Bollettino

Unione Matematica Italiana

Fabio Stumbo
Minimal length coset representatives for quotients of parabolic subgroups in Coxeter groups
Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 3-B (2000), n.3, p. 699-715.
Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2000_8_3B_3_699_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Minimal length coset representatives for quotients of parabolic subgroups in Coxeter groups.

Fabio Stumbo

Abstract

Sunto. - In questo lavoro viene trovata un'espressione esplicita per i rappresentanti dei laterali di sottogrupi parabolici di gruppi di Coxeter aventi lunghezza minima: dato un sistema di Coxeter (\boldsymbol{W}, S) ed un suo sottogruppo parabolico $\left(\boldsymbol{W}_{I}, I\right)$, con $I \subset S$, si determina esplicitamente in ogni laterale $\boldsymbol{W}_{I} w$ di \boldsymbol{W}_{I} un elemento avente lunghezza minima. Nella sezione 2 trattiamo i casi classici, i.e. $\boldsymbol{W}=\boldsymbol{A}_{n}, \boldsymbol{B}_{n}$ e \boldsymbol{D}_{n}. Dopo ciò, nella sezione 3, diamo una procedura per risolvere il problema nei restanti casi eccezionali, insieme a qualche esempio. Nell'ultima sezione, applichiamo i risultati ottenuti alle fattorizzazioni del polinomio di Poincaré di un gruppo di Coxeter. Le espressioni trovate sono utili per scrivere algoritmi che permettano il calcolo su computer della coomologia dei gruppi di Artin, come osservato alla fine dell'articolo.

1. - Introduction.

Let ($\boldsymbol{W}, \boldsymbol{S}$) be an irreducible Coxeter system (see [1], [6]), that is, a group which is generated by the elements $s \in S$ subject only to relations of the kind

$$
\begin{equation*}
\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=1, \tag{1}
\end{equation*}
$$

where $m(s, s)=1, m\left(s, s^{\prime}\right)=m\left(s^{\prime}, s\right) \geqslant 2$ for $s \neq s^{\prime}$ in S. The parabolic subgroups of \boldsymbol{W} are those subgroups which are conjugate to subgroups \boldsymbol{W}_{I} generated by a subset of $I \subset S$. Let $I \subset S$ be such a subset. Then it is known that $\left(\boldsymbol{W}_{I}, I\right)$ is itself a Coxeter system and its length function is just the restriction of the length function of \boldsymbol{W}. Moreover, for any coset $\boldsymbol{W} \boldsymbol{w}$ there is a unique $v \in \boldsymbol{W} w$ of minimal length.

In this paper, we provide explicitly the minimal length representatives of the cosets of \boldsymbol{W}_{I} in \boldsymbol{W}. These expressions are the smallest in the lexicographic order, among all the reduced expressions for the minimal length representative of the given coset. We also provide some examples and applications. In section 2 we treat the classical cases, i.e. \boldsymbol{W} a finite Coxeter group belonging to one of the three families $\boldsymbol{A}_{n}, \boldsymbol{B}_{n}$ and \boldsymbol{D}_{n}. Then, in section 3, we use some ideas from [5] to solve the exceptional cases. In the last section, we apply the results of section 2 to obtain an easy proof of the well-known formula for the Poincaré
polynomial of \boldsymbol{W}. These results have been used in [10] to compute the cohomology of Artin groups: it follows from [3] that the knowledge of the reduced expressions of minimal coset representatives is a key ingredient in order to perform effective computations.

2. - Minimal length cosets representatives, classical cases.

First of all, some notations. In place of $S=\left\{s_{1}, \ldots, s_{n}\right\}$, we shall often write $S=\{1, \ldots, n\}$. If $\Gamma \subseteq \Gamma^{\prime} \subseteq S$, then \boldsymbol{W}_{Γ} will denote the parabolic subgroup generated by Γ and $\boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$ will denote a complete system of representatives for the cosets of \boldsymbol{W}_{Γ} in $\boldsymbol{W}_{\Gamma^{\prime}}$, each of which having minimal length in its coset, see [1]. This property is equivalent to $l\left(s_{h} w\right)>l(w)$ for each h in Γ.

We say that $w \in \boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$ is reduced $\bmod \boldsymbol{W}_{\Gamma}$. Elements which are reduced $\bmod \boldsymbol{W}_{\Gamma}$ for $\Gamma=\varnothing$, are simply called reduced. They are called normal if their expression in term of the generators $\left\{s_{1}, \ldots, s_{n}\right\}$ is the smallest with regard to the lexicographic ordering in $1, \ldots, n$.

In order to find a useful expression for the elements w in the set $\boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$, we first prove the following lemma, which holds in a more general context.

Lemma 1. - Let (\boldsymbol{W}, S) be a Coxeter system, with

$$
S=\left(s_{1}, \ldots, s_{n}\right) \quad \text { and } \quad I=\{1, \ldots, n\} .
$$

Let also H and K be subsets of I and consider the three subgroups $\boldsymbol{W}_{H}, \boldsymbol{W}_{K}$ and $\boldsymbol{W}_{H \cap K}$. If

$$
\boldsymbol{W}_{H \cap K}^{K}=\left\{\alpha_{j}\right\}, \quad \boldsymbol{W}_{H \cap K}^{H}=\left\{\beta_{k}\right\}, \quad \boldsymbol{W}_{K}^{I}=\left\{\gamma_{l}\right\} \quad \text { and } \quad \boldsymbol{W}_{H}^{I}=\left\{\delta_{m}\right\},
$$

then the set of minimal length representatives of the cosets of $\boldsymbol{W}_{H \cap_{K}}$ in \boldsymbol{W} is

$$
\boldsymbol{W}_{H \cap K}^{I}=\left\{\alpha_{j} \gamma_{l}\right\}=\left\{\beta_{k} \delta_{m}\right\} .
$$

Proof. - It is enough to see that $\left\{\alpha_{j} \gamma_{l}\right\}$ is the set of representatives with minimal length for the cosets of $\boldsymbol{W}_{H} \cap K$ in \boldsymbol{W}.

