniquely
defined, but it has two distincts values: one ending with s1 and the other with s2 .

PROOF. – In the following we shall use the following trivial formulas:

sh sn R sh11 sh 4sn R sh11 sh sh11 for hF2 ,
(2)

s1 sn R s3 s1 4sn R s3 s1 s3 for h41

and

sh sh11 sh R s3 s1 s2 s3 R sh sh11 4sh11 sh R s3 s1 s2 s3 R sh sh11 sh .(3)

Again, we first show the result for i4n . To this aim, we consider
wn vwn (2n22) and we claim that if jEn then l(sj wn ) D l(wn ). Suppose not.
Then sj wn 4 w×n for some jEn . Since, by (3), we have sj wn 4wn sj , then we can
assume that the cancellation in w×n takes place within the firsts n21 elements,
otherwise we proceed as follows with the only change of considering left
cosets instead of right cosets (we remark that all the theorems in this section
have a symmetric version for left cosets which is proved in the same way as the
ones we prove, so we can assume that theorem 2 is proved even for left cosets.
Plainly, in this case, we have to consider wAj (lj ) vsj2 lj11 R sj).

We remark that as2 , s3 , R , sn b ` as1 , s3 , R , sn b `An21 .
So suppose w×n 4sn R s×h R s3 s2 s1 s3 R sn , We consider first the case in

which h has no restriction if jD2 and if j41 or 2 then h4 j or hD2. Then
sj wn 4 w×n becomes

sj sn R sh 4sn R sh11 if hD1 ,

sj sn R s3 s1 4sn R s3 if h41 ,

which gives a contradiction to the case An21 . In the remaining cases, that is
j41 or 2 and h42 or 1, then we get, for example,

s1 sn R s3 s2 4sn R s3
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which is easily seen impossible, since it reduces to s1 s3 s2 4s3 . So wn is in WI0]n(
I

and the same holds for each of its substring. Since there are exactly 2n of
them (see remark 5), we are done in this case.

Let now 3 G iEn . As in Theorem 2, we apply Lemma 1 with K4I0]i( and
H4I0]n(. With the notations of the lemma, using the preceding case and the
inductive hypothesis we have to see when l(sj bd) D l(bd) for each jc i , where
d4wn (ln ) and b4wi (li )R wn21 (ln21 ), assuming that li , R , ln21 satisfy con-
ditions i)-iv).

First of all, since j�HOK if, and only if, jc i , n , lemma 1 implies
l(sj bd) D l(bd) for each such j . Thus it is enough to show that li , R , ln satisfy
i)-iv) if, and only if, l(sn bd) D l(bd). We first prove the «if» part by proving
that if li , R , ln do not satisfy i)-iv) then l(sn bd) E l(bd). We remark that, by
induction and lemma 1, the given expression for wi (li )R wn (ln ) is reduced and,
since sn commutes with wi (li ), R , wn22 (ln22 ), it is enough to show that if
li , R , ln do not satisfy i)-iv) then

l(sn wn21 (ln21 ) wn (ln ) )E l(wn21 (ln21 ) wn (ln ) ) .

Moreover, since li , R , ln21 are assumed to satisfy i)-iv), ln is the only number
for which one of the conditions does not hold. It is easy to see that if ln does not
fulfill i) then it does not fulfill one of ii) or iii), thus it is enough to assume that
ln does not satisfy one of ii)-iv). Finally, it is enough to study the case when ln

is the smallest value which does not fulfill the conditions.

— ln21 Gn23.

We contradict iii) by requiring ln 4 ln21 11. We prove what requested by
induction on ln21 . Since sn

2 41, the case ln21 40 is trivial. Now, by (2),

sn wn21 (ln21 ) wn (ln21 11) 4sn sn21 sn22 R sn2 ln2111 sn2 ln21

sn sn21 sn22 R sn2 ln2111 sn2 ln21

4sn sn21 sn22 R sn2 ln2111

sn sn21 sn22 R sn2 ln2111 sn2 ln21
sn2 ln2111

4sn wn21 (ln21 21) wn (ln21 ) sn2 ln21
sn2 ln2111 .

