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Bollettino U. M. I.
(8) 3-B (2000), 657-672

Ideal Triangulations of Hyperbolic 3-Manifolds.

CARLO PETRONIO (*)

Sunto. – Quello delle triangolazioni geodetiche ideali è un metodo molto potente per co-
struire strutture iperboliche complete di volume finito su 3-varietà non compatte,
ma non è noto se il metodo sia applicabile in generale. È tuttavia noto che esistono
triangolazioni ideali parzialmente piatte, ma l’analisi della situazione diviene più
ardua sotto diversi aspetti, quando si ha a che fare con tetraedri piatti oltre che veri
tetraedri. In particolare, la topologia dello spazio di identificazione può degenera-
re, ed in questo lavoro tale fenomeno di degenerazione viene spiegato in dettaglio.
Inoltre, quando si cerca di deformare la struttura completa, emergono anche te-
traedri invertiti, ed in tal caso si mostra in questo lavoro che non c’è neppure una
ovvia definizione dello stesso spazio di identificazione. Si dimostra tuttavia che
la sviluppante e l’olonomia possono comunque essere definite, e si suggerisce un
metodo per costruire effettivamente la struttura deformata.

According to Thurston’s geometrization conjecture, proved in the Haken
case, hyperbolic geometry plays a central role in 3-dimensional topology. In
particular, every closed oriented 3-manifold splits along a family of spheres
and tori into canonical pieces which are conjecturally geometric and typically
hyperbolic. If one concentrates on the case where the family of tori is non-
empty, one is led to consider compact oriented manifolds M 3 such that ¯M is
non-empty and consists of tori. In this case Thurston’s hyperbolization theo-
rem for Haken manifolds implies that under some natural topological assump-
tions, Int (M) admits a complete finite-volume hyperbolic structure. Moreover,
Mostow’s rigidity states that one such structure is uniquely determined by the
topology of M , so every geometric invariant (such as the volume) is actually a
topological invariant. Unfortunately, Thurston’s proof is purely existential, so
the problem naturally arises of effectively constructing hyperbolic structures.
The most fruitful method so far, suggested by Thurston himself, is that of ide-
al triangulations. Actually, it is often conjectured that the method always
works, namely that every non-compact, oriented, finite-volume complete hy-
perbolic M 3 can be decomposed into ideal tetrahedra. The conjecture appears
to be still open, but it is known to be true if one accepts, together with genuine
tetrahedra, also flat ones.

(*) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.I.
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This paper surveys results obtained by the author with Jeff Weeks [10] and
with Joan Porti [9] about the analysis and perturbation of the partially flat tri-
angulations mentioned above. Proofs of theorems already published are omit-
ted, and some original results, remarks and conjectures are provided. This is
an expanded version of the talk given in Napoli at the XVI meeting of the
Unione Matematica Italiana. The author is pleased to take this opportunity to
thank the organizers for their excellent work, and the scientific committee of
the meeting for the invitation to give the talk.

1. – Hyperbolic geometry and 3-dimensional topology.

One of the most natural issues in topology is that of understanding (say,
classifying) manifolds (say, closed oriented ones) of a given dimension n . The
classification is well-known for n42 and known to be impossible for nF4
(even if spectacular results have been and are being proved, in particular for
n44). In dimension 3 the so-called uniformization (or geometrization) conjec-
ture of Thurston [16] states that every manifold splits along a family of
spheres and tori into canonical pieces which admit a geometric structure. Here
a geometric structure is a complete Riemannian metric on the interior, locally
isometric to a certain homogeneous model. With some natural restrictions, it
turns out that only 8 geometries exist [12], and all of them but one are well-un-
derstood and «sporadic» among 3-manifolds. The most interesting geometry is
the hyperbolic one, i.e. the geometry of constant sectional curvature 21, and
according to Thurston’s conjecture this geometry plays a central role in 3-di-
mensional topology.

I state now two fundamental results of hyperbolic geometry in dimension
3, needed below. Proofs may be found in [1].

THEOREM 1.1. – If a 3-manifold admits a complete finite-volume hyperbol-
ic structure then it admits only one such structure up to isometry.

This result is known as Mostow’s rigidity theorem, and it holds in all di-
mensions nF3. For n42 a hyperbolic metric corresponds to a Riemann sur-
face structure, so there are continuous moduli.

THEOREM 1.2. – Let M be an orientable 3-manifold which admits a com-
plete finite-volume hyperbolic structure. Then:

1) M is the interior of a compact 3-manifold M with boundary, where
¯M consists of a finite family of tori;

2) M is irreducible (every embedded S 2 bounds an embedded D 3 )
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and atoroidal (every subgroup of p 1 (M) isomorphic to Z5Z is conjugate
to the fundamental group of a component of ¯M).

This result is a consequence of Margulis’ lemma, and it has an analogue in
all dimensions. Concerning the definition of «atoroidal» manifold, I mention
that there are several variations on this definition, and their mutual relation-
ships have been investigated until quite recently [6], [13], [3]. I do not want to
get into this matter here.