By hypothesis, we have $l\left(s_{i} \alpha_{j}\right)>l\left(\alpha_{j}\right)$ for every $i \in H \cap K$ and $l\left(s_{i} \gamma_{l}\right)>$ $l\left(\gamma_{l}\right)$ for every $i \in K$. Moreover, $l\left(v \gamma_{l}\right)>l\left(\gamma_{l}\right)$ for every $v \in \boldsymbol{W}_{K}$. We have to show that $l\left(s_{i} \alpha_{j} \gamma_{l}\right)>l\left(\alpha_{j} \gamma_{l}\right)$ for each i in $H \cap K$. Let us suppose the contrary, for a particular triple i, j, l. By the Exchange conditions (see [1] and [6]) we have (omitting the subscripts)

$$
s \alpha \gamma=\left\{\begin{array}{l}
\widehat{\alpha} \gamma \\
\alpha \widehat{\gamma}
\end{array}\right.
$$

where, if $\alpha=s_{i_{1}} \ldots s_{i_{m}}$ then

$$
\widehat{\alpha} \doteqdot s_{i_{1}} \ldots s_{i_{h-1}} s_{i_{h+1}} \ldots s_{i_{m}} \doteqdot s_{i_{1}} \ldots s_{i_{h-1}} \widehat{s}_{i_{h}} s_{i_{h+1}} \ldots s_{i_{m}}
$$

for some $1 \leqslant h \leqslant m$ denotes the omission of one of the generators. We give a similar meaning to $\widehat{\gamma}$.

In the first case, we obtain $s \alpha=\widehat{\alpha}$ and $l(s \alpha)<l(\alpha)$ with s in $\boldsymbol{W}_{H \cap K}$, against our hypothesis. So the second case must hold. Then $\widehat{\gamma}=\alpha^{-1} s \alpha \gamma$; but α, s and α^{-1} are all in \boldsymbol{W}_{K} so that

$$
\boldsymbol{W}_{K} \widehat{\gamma}=\boldsymbol{W}_{K} \alpha^{-1} s \alpha \gamma=\boldsymbol{W}_{K} \gamma .
$$

This means that γ and $\widehat{\gamma}$ are in the same coset of \boldsymbol{W}_{K} and $l(\hat{\gamma})<l(\gamma)$, which contradicts our choice of the γ 's.

With the aid of this lemma, we can solve the problem of finding canonical expressions for the elements in the sets \boldsymbol{W}_{K}^{I} in the case of finite Coxeter groups: the lemma tells us that it is enough to restrict our attention to the principal case, in which $\boldsymbol{W}=\left\langle s_{1}, \ldots, s_{n}\right\rangle, I=\{1, \ldots, n\}$ and $K=I \backslash\{i\}$. We treat separately the three cases $\boldsymbol{W}=\boldsymbol{A}_{n}, \boldsymbol{B}_{n}$ and \boldsymbol{D}_{n}.

Let us first consider $\boldsymbol{W}=\boldsymbol{A}_{n}$. We use the canonical presentation for this group:

$$
\boldsymbol{W}=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{j} s_{j^{\prime}}\right)^{m\left(j, j^{\prime}\right)}=1\right\rangle
$$

with $m(j, j)=1, m\left(j, j^{\prime}\right)=2$ for $\left|j-j^{\prime}\right|>1$ and $m(j, j+1)=3$ for $j=$ $1, \ldots, n-1$. We also define $w_{j}\left(l_{j}\right) \doteqdot s_{j} s_{j-1} \ldots s_{j-l_{j}+1}$ (provided that $l_{j} \leqslant j$).

Theorem 2. - If $\boldsymbol{W}=\boldsymbol{A}_{n}$ then, with the preceding notations,

$$
\boldsymbol{W}_{I \backslash\{i\}}^{I}=\left\{w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right) \mid 0 \leqslant l_{j} \leqslant j \text { and } l_{j+1} \leqslant l_{j}\right\} .
$$

Proof. - We first consider the case $i=n$. Let $w=s_{n} \ldots s_{1}=w_{n}(n)$. We claim that it is one of the elements of $\boldsymbol{W}_{I \backslash\{n\}}^{I}$. To prove this, we have to show that $l\left(s_{j} w\right)>l(w)$ if $j \neq n$. If $l\left(s_{j} w\right)<l(w)$, then

$$
s_{j} w=s_{n} \ldots \hat{s}_{h} \ldots s_{1}
$$

and

$$
s_{j} s_{n} \ldots s_{h}=s_{n} \ldots s_{h+1}
$$

If $j \leqslant h-1$ then

$$
s_{n} \ldots s_{h+1} s_{j} s_{h}=s_{n} \ldots s_{h+1}
$$

which implies $s_{j} s_{h}=1$, absurd.

So $j \geqslant h$ must hold and we get

$$
s_{j} s_{j+1} s_{j} \ldots s_{h}=s_{j+1} s_{j} \ldots s_{h+1}
$$

which means

$$
s_{j+1} s_{j} s_{j+1} \ldots s_{h}=s_{j+1} s_{j} \ldots s_{h+1}
$$

Now, s_{j+1} commutes with s_{j-1}, \ldots, s_{h} so that we obtain $s_{j+1} s_{h}=1$, which is incompatible with the relations defining our group.

We have thus found one of the elements of $\boldsymbol{W}_{I \backslash\{n\}}^{I}$. But if w is reduced $\bmod \boldsymbol{W}_{I \backslash\{n\}}$ then it is easy to see that so is also each of its substrings $s_{n} s_{n-1} \ldots s_{j}$. In this way we account for $n+1$ elements in $\boldsymbol{W}_{I \backslash\{n\}}^{I}$. On the other hand, this set has exactly $n+1$ elements, so that we have found all of them.

We now consider the general case $K=I \backslash\{i\}$, with $i<n$. We use lemma 1 with $H=I \backslash\{n\}$. So we are given $\boldsymbol{W}_{H}^{I}=\left\{\delta_{m}\right\}$ and $\boldsymbol{W}_{H}^{H} \cap K=\left\{\beta_{k}\right\}$. Omitting the subscript, we must see for which $\beta \delta$ it holds $\beta \delta \in \boldsymbol{W}_{K}^{I}$ (for, since

$$
\boldsymbol{W}_{H \cap K}^{I}=\left\{\alpha_{j} \gamma_{l}\right\}=\left\{\beta_{k} \delta_{m}\right\},
$$

then $\left\{\gamma_{l}\right\}$ is contained in \boldsymbol{W}_{K}^{I}).
We know the δ 's by the preceding case and the β 's are known by induction:

$$
\begin{aligned}
& \left\{\delta_{m}\right\}=\left\{w_{n}\left(l_{n}\right) \text { for } 0 \leqslant l_{n} \leqslant n\right\}, \\
& \left\{\beta_{k}\right\}=\left\{w_{i}\left(l_{i}\right) \ldots w_{n-1}\left(l_{n-1}\right) \text { for } 0 \leqslant l_{j} \leqslant j \text { and } l_{j+1} \leqslant l_{j}\right\} .
\end{aligned}
$$