By induction, we have l(sn wn21 (ln21 21) wn (ln21 ) )E l(wn21 (ln21 21) Q
wn (ln21 ) ) , so we are done.

— ln21 Fn22 and ln D ln21 11.

Again, we proceed by induction, the first step being ln21 4n22. We con-
sider only the case in which wn21 (ln21 ) ends by s1 , the other case being simi-
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lar. We have

sn wn21 (n22) wn (n) 4sn sn21 R s3 s1 sn sn21 R s3 s1 s2 .

In this case, s1 commutes with all of the firsts n22 terms of wn (n), so
that

sn wn21 (n22) wn (n) 4sn wn21 (n23) wn (n23) s1 s3 s1 s2 .

But s1 s3 s1 s2 4s3 s1 s3 s2 which implies

sn wn21 (n22) wn (n) 4sn wn21 (n23) wn (n23) s1 s3 s1 s2

4sn wn21 (n23) wn (n22) s1 s3 s2

and we are reduced to the preceding case.
Now we go on by induction. Again, it is enough to consider ln 4 ln21 12:

then, using (3), it is easy to obtain

sn wn21 (ln21 ) wn (ln21 12) 4sn wn21 (ln21 21) wn (ln21 12) sln212n13

which is not reduced, mod WI0]i(
I , by the inductive hypothesis.

— ln21 4n21 and ln 4n .

In this case, to contradict iv), we have to study sn sn21 R s3 s2 sn sn21 R s3 s2 ,
for example; but as2 , s3 , R , sn b `An21 and then, by theorem 2, this is not
reduced.

Now we have to prove the converse: if li , R , ln satisfy the conditions of the
theorem, then the element wi (li ) R wn (ln ) is reduced mod WI0]i(

I . By lemma 1
we get that all the elements of this form are reduced mod WI0]i , n(

I , so we must
only show that

l(sn wi (li ) R wn (ln ) )D l(wi (li ) R wn (ln ) ) .

Suppose not. Then

sn wi (li ) R wn (ln ) 4wi (li ) R w×h (lh ) R wn (ln )

where, as usual, hat means omission of one of the generators.
If hEn then we get

sn 4wi (li ) R w×h (lh ) (wh (lh ) )21
R (wi (li ) )21 � as1 , R , sn21 b ,

a contradiction. Then h4n and we easily get

sn wn21 (ln21 ) wn (ln ) 4wn21 (ln21 ) w×n (ln ) .
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There are two subcases: either

sn sn21 R s3 s2 s1 s3 R sj sn sn21 R sh 4

4sn21 R s3 s2 s1 s3 R sj sn sn21 R sh11

or

sn sn21 R s3 s2 s1 s3 R sj sn sn21 R s3 s2 s1 s3 R sh 4

4sn21 R s3 s2 s1 s3 R sj sn sn21 R s3 s2 s1 s3 R sh21

according to the position in which occurs the cancellation of sh (i.e., in the left
or right part of wn (ln )), where sh is the omitted generator in w×n (ln ) (with hG j ,
in the second subcase).

In both cases, we obtain an equality of the type

sn wn21 (ln21 ) wn (l) 4wn21 (ln21 ) wn (l21)

with lE ln , which we can also write as

(4) sn sn21 wn22 (ln2121) sn wn21 (l21) 4sn21 wn22 (ln21 2 1) sn wn21 (l22) .

If jGn22, we have that sn commutes with wn22 (ln21 21) so that (4) reduces
to

sn21 wn22 (ln21 21) wn21 (l21) 4wn22 (ln21 21) wn21 (l22) .

If j4n21 then we write (4) as

sn sn21 wn22 (ln21 22) sn21 sn sn21 wn22 (l22) 4

4sn21 wn22 (ln21 22) sn21 sn sn21 wn22 (l23)

and, using the relation sn21 sn sn21 4sn sn21 sn and the fact that sn commutes
with the element wn22 (ln21 22), we get

sn21 wn22 (ln21 22) wn21 (l21) 4wn22 (ln21 22) wn21 (l22) .