We have to show that $\beta \delta$ is reduced $\bmod \boldsymbol{W}_{K}$ if, and only if, $l_{n} \leqslant l_{n-1}$.
Suppose $l_{n}>l_{n-1}$. Then we must show that there exists a $j \neq i$ such that

$$
l\left(s_{j} \beta \delta\right)<l(\beta \delta),
$$

that is, $s_{j} \beta \delta$ is not reduced.
Since $\beta \delta$ is reduced $\bmod \boldsymbol{W}_{H \cap K}$, it is clear that this can eventually hold only for $j=n$. So let us look closer at $s_{n} \beta \delta$. In the expression of $w_{j}\left(l_{j}\right)$ there is no occurrence of s_{n} nor s_{n-1}, when $j \leqslant n-1$, thus it is enough to show that $s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n}\right)$ is not reduced. Moreover, given that $l_{n}>l_{n-1}$, it is enough to prove that $s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n-1}+1\right)$ is not reduced. We have then restricted the problem to proving that expressions of the form

$$
s_{n} s_{n-1} \ldots s_{h} s_{n} \ldots s_{h}
$$

are not reduced. We prove this by (reverse) induction on h.
If $h=n$, (i.e., $l_{n-1}=0$) $s_{n} s_{n}=1$ is not reduced.

If $0<h<n$, then from

$$
\begin{aligned}
s_{h} s_{n} \ldots s_{h} & =s_{n} \ldots s_{h+2} s_{h} s_{h+1} s_{h} \\
& =s_{n} \ldots s_{h+2} s_{h+1} s_{h} s_{h+1}
\end{aligned}
$$

follows

$$
s_{n} s_{n-1} \ldots s_{h} s_{n} \ldots s_{h}=s_{n} s_{n-1} \ldots s_{h+1} s_{n} \ldots s_{h+1} s_{h} s_{h+1}
$$

and, by the inductive hypothesis, $s_{n} s_{n-1} \ldots s_{h+1} s_{n} \ldots s_{h+1}$ is not reduced. We have thus proved that $\left\{\gamma_{l}\right\} \subseteq\left\{\beta_{k} \delta_{m} \mid l_{n} \leqslant l_{n-1}\right\}$.

On the other side, the first set has $\binom{n+1}{i}$ elements, whereas the second has as many elements as the set of non-increasing applications $\left(l_{i}, \ldots, l_{n}\right)$ from $\{i, \ldots, n\}$ to $\{0, \ldots, i\}$. The latters are exactly $\binom{n+1}{i}$ and so $\left\{\gamma_{l}\right\}=$ $\left\{\beta_{k} \delta_{m} \mid l_{n} \leqslant l_{n-1}\right\}$.

Remark 3. - In the canonical homomorphism $\boldsymbol{A}_{n} \rightarrow S_{n+1}$, the permutations corresponding to the images of the elements that we have found in Theorem 2 are also called the «shuffle» permutations of $\{1, \ldots, i\}$ and $\{i+1, \ldots, n\}$.

Similar results hold in the cases $\boldsymbol{W}=\boldsymbol{B}_{n}, \boldsymbol{D}_{n}$, but the corresponding formulas are quite more complicated. We study first the case $\boldsymbol{W}=\boldsymbol{D}_{n}$. To simplify notations, we use a convention slightly different from usual: we consider a canonical numbering of its generators inverted with respect to the usual one. That is:

$$
\begin{aligned}
\boldsymbol{D}_{n}=\left\langle s_{1}, \ldots, s_{n}\right|\left(s_{1} s_{3}\right)^{3} & =1,\left(s_{1} s_{i}\right)^{2}=1 \text { for } i \neq 3, \\
s_{i}^{2} & =1 \forall i,\left(s_{i} s_{i+1}\right)^{3}=1 \text { for } i>1 \\
s_{i} s_{j} & \left.=s_{j} s_{i} \text { for }|\mathrm{i}-\mathrm{j}|>1, \mathrm{i}, \mathrm{j}>1\right\rangle
\end{aligned}
$$

which correspond to the Coxeter graph

We also use elements $w_{j}\left(l_{j}\right)$ in the same way as in the proof of case \boldsymbol{A}_{n}, but they are defined in a different way. Namely, we set

$$
w_{j} \doteqdot s_{j} s_{j-1} \ldots s_{4} s_{3} s_{1} s_{2} s_{3} s_{4} \ldots s_{n-1} s_{n}
$$

and with $w_{j}\left(l_{j}\right)$ we indicate, this time, the (left) substring of w_{j} having length l_{j}, with $0 \leqslant l_{j} \leqslant n+j-2$. We remark that in the definition of w_{j} it makes no difference whether we write $\ldots s_{1} s_{2} \ldots$ or $\ldots s_{2} s_{1} \ldots$.

Theorem 4. - If $\boldsymbol{W}=\boldsymbol{D}_{n}$ and $i \geqslant 3$ then, with the preceding notations,

$$
\boldsymbol{W}_{I \backslash\{i\}}^{I}=\left\{w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)\right\}
$$

with l_{i}, \ldots, l_{n} satisfying
i) $0 \leqslant l_{j} \leqslant j+i-2$
ii) $l_{j+1} \leqslant l_{j}+1$
iii) $l_{j+1} \leqslant l_{j}$ if $l_{j} \leqslant j-2$
iv) if $l_{j+1}=l_{j}+1=j$ then $w_{j}\left(l_{j}\right)$ and $w_{j+1}\left(l_{j+1}\right)$ must be chosen in such a way that one has s_{1} as final element and the other has s_{2}.

REmark 5. - If $l_{j}=j-1$ then, with our notation, $w_{j}(j-1)$ is not uniquely defined, but it has two distincts values: one ending with s_{1} and the other with s_{2}.

Proof. - In the following we shall use the following trivial formulas:

$$
\begin{array}{cl}
s_{h} s_{n} \ldots s_{h+1} s_{h}=s_{n} \ldots s_{h+1} s_{h} s_{h+1} & \text { for } h \geqslant 2, \\
s_{1} s_{n} \ldots s_{3} s_{1}=s_{n} \ldots s_{3} s_{1} s_{3} & \text { for } h=1 \tag{2}
\end{array}
$$

and

$$
\begin{equation*}
s_{h} s_{h+1} s_{h} \ldots s_{3} s_{1} s_{2} s_{3} \ldots s_{h} s_{h+1}=s_{h+1} s_{h} \ldots s_{3} s_{1} s_{2} s_{3} \ldots s_{h} s_{h+1} s_{h} \tag{3}
\end{equation*}
$$

Again, we first show the result for $i=n$. To this aim, we consider $w_{n} \doteqdot w_{n}(2 n-2)$ and we claim that if $j<n$ then $l\left(s_{j} w_{n}\right)>l\left(w_{n}\right)$. Suppose not. Then $s_{j} w_{n}=\widehat{w}_{n}$ for some $j<n$. Since, by (3), we have $s_{j} w_{n}=w_{n} s_{j}$, then we can assume that the cancellation in \widehat{w}_{n} takes place within the firsts $n-1$ elements, otherwise we proceed as follows with the only change of considering left cosets instead of right cosets (we remark that all the theorems in this section have a symmetric version for left cosets which is proved in the same way as the ones we prove, so we can assume that theorem 2 is proved even for left cosets. Plainly, in this case, we have to consider $\left.\widetilde{w}_{j}\left(l_{j}\right) \doteqdot s_{j-l_{j}+1} \ldots s_{j}\right)$.

We remark that $\left\langle s_{2}, s_{3}, \ldots, s_{n}\right\rangle \cong\left\langle s_{1}, s_{3}, \ldots, s_{n}\right\rangle \cong \boldsymbol{A}_{n-1}$.
So suppose $\widehat{w}_{n}=s_{n} \ldots \widehat{s}_{h} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{n}$, We consider first the case in which h has no restriction if $j>2$ and if $j=1$ or 2 then $h=j$ or $h>2$. Then $s_{j} w_{n}=\widehat{w}_{n}$ becomes

$$
\begin{aligned}
s_{j} s_{n} \ldots s_{h}=s_{n} \ldots s_{h+1} & \text { if } h>1, \\
s_{j} s_{n} \ldots s_{3} s_{1}=s_{n} \ldots s_{3} & \text { if } h=1,
\end{aligned}
$$

which gives a contradiction to the case \boldsymbol{A}_{n-1}. In the remaining cases, that is $j=1$ or 2 and $h=2$ or 1 , then we get, for example,

$$
s_{1} s_{n} \ldots s_{3} s_{2}=s_{n} \ldots s_{3}
$$

which is easily seen impossible, since it reduces to $s_{1} s_{3} s_{2}=s_{3}$. So w_{n} is in $\boldsymbol{W}_{I \backslash\{n\}}^{I}$ and the same holds for each of its substring. Since there are exactly $2 n$ of them (see remark 5), we are done in this case.

Let now $3 \leqslant i<n$. As in Theorem 2, we apply Lemma 1 with $K=I \backslash\{i\}$ and $H=I \backslash\{n\}$. With the notations of the lemma, using the preceding case and the inductive hypothesis we have to see when $l\left(s_{j} \beta \delta\right)>l(\beta \delta)$ for each $j \neq i$, where $\delta=w_{n}\left(l_{n}\right)$ and $\beta=w_{i}\left(l_{i}\right) \ldots w_{n-1}\left(l_{n-1}\right)$, assuming that l_{i}, \ldots, l_{n-1} satisfy conditions i)-iv).

First of all, since $j \in H \cap K$ if, and only if, $j \neq i$, n, lemma 1 implies $l\left(s_{j} \beta \delta\right)>l(\beta \delta)$ for each such j. Thus it is enough to show that l_{i}, \ldots, l_{n} satisfy $i)$-iv) if, and only if, $l\left(s_{n} \beta \delta\right)>l(\beta \delta)$. We first prove the «if» part by proving that if l_{i}, \ldots, l_{n} do not satisfy $\left.i\right)$-iv) then $l\left(s_{n} \beta \delta\right)<l(\beta \delta)$. We remark that, by induction and lemma 1 , the given expression for $w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)$ is reduced and, since s_{n} commutes with $w_{i}\left(l_{i}\right), \ldots, w_{n-2}\left(l_{n-2}\right)$, it is enough to show that if l_{i}, \ldots, l_{n} do not satisfy $\left.i\right)$-iv) then

$$
l\left(s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n}\right)\right)<l\left(w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n}\right)\right) .
$$

Moreover, since l_{i}, \ldots, l_{n-1} are assumed to satisfy i)-iv), l_{n} is the only number for which one of the conditions does not hold. It is easy to see that if l_{n} does not fulfill i) then it does not fulfill one of $i i$) or $i i i$), thus it is enough to assume that l_{n} does not satisfy one of $i i$)- $i v$). Finally, it is enough to study the case when l_{n} is the smallest value which does not fulfill the conditions.

$$
-l_{n-1} \leqslant n-3 .
$$

We contradict $i i i$) by requiring $l_{n}=l_{n-1}+1$. We prove what requested by induction on l_{n-1}. Since $s_{n}^{2}=1$, the case $l_{n-1}=0$ is trivial. Now, by (2),
$s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n-1}+1\right)=s_{n} s_{n-1} s_{n-2} \ldots s_{n-l_{n-1}+1} s_{n-l_{n-1}}$

$$
\begin{aligned}
& s_{n} s_{n-1} s_{n-2} \ldots s_{n-l_{n-1}+1} s_{n-l_{n-1}} \\
= & s_{n} s_{n-1} s_{n-2} \ldots s_{n-l_{n-1}+1} \\
& s_{n} s_{n-1} s_{n-2} \ldots s_{n-l_{n-1}+1} s_{n-l_{n-1}} s_{n-l_{n-1}+1} \\
= & s_{n} w_{n-1}\left(l_{n-1}-1\right) w_{n}\left(l_{n-1}\right) s_{n-l_{n-1}} s_{n-l_{n-1}+1} .
\end{aligned}
$$

By induction, we have $l\left(s_{n} w_{n-1}\left(l_{n-1}-1\right) w_{n}\left(l_{n-1}\right)\right)<l\left(w_{n-1}\left(l_{n-1}-1\right)\right.$. $w_{n}\left(l_{n-1}\right)$), so we are done.

$$
-l_{n-1} \geqslant n-2 \text { and } l_{n}>l_{n-1}+1 .
$$

Again, we proceed by induction, the first step being $l_{n-1}=n-2$. We consider only the case in which $w_{n-1}\left(l_{n-1}\right)$ ends by s_{1}, the other case being simi-
lar. We have

$$
s_{n} w_{n-1}(n-2) w_{n}(n)=s_{n} s_{n-1} \ldots s_{3} s_{1} s_{n} s_{n-1} \ldots s_{3} s_{1} s_{2}
$$