In both cases, we contradict the inductive hypothesis for Dn21 4

as1 , R , sn21 b.
The initial step for the induction is provided by the case D4 , where it is eas-

ily seen, even by direct inspection, that our claim holds. r

In the previous theorem we have left out the cases i41, 2 . We deal here with
the case i41 (the case i42 is similar). In this case it is easy to see, by an in-
duction similar to the case i4n , that if w1 (l) vs1 s3 s4 s5 R sl11 ,
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w2 (l) vs2 s3 s4 s5 R sl11 for l42, R , n21 and wi 4si for l41, i41, 2
then

WI0]1(
I 4 ]w1 (l1 ) w2 (l2 ) w1 (l3 ) w2 (l4 ) R w(31 (21)h21 ) /2 (lh21 ) w(31 (21)h ) /2 (lh )

such that 0 GhGn21 and lj D lj11 ( .

We are left the last case: W4Bn . We make again the convention of inverting
the indices, that is we consider the group associated with the graph

and we define

wj vsj sj21 R s2 s1 s2 R sn21 sn

and with wj (lj ) we denote, in this last case, the substring of wj composed by the
firsts lj tokens (from the left), for 0 G lj Gn1 j21. Moreover, we record for
later reference the following trivial formula, which hold in case Bn :

sj sj11 sj R s2 s1 s2 R sj sj11 4sj11 sj R s2 s1 s2 R sj sj11 sj .(5)

THEOREM 6. – If W4Bn then, with the preceding notations,

WI0]i(
I 4 ]wi (li ) R wn (ln )(

with lj , R , ln satisfying

i) 0 G lj G j1 i21

ii) lj11 G lj 11

iii) lj11 G lj if lj G j21.

PROOF. – In the proof we shall need remarks which are quite similar to the
ones we made during the proof of theorem 4, so we will not go into details as
before.

As usual, we first see what happens when i4n . Let us show that the ele-
ment wn vwn (2n21) is in WI0]i(

I . Suppose not, so that l(sj wn ) E l(wn ) for some
jcn; then sj wn 4 w×n . Since from (5) we get sj wn 4wn sj , we can suppose in the
same way as we made in theorem 4, that the cancellation in wn is between its
firsts n elements and let h be the omitted generator; thus sj wn 4 w×n

becomes

sj sn sn21 R s2 s1 4sn sn21 R s×h R s2 s1 .(6)
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If hD1, then we contradict the result for the case An21 , so that h41 must
hold. Now multiply (6) on the right by s1 , R , sn . It becomes sj 4wn and we
easily get from this that

sj11 4sj21 sj22 R s2 s1 s2 R sj22 sj21

which implies sj11 � as1 , R , sj21 b, a contradiction.
We have seen that wn is reduced mod WI0]n( and then the same must hold

for each of its (left) substrings. Since there are exactly 2n of these, which is
the same number of the cosets of WI0]n( in W , we have found all of
them.

Now we can proceed with the general case. As we did in theorem 2, we ap-
ply lemma 1 with K4I0]i( and H4I0]n(. The inductive hypothesis gives us
the set of representatives

WHOK
H 4 ]wi (li ) R wn21 (ln21 )( ,

where the li , R , ln21 satisfy the stated conditions, and the case i4n gives
us

WH
I 4 ]wn (ln )N0 G ln G2n21( .

Applying lemma 1, we have to look when the element wi (li ) R wn (ln ) is re-
duced mod WK , assuming that li , R , ln21 satisfy the conditions of the
theorem.

So let us suppose ln does not satisfy one of the three conditions in the the-
sis. As in the proof of theorem 2, using induction we easily reduce to prove
that

l(sn wn21 (ln21 ) wn (ln ) )E l(wn21 (ln21 ) wn (ln ) ) .

If ln21 Gn22, then we can proceed exactly as in the case An , since we have a
group isomorphism as2 , R , sn b `An21 . Then ln G ln21 must hold.