In this case, s_{1} commutes with all of the firsts $n-2$ terms of $w_{n}(n)$, so that

$$
s_{n} w_{n-1}(n-2) w_{n}(n)=s_{n} w_{n-1}(n-3) w_{n}(n-3) s_{1} s_{3} s_{1} s_{2}
$$

But $s_{1} s_{3} s_{1} s_{2}=s_{3} s_{1} s_{3} s_{2}$ which implies

$$
\begin{aligned}
s_{n} w_{n-1}(n-2) w_{n}(n) & =s_{n} w_{n-1}(n-3) w_{n}(n-3) s_{1} s_{3} s_{1} s_{2} \\
& =s_{n} w_{n-1}(n-3) w_{n}(n-2) s_{1} s_{3} s_{2}
\end{aligned}
$$

and we are reduced to the preceding case.
Now we go on by induction. Again, it is enough to consider $l_{n}=l_{n-1}+2$: then, using (3), it is easy to obtain

$$
s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n-1}+2\right)=s_{n} w_{n-1}\left(l_{n-1}-1\right) w_{n}\left(l_{n-1}+2\right) s_{l_{n-1}-n+3}
$$

which is not reduced, $\bmod \boldsymbol{W}_{I \backslash\{i\}}^{I}$, by the inductive hypothesis.

$$
-l_{n-1}=n-1 \text { and } l_{n}=n
$$

In this case, to contradict $i v$), we have to study $s_{n} s_{n-1} \ldots s_{3} s_{2} s_{n} s_{n-1} \ldots s_{3} s_{2}$, for example; but $\left\langle s_{2}, s_{3}, \ldots, s_{n}\right\rangle \cong \boldsymbol{A}_{n-1}$ and then, by theorem 2 , this is not reduced.

Now we have to prove the converse: if l_{i}, \ldots, l_{n} satisfy the conditions of the theorem, then the element $w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)$ is reduced $\bmod \boldsymbol{W}_{I \backslash\{i\}}^{I}$. By lemma 1 we get that all the elements of this form are reduced $\bmod \boldsymbol{W}_{I \backslash\{i, n\}}^{I}$, so we must only show that

$$
l\left(s_{n} w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)\right)>l\left(w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)\right)
$$

Suppose not. Then

$$
s_{n} w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)=w_{i}\left(l_{i}\right) \ldots \widehat{w}_{h}\left(l_{h}\right) \ldots w_{n}\left(l_{n}\right)
$$

where, as usual, hat means omission of one of the generators.
If $h<n$ then we get

$$
s_{n}=w_{i}\left(l_{i}\right) \ldots \widehat{w}_{h}\left(l_{h}\right)\left(w_{h}\left(l_{h}\right)\right)^{-1} \ldots\left(w_{i}\left(l_{i}\right)\right)^{-1} \in\left\langle s_{1}, \ldots, s_{n-1}\right\rangle,
$$

a contradiction. Then $h=n$ and we easily get

$$
s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n}\right)=w_{n-1}\left(l_{n-1}\right) \widehat{w}_{n}\left(l_{n}\right) .
$$

There are two subcases: either

$$
\begin{aligned}
& s_{n} s_{n-1} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{j} s_{n} s_{n-1} \ldots s_{h}= \\
& \quad=s_{n-1} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{j} s_{n} s_{n-1} \ldots s_{h+1}
\end{aligned}
$$

or

$$
\begin{aligned}
& s_{n} s_{n-1} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{j} s_{n} s_{n-1} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{h}= \\
& \quad=s_{n-1} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{j} s_{n} s_{n-1} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{h-1}
\end{aligned}
$$

according to the position in which occurs the cancellation of s_{h} (i.e., in the left or right part of $w_{n}\left(l_{n}\right)$), where s_{h} is the omitted generator in $\widehat{w}_{n}\left(l_{n}\right)$ (with $h \leqslant j$, in the second subcase).

In both cases, we obtain an equality of the type

$$
s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}(l)=w_{n-1}\left(l_{n-1}\right) w_{n}(l-1)
$$

with $l<l_{n}$, which we can also write as

$$
\begin{equation*}
s_{n} s_{n-1} w_{n-2}\left(l_{n-1}-1\right) s_{n} w_{n-1}(l-1)=s_{n-1} w_{n-2}\left(l_{n-1}-1\right) s_{n} w_{n-1}(l-2) \tag{4}
\end{equation*}
$$

If $j \leqslant n-2$, we have that s_{n} commutes with $w_{n-2}\left(l_{n-1}-1\right)$ so that (4) reduces to

$$
s_{n-1} w_{n-2}\left(l_{n-1}-1\right) w_{n-1}(l-1)=w_{n-2}\left(l_{n-1}-1\right) w_{n-1}(l-2)
$$

If $j=n-1$ then we write (4) as

$$
\begin{aligned}
& s_{n} s_{n-1} w_{n-2}\left(l_{n-1}-2\right) s_{n-1} s_{n} s_{n-1} w_{n-2}(l-2)= \\
& \quad=s_{n-1} w_{n-2}\left(l_{n-1}-2\right) s_{n-1} s_{n} s_{n-1} w_{n-2}(l-3)
\end{aligned}
$$

and, using the relation $s_{n-1} s_{n} s_{n-1}=s_{n} s_{n-1} s_{n}$ and the fact that s_{n} commutes with the element $w_{n-2}\left(l_{n-1}-2\right)$, we get

$$
s_{n-1} w_{n-2}\left(l_{n-1}-2\right) w_{n-1}(l-1)=w_{n-2}\left(l_{n-1}-2\right) w_{n-1}(l-2)
$$

In both cases, we contradict the inductive hypothesis for $\boldsymbol{D}_{n-1}=$ $\left\langle s_{1}, \ldots, s_{n-1}\right\rangle$.

The initial step for the induction is provided by the case \boldsymbol{D}_{4}, where it is easily seen, even by direct inspection, that our claim holds.

In the previous theorem we have left out the cases $i=1,2$. We deal here with the case $i=1$ (the case $i=2$ is similar). In this case it is easy to see, by an induction similar to the case $i=n$, that if $w_{1}(l) \doteqdot s_{1} s_{3} s_{4} s_{5} \ldots s_{l+1}$,
$w_{2}(l) \doteqdot s_{2} s_{3} s_{4} s_{5} \ldots s_{l+1}$ for $l=2, \ldots, n-1$ and $w_{i}=s_{i}$ for $l=1, \quad i=1,2$ then
$\boldsymbol{W}_{I \backslash\{1\}}^{I}=\left\{w_{1}\left(l_{1}\right) w_{2}\left(l_{2}\right) w_{1}\left(l_{3}\right) w_{2}\left(l_{4}\right) \ldots w_{\left(3+(-1)^{h-1) / 2}\right.}\left(l_{h-1}\right) w_{\left(3+(-1)^{h}\right) / 2}\left(l_{h}\right)\right.$
such that $0 \leqslant h \leqslant n-1$ and $\left.l_{j}>l_{j+1}\right\}$.
We are left the last case: $\boldsymbol{W}=\boldsymbol{B}_{n}$. We make again the convention of inverting the indices, that is we consider the group associated with the graph

and we define

$$
w_{j} \doteqdot s_{j} s_{j-1} \ldots s_{2} s_{1} s_{2} \ldots s_{n-1} s_{n}
$$

and with $w_{j}\left(l_{j}\right)$ we denote, in this last case, the substring of w_{j} composed by the firsts l_{j} tokens (from the left), for $0 \leqslant l_{j} \leqslant n+j-1$. Moreover, we record for later reference the following trivial formula, which hold in case \boldsymbol{B}_{n} :

$$
\begin{equation*}
s_{j} s_{j+1} s_{j} \ldots s_{2} s_{1} s_{2} \ldots s_{j} s_{j+1}=s_{j+1} s_{j} \ldots s_{2} s_{1} s_{2} \ldots s_{j} s_{j+1} s_{j} \tag{5}
\end{equation*}
$$

Theorem 6. - If $\boldsymbol{W}=\boldsymbol{B}_{n}$ then, with the preceding notations,

$$
\boldsymbol{W}_{I \backslash\{i\}}^{I}=\left\{w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)\right\}
$$

with l_{j}, \ldots, l_{n} satisfying
i) $0 \leqslant l_{j} \leqslant j+i-1$
ii) $l_{j+1} \leqslant l_{j}+1$
iii) $l_{j+1} \leqslant l_{j}$ if $l_{j} \leqslant j-1$.

Proof. - In the proof we shall need remarks which are quite similar to the ones we made during the proof of theorem 4, so we will not go into details as before.

As usual, we first see what happens when $i=n$. Let us show that the element $w_{n} \doteqdot w_{n}(2 n-1)$ is in $\boldsymbol{W}_{I \backslash\{i\}}^{I}$. Suppose not, so that $l\left(s_{j} w_{n}\right)<l\left(w_{n}\right)$ for some $j \neq n$; then $s_{j} w_{n}=\widehat{w}_{n}$. Since from (5) we get $s_{j} w_{n}=w_{n} s_{j}$, we can suppose in the same way as we made in theorem 4, that the cancellation in w_{n} is between its firsts n elements and let h be the omitted generator; thus $s_{j} w_{n}=\widehat{w}_{n}$ becomes

$$
\begin{equation*}
s_{j} s_{n} s_{n-1} \ldots s_{2} s_{1}=s_{n} s_{n-1} \ldots \hat{s}_{h} \ldots s_{2} s_{1} \tag{6}
\end{equation*}
$$

If $h>1$, then we contradict the result for the case \boldsymbol{A}_{n-1}, so that $h=1$ must hold. Now multiply (6) on the right by s_{1}, \ldots, s_{n}. It becomes $s_{j}=w_{n}$ and we easily get from this that

$$
s_{j+1}=s_{j-1} s_{j-2} \ldots s_{2} s_{1} s_{2} \ldots s_{j-2} s_{j-1}
$$

which implies $s_{j+1} \in\left\langle s_{1}, \ldots, s_{j-1}\right\rangle$, a contradiction.
We have seen that w_{n} is reduced $\bmod \boldsymbol{W}_{I \backslash\{n\}}$ and then the same must hold for each of its (left) substrings. Since there are exactly $2 n$ of these, which is the same number of the cosets of $\boldsymbol{W}_{I \backslash\{n\}}$ in \boldsymbol{W}, we have found all of them.

Now we can proceed with the general case. As we did in theorem 2, we apply lemma 1 with $K=I \backslash\{i\}$ and $H=I \backslash\{n\}$. The inductive hypothesis gives us the set of representatives

$$
\boldsymbol{W}_{H \cap K}^{H}=\left\{w_{i}\left(l_{i}\right) \ldots w_{n-1}\left(l_{n-1}\right)\right\},
$$

where the l_{i}, \ldots, l_{n-1} satisfy the stated conditions, and the case $i=n$ gives us

$$
\boldsymbol{W}_{H}^{I}=\left\{w_{n}\left(l_{n}\right) \mid 0 \leqslant l_{n} \leqslant 2 n-1\right\} .
$$

Applying lemma 1 , we have to look when the element $w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)$ is reduced $\bmod \boldsymbol{W}_{K}$, assuming that l_{i}, \ldots, l_{n-1} satisfy the conditions of the theorem.

So let us suppose l_{n} does not satisfy one of the three conditions in the thesis. As in the proof of theorem 2, using induction we easily reduce to prove that

$$
l\left(s_{n} w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n}\right)\right)<l\left(w_{n-1}\left(l_{n-1}\right) w_{n}\left(l_{n}\right)\right) .
$$

If $l_{n-1} \leqslant n-2$, then we can proceed exactly as in the case \boldsymbol{A}_{n}, since we have a group isomorphism $\left\langle s_{2}, \ldots, s_{n}\right\rangle \cong \boldsymbol{A}_{n-1}$. Then $l_{n} \leqslant l_{n-1}$ must hold.

It is easy to see that, when $l_{n-1} \geqslant n-1$, it is enough to treat the case $l_{n}=$ $l_{n-1}+2$ (otherwise we can reduce to this). First let $l_{n-1}=n-1$. Then

$$
\begin{aligned}
s_{n} s_{n-1} \ldots s_{2} s_{1} s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} & =s_{n} s_{n-1} \ldots s_{2} s_{n} s_{n-1} \ldots s_{1} s_{2} s_{1} s_{2} \\
& =s_{n} s_{n-1} \ldots s_{2} s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} s_{1}
\end{aligned}
$$

and we are led to the preceding case.