It is easy to see that, when ln21 Fn21, it is enough to treat the case ln 4

ln21 12 (otherwise we can reduce to this). First let ln21 4n21. Then

sn sn21 R s2 s1 sn sn21 R s2 s1 s2 4sn sn21 R s2 sn sn21 R s1 s2 s1 s2

4sn sn21 R s2 sn sn21 R s2 s1 s2 s1

and we are led to the preceding case.
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Now let us suppose ln21 Dn21; we apply (5):

sn sn21 R s2 s1 s2 R sj sn sn21 R s2 s1 s2 R sj sj11 4

4sn sn21 R s2 s1 s2 R sj21 sn sn21 R s2 s1 s2 R sj sj11 sj

and we can invoke induction to conclude.
So far, we have proved that if wi (li ) R wn (ln ) is reduced mod WK , then

li , R , ln must satisfy the conditions i), ii) and iii).
To prove the converse, we could count how many elements we obtain this

way, but we could also proceed directly in the same way as in the case of Dn :
the proof goes on nearly in the same way. r

3. – Exceptional cases.

As for the exceptional cases, we outline an algorithm which provides a com-
plete list of minimal length coset representatives.

We recall that given an expression of w�W by means of the reflections in
S , there are algorithms which reduce w in normal reduced form, see [5]. When
w is in such a form, we can write w4xy in only one way if we require x�
WG , x�WG 8 , whenever G%G 8’S and, clearly, we have y�WG

G 8 . We call y the
G 8-part of w .

As we have already remarked, if w�WG
G 8 and w4si1

R sih
, then we also

have that si1
R sij

�WG
G 8 for all jGh . Moreover, we can suppose G 84S ,

G4S0]i(.
Now, in order to get the list L of the elements of WG

G 8 , one can proceed as
follows. Let L 4 ]R(, l40.

i) Pick an element w� L of length l .

ii) For all s�S , consider ws and reduce it in normal form. If its S-part y
is not in L, then let L 4 L N]y(.

iii) If in L there is another element of length l , then go to i). If all ele-
ments of length l have been considered, then let l4 l11; if for a given length l
no element in ii) has been added to L, then L 4WG

G 8 , else go to i).

We now give some examples obtained with the above procedure for some
exceptional group. Elements in WI0]i(

I are represented by a (directed) tree:
starting from the vertex on the left, go outward (with regard to this vertex)
and multiply by the generator sj if j is on the edge.
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First of all, we remark that it is trivial to solve the case W4I2 (m): it is
clear that

W]1(
]1, 2(4 ]1, s2 , s2 s1 , s2 s1 s2 , R , s2 s1 s2 R

���
m21 factors

( ,

that is, the whole (left) substring of the longest among the representatives. In
the same way we obtain W]2(

]1, 2( .
Now we come to W4H3 . We have

and

The last example we give is W4F4 . By the symmetry of the graph defining
F4 , it is clear that it suffices to provide W]1, 2 , 3(

]1, 2 , 3 , 4( and W]1, 2 , 4(
]1, 2 , 3 , 4( . They are as

follows:
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whereas W]1, 2 , 4(
]1, 2 , 3 , 4( is given by the tree

4. – Factorization of the Poincaré polynomial.

In this section we show that the well-known formula for the factorization of
the Poincaré polynomial of a finite irreducible Coxeter group (see [6]) is a sim-
ple corollary of the results found in section 2. Moreover, we remark that we
shall use just the simplest case of Theorems 2, 4 and 6, that is the case with i4n ,
thus getting a simpler proof of the factorization theorem with respect to the
standard ones (see [6], section 3.16 and the closing remark, [8] and [9].

PROPOSITION 7. – If G is a finite Coxeter group and H is a parabolic sub-
group, then

WG (x) 4WH (x) !
r�R

x l(r) ,

where R is the set of minimal length representatives of the cosets of H in G .