Now let us suppose $l_{n-1}>n-1$; we apply (5):

$$
\begin{aligned}
& s_{n-1} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{j} s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{j} s_{j+1}= \\
& \quad=s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{j-1} s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{j} s_{j+1} s_{j}
\end{aligned}
$$

and we can invoke induction to conclude.
So far, we have proved that if $w_{i}\left(l_{i}\right) \ldots w_{n}\left(l_{n}\right)$ is reduced $\bmod \boldsymbol{W}_{K}$, then l_{i}, \ldots, l_{n} must satisfy the conditions i, $i i$) and $i i i$).

To prove the converse, we could count how many elements we obtain this way, but we could also proceed directly in the same way as in the case of \boldsymbol{D}_{n} : the proof goes on nearly in the same way.

3. - Exceptional cases.

As for the exceptional cases, we outline an algorithm which provides a complete list of minimal length coset representatives.

We recall that given an expression of $w \in \boldsymbol{W}$ by means of the reflections in S, there are algorithms which reduce w in normal reduced form, see [5]. When w is in such a form, we can write $w=x y$ in only one way if we require $x \in$ $\boldsymbol{W}_{\Gamma}, x \notin \boldsymbol{W}_{\Gamma^{\prime}}$, whenever $\Gamma \subset \Gamma^{\prime} \subseteq S$ and, clearly, we have $y \in \boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$. We call y the Γ^{\prime}-part of w.

As we have already remarked, if $w \in \boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$ and $w=s_{i_{1}} \ldots s_{i_{h}}$, then we also have that $s_{i_{1}} \ldots s_{i_{j}} \in \boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$ for all $j \leqslant h$. Moreover, we can suppose $\Gamma^{\prime}=S$, $\Gamma=S \backslash\{i\}$.

Now, in order to get the list \mathfrak{L} of the elements of $\boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$, one can proceed as follows. Let $\mathfrak{L}=\{\varnothing\}, l=0$.
i) Pick an element $w \in \mathscr{L}$ of length l.
ii) For all $s \in S$, consider $w s$ and reduce it in normal form. If its S-part y is not in \mathfrak{L}, then let $\mathfrak{L}=\mathfrak{L} \cup\{y\}$.
iii) If in \mathscr{L} there is another element of length l, then go to i). If all elements of length l have been considered, then let $l=l+1$; if for a given length l no element in $i i$) has been added to \mathfrak{L}, then $\mathfrak{L}=\boldsymbol{W}_{\Gamma}^{\Gamma^{\prime}}$, else go to i).

We now give some examples obtained with the above procedure for some exceptional group. Elements in $\boldsymbol{W}_{I \backslash\{i\}}^{I}$ are represented by a (directed) tree: starting from the vertex on the left, go outward (with regard to this vertex) and multiply by the generator s_{j} if j is on the edge.

First of all, we remark that it is trivial to solve the case $\boldsymbol{W}=\boldsymbol{I}_{2}(m)$: it is clear that

$$
\boldsymbol{W}_{\{1\}}^{\{1,2\}}=\{1, s_{2}, s_{2} s_{1}, s_{2} s_{1} s_{2}, \ldots, \underbrace{\left.s_{2} s_{1} s_{2} \ldots\right\}}_{m-1 \text { factors }},
$$

that is, the whole (left) substring of the longest among the representatives. In the same way we obtain $\boldsymbol{W}_{\{2\}}^{\{1,2\}}$.

Now we come to $\boldsymbol{W}=\boldsymbol{H}_{3}$. We have

and

The last example we give is $\boldsymbol{W}=\boldsymbol{F}_{4}$. By the symmetry of the graph defining \boldsymbol{F}_{4}, it is clear that it suffices to provide $\boldsymbol{W}_{\{1,2,3\}}^{\{1,2,3,4\}}$ and $\boldsymbol{W}_{\{1,2,4\}}^{\{1,2,3,4\}}$. They are as follows:

whereas $\boldsymbol{W}_{\{1,2,4\}}^{\{1,2,3,4\}}$ is given by the tree

4. - Factorization of the Poincaré polynomial.

In this section we show that the well-known formula for the factorization of the Poincaré polynomial of a finite irreducible Coxeter group (see [6]) is a simple corollary of the results found in section 2. Moreover, we remark that we shall use just the simplest case of Theorems 2,4 and 6 , that is the case with $i=n$, thus getting a simpler proof of the factorization theorem with respect to the standard ones (see [6], section 3.16 and the closing remark, [8] and [9].

Proposition 7. - If G is a finite Coxeter group and H is a parabolic subgroup, then

$$
W_{G}(x)=W_{H}(x) \sum_{r \in R} x^{l(r)},
$$

where R is the set of minimal length representatives of the cosets of H in G.
Proof. - Let R be defined as in the statement. Then every $w \in G$ can be uniquely written as $w=r u$ for some $r \in R$ and some $u \in H$ with $l(w)=l(r)+$
$l(u)$. In this way,

$$
\begin{aligned}
W_{G}(x) & =\sum_{w \in G} x^{l(w)} \\
& =\sum_{r \in R} \sum_{u \in H} x^{l(r)} x^{l(u)} \\
& =\sum_{r \in R} x^{l(r)} \sum_{u \in H} x^{l(u)} \\
& =\sum_{r \in R} x^{l(r)} W_{H}(x)
\end{aligned}
$$

as claimed.
The Poincaré polynomial can be further generalized in the case there is more than one length for the roots (see [1] for more definitions) by letting

$$
W_{G}(x, y) \doteqdot \sum_{w \in G} x^{l^{\prime}(w)} y^{l^{\prime \prime}(w)}
$$

where $l^{\prime}(w)$ is the number of long roots in a reduced expression for w while $l^{\prime \prime}(w)$ is the number of short roots.

Recalling the definition (and the value) of the degrees d_{i} from [6] or [1], we have the following

Corollary 8. - If $G=\boldsymbol{A}_{n}$ or \boldsymbol{D}_{n} then

$$
W_{G}(x)=\prod_{i=1}^{n} \frac{1-x^{d_{i}}}{1-x}
$$

and, if $G=\boldsymbol{B}_{n}$, then

$$
W_{G}(x, y)=\prod_{i=1}^{n}\left(1+x^{i-1} y\right)\left(1+x+\ldots+x^{i-1}\right)
$$

Proof. - Let us use Proposition 7 with H being the parabolic subgroup generated by s_{1}, \ldots, s_{n-1} (with the conventions used in section 2). Then, for $G=\boldsymbol{A}_{n}$, we have

$$
R=\left\{1, s_{n}, s_{n} s_{n-1}, \ldots, s_{n} s_{n-1} \ldots s_{1}\right\}=\left\{\text { left substrings of } s_{n} s_{n-1} \ldots s_{1}\right\}
$$

so that

$$
\sum_{r \in R} x^{l(r)}=1+x+\ldots+x^{n}
$$

and then, by Proposition 7 and an easy induction,

$$
W_{A_{n}}=\prod_{i=1}^{n}\left(1+x+\ldots+x^{i}\right)
$$

as claimed.
For $G=\boldsymbol{D}_{n}$, then

$$
R=\left\{\text { left substrings of } s_{n} s_{n-1} \ldots s_{3} s_{2} s_{1} s_{3} \ldots s_{n-1} s_{n}\right\}
$$

(remember to add also $s_{n} s_{n-1} \ldots s_{3} s_{1}$) so that

$$
W_{\boldsymbol{D}_{n}}=\prod_{i=1}^{n}\left(1+x^{i-1}\right)\left(1+x+\ldots+x^{i-1}\right)
$$

noting that

$$
\left(1+x^{i-1}\right)\left(1+x+\ldots+x^{i-2}\right)=1+x+\ldots+x^{2 i-3}
$$

we get what claimed.
As to $G=\boldsymbol{B}_{n}$, it is trivial to see that Proposition 7 holds also for $W_{\boldsymbol{B}_{n}}(x, y)$. Thus, since

$$
R=\left\{\text { left substrings of } s_{n} s_{n-1} \ldots s_{3} s_{2} s_{1} s_{2} s_{3} \ldots s_{n-1} s_{n}\right\},
$$

we get

$$
\begin{aligned}
\sum_{r \in R} x^{l^{\prime}(r)} y^{l^{\prime \prime}(r)} & =1+x+\ldots+x^{n-1}+x^{n-1} y+x^{n} y+\ldots+x^{2 n-1} y \\
& =\left(1+x^{n-1} y\right)\left(1+x+\ldots+x^{n-1}\right)
\end{aligned}
$$

and, again, we are done by means of an easy induction.
Further remarks. - Consider an Artin group $\boldsymbol{G}_{\boldsymbol{W}}$ associated to a Coxeter group \boldsymbol{W} (see [2]). Using the results of section 2 it is easy to construct an algorithm to compute the cohomology of a $\boldsymbol{G}_{\boldsymbol{W}}$-module were \boldsymbol{W} is a finite irreducible Coxeter group, see [10].

Clearly, computations depend on a given representation $\varphi: \boldsymbol{G}_{\boldsymbol{A}_{n}} \rightarrow$ Aut (R) which has to be specified.

In table I we provide the result of the computations done for the standard representation in the linear group $\varphi: \boldsymbol{G}_{\boldsymbol{A}_{n}} \rightarrow G L(n+1, Z)$ by permutations: the generator s_{i} is mapped to the matrix which operates on the canonical base as the permutation ($i, i+1$). Where no result is given, it means that computations go beyond the limits of the machine.

These results agree with what is known for such a representation, see [11]: the free part of the cohomology groups is always $\mathbb{Z} \times \mathbb{Z}$, but for the first and the last cohomology groups.

It is quite evident the usefulness of knowing a good deal of (computer generated) examples in order to have a better understanding of what goes on, so as to make realistic conjectures.

Table I.

	A_{2}	\boldsymbol{A}_{3}	\boldsymbol{A}_{4}	\boldsymbol{A}_{5}	\boldsymbol{A}_{6}	\boldsymbol{A}_{7}	\boldsymbol{A}_{8}	\boldsymbol{A}_{9}	\boldsymbol{A}_{10}
H^{0}	Z	Z	Z	Z	Z	Z	Z	Z	Z
H^{1}	Z^{2}								
H^{2}	Z	Z^{2}	Z^{2}	Z^{2}	Z^{2}	Z^{2}	Z^{2}	Z^{2}	Z^{2}
H^{3}		Z	$Z_{i}^{2} \times Z / 2 Z$	$Z^{2} \times 2 / 2 Z$	$Z^{2} \times \mathbb{Z} / 2 Z$	$Z^{2} \times \mathrm{Z} / 2 \mathrm{Z}$	*	*	*
H^{4}			Z	$Z^{2} \times Z / 2 Z$	$Z^{2} \times(Z / 2 Z)^{2}$	$Z^{2} \times(Z / 2 Z)^{2}$	*	*	*
H^{5}				Z	$Z^{2} \times \mathrm{Z} / 6 \mathrm{Z}$	$Z^{2} \times Z / 2 Z \times Z / 6 Z$	*	*	*
H^{6}					Z	$Z^{2} \times \mathrm{Z} / 6 \mathrm{Z}$	$Z^{2} \times(Z / 6 Z)^{2}$	*	*
H^{7}						Z	$Z^{2} \times Z / 6 Z$	*	*
H^{8}							Z	$Z^{2} \times 2 / 6 Z$	*
H^{9}								Z	$Z^{2} \times Z / 30 Z$
H^{10}									Z

REFERENCES

[1] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4-6, Paris, Hermann (1968).
[2] E. Brieskorn, Sur les groupes de tresses, Sém. Bourbaki, 401 (1971).
[3] C. De Concini - M. Salvetti, Cohomology of Artin groups, to appear in Math. Res. Lett.
[4] C. De Concini - M. Salvetti - F. Stumbo, The top-cohomology of Artin Groups with coefficients in rank-1 local systems over \mathbb{Z}, Topology and its applications, 78 (1997), 5-20.
[5] F. Du Cloux, Un algorithme de forme normale pour les groupes de Coxeter, preprint, Ecole Politechnique, Palaiseau, 1990.
[6] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Un. Press, 1990.
[7] M. Salvetti - F. Stumbo, Artin groups associated to infinite Coxeter groups, Discrete Mathematics, 163 (1997), 129-138.
[8] L. Solomon, A decomposition of the group algebra of a finite Coxeter group, J. of Algebra, 9 (1968), 220-239.
[9] R. Steinberg, Endomorphisms oflinearalgebraic groups, Mem. Amer. Math. Soc., 80 (1968).
[10] F. Stumbo, Coomologia dei gruppi di Artin, Univ. di Pisa, Ph. D. Thesis, 1997.
[11] V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, Tran. of Math. Monog., AMS 98, 1992.

Dip. di Matematica, via Machiavelli 35, 44100 Ferrara (I)
E-mail:stumbo@dm.unife.it