PROOF. – Let R be defined as in the statement. Then every w�G can be
uniquely written as w4ru for some r�R and some u�H with l(w) 4 l(r)1
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l(u). In this way,

WG (x) 4 !
w�G

x l(w)

4 !
r�R

!
u�H

x l(r) x l(u)

4 !
r�R

x l(r) !
u�H

x l(u)

4 !
r�R

x l(r) WH (x)

as claimed. r

The Poincaré polynomial can be further generalized in the case there is
more than one length for the roots (see [1] for more definitions) by let-
ting

WG (x , y) v !
w�G

x l 8 (w) y l 9 (w)

where l 8 (w) is the number of long roots in a reduced expression for w while
l 9 (w) is the number of short roots.

Recalling the definition (and the value) of the degrees di from [6] or [1], we
have the following

COROLLARY 8. – If G4An or Dn then

WG (x) 4 »
i41

n 12x di

12x

and, if G4Bn , then

WG (x , y) 4 »
i41

n

(11x i21 y)(11x1R1x i21 )

gwhich reduces to WG (x) 4 »

i41

n 12x di

12x
for y4xh.

PROOF. – Let us use Proposition 7 with H being the parabolic subgroup
generated by s1 , R , sn21 (with the conventions used in section 2). Then, for
G4An , we have

R4 ]1, sn , sn sn21 , R , sn sn21 R s1 ( 4 ]left substrings of sn sn21 R s1 (

so that

!
r�R

x l(r) 411x1R1x n
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and then, by Proposition 7 and an easy induction,

WAn
4 »

i41

n

(11x1R1x i ) ,

as claimed.
For G4Dn , then

R4 ]left substrings of sn sn21 R s3 s2 s1 s3 R sn21 sn (

(remember to add also sn sn21 R s3 s1 ) so that

WDn
4 »

i41

n

(11x i21 )(11x1R1x i21 ) ;

noting that

(11x i21 )(11x1R1x i22 ) 411x1R1x 2 i23 ,

we get what claimed.
As to G4Bn , it is trivial to see that Proposition 7 holds also for WBn

(x , y).
Thus, since

R4 ]left substrings of sn sn21 R s3 s2 s1 s2 s3 R sn21 sn ( ,

we get

!
r�R

x l 8 (r) y l 9 (r) 411x1R1x n21 1x n21 y1x n y1R1x 2n21 y

4 (11x n21 y)(11x1R1x n21 )

and, again, we are done by means of an easy induction. r

FURTHER REMARKS. – Consider an Artin group GW associated to a Coxeter
group W (see [2]). Using the results of section 2 it is easy to construct an algo-
rithm to compute the cohomology of a GW-module were W is a finite irreducible
Coxeter group, see [10].

Clearly, computations depend on a given representation W : GAn
KAut (R)

which has to be specified.
In table I we provide the result of the computations done for the standard

representation in the linear group W : GAn
KGL(n11, Z) by permutations:

the generator si is mapped to the matrix which operates on the canonical base
as the permutation (i , i11). Where no result is given, it means that computa-
tions go beyond the limits of the machine.

These results agree with what is known for such a representation, see [11]:
the free part of the cohomology groups is always Z3Z , but for the first and
the last cohomology groups.

It is quite evident the usefulness of knowing a good deal of (computer gen-
erated) examples in order to have a better understanding of what goes on, so
as to make realistic conjectures.
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TABLE I.

A2 A3 A4 A5 A6 A7 A8 A9 A10

H 0

H 1

H 2

H 3

H 4

H 5

H 6

H 7

H 8

H 9

H 10

Z

Z2

Z

Z

Z2

Z2

Z

Z

Z2

Z2

Z23ZO2Z

Z

Z

Z2

Z2

Z23ZO2Z

Z23ZO2Z

Z

Z

Z2

Z2

Z23ZO2Z

Z23(ZO2Z)2

Z23ZO6Z

Z

Z

Z2

Z2

Z23ZO2Z

Z23(ZO2Z)2

Z23ZO2Z3ZO6Z

Z23ZO6Z

Z

Z

Z2

Z2

˜

˜

˜

Z23(ZO6Z)2

Z23ZO6Z

Z

Z

Z2

Z2

˜

˜

˜

˜

˜

Z23ZO6Z

Z

Z

Z2

Z2

˜

˜

˜

˜

˜

˜

Z23ZO30Z

Z
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