It is a great achievement of Thurston, and an important step towards the
geometrization conjecture, that a 3-manifold M satisfying the necessary condi-
tions of Theorem 1.2, with certain obvious exceptions, actually is hyperbolic,
provided either ¯Mc¯ or M is Haken (i.e. it contains a two-sided p 1-injective
surface). In particular all link xteriors in S 3 , with some well-understood fami-
lies of exceptions, are hyperbolic [15]. Adding this fact to Lickorish’s theorem
(every closed 3-manifold is a Dehn-filled link exterior —see e.g. [11]) and to
the hyperbolic Dehn filling theorem stated below, one gets a heuristic confir-
mation that a closed 3-manifold typically is hyperbolic. The same is true also
for a manifold bounded by tori, and this paper describes a method for con-
structing and analyzing its hyperbolic structure.

2. – Topological and hyperbolic ideal triangulations.

In order to endow a manifold with a hyperbolic structure, one needs to
start with some concrete presentation of the manifold itself. Since a hyperbolic
structure is a Riemannian metric with Kf21, one may expect differential
equations to arise. Remarkably enough, there is a combinatorial presentation
for 3-manifolds which allows to translate the search for a hyperbolic structure
into an algebraic question, thus bypassing analysis altogether. This section de-
scribes this combinatorial presentation and its hyperbolic version.

TOPOLOGICAL TRIANGULATIONS. – Let M be a compact, connected and ori-
ented 3-manifold with non-empty boundary. I will call topological ideal trian-
gulation of M a finite collection D1 , R , Dn of copies of the standard tetrahe-
dron, together with a set of instructions for glueing together in pairs the tri-
angular faces of the Di’s, in such a way that the space obtained by performing
the glueings and removing the vertices is homeomorphic to Int (M). The glue-
ings are of course simplicial and orientation-reversing. A more accurate pic-
ture is obtained, rather than by removing the vertices, by truncating the te-
trahedra (formally, by removing the open stars of vertices in the second
barycentric subdivision), because the whole of M is recovered, not only
Int (M). Figure 1 illustrates an example in one dimension less. The set of com-
binatorial data defining the ideal triangulation will be denoted by F .



CARLO PETRONIO660

Figure 1. – An ideal triangulation in dimension 2: ideal version (left) and truncated ver-
sion (right).

GEODESIC IDEAL TETRAHEDRA. – Assume now that ¯M consists of tori, so,
by Theorem 1.2, it makes sense to try and construct a hyperbolic structure on
Int (M). One way to get such a structure using F is to define the structure first
on the Di’s and then try to extend it. The easiest way to put a hyperbolic struc-
ture on Di is to realize it as a geodesic ideal tetrahedron in H3 , i.e. as the con-
vex envelope of 4 points on ¯H3 . Since the isometry group of H3 acts in a triply
transitive way on ¯H3 , three vertices of Di can be chosen to be 0 , 1 , Q in the
half-space model. Taking into account the orientation one sees that the fourth
vertex is a complex number zi in the upper half-plane p 1 , and it determines Di

up to isometry, so it is called the modulus of Di . More precisely, zi is attached
to the edge having ends 0 and Q and to the opposite one. The other pairs of
opposite edges have moduli zi841/(12zi ) and zi94121/zi .

For later purpose I note that by taking horospherical sections at Q one
gets a correspondence between geodesic ideal tetrahedra up to isometry and
Euclidean triangles up to similarity. The upper half-plane p 1 is the moduli
space for both objects.

COMPATIBILITY EQUATIONS. – Given a choice of moduli z1 , R , zn �p 1 for
the D1 , R , Dn the question arises whether the structure defined on the Di’s
induces one on M . First of all, using again the fact that the isometry group of
H3 acts in a triply transitive way on ¯H3 , one sees that all the pairings can be
realized by isometries, so the structure extends to the triangular faces. Now, if
one focuses on an edge, one easily sees that the structure extends along that
edge if and only if the tetrahedra cyclically arranged around the edge close up
to give a portion of hyperbolic space. This translates into the condition that the
product of the moduli around the edge should be 1 and the sum of the corre-
sponding arguments should be 2p , yielding a system C F* . Actually, using the
fact that x(¯M) 40, one sees that there are exactly n edges and that the angle
equations are implied by the moduli equations (see [1] for details), so C F* can
be reduced to a smaller system CF . Summing up, the following holds:
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PROPOSITION 2.1. – Consider a topological ideal triangulation F of a man-
ifold M bounded by tori, involving tetrahedra D1 , R , Dn . Then the combina-
torics of F determines a system CF of n rational equations with integer coeffi-
cients in n variables, with the property that for z1 , R , zn �p 1 the structure
defined by the zi’s on the Di’s extends to M if and only if (z1 , R , zn ) is a sol-
ution of CF .

COMPLETENESS EQUATIONS. – In the same setting as above, one has to face
the question whether the structure induced on M by z1 , R , zn is complete. It
is a known fact (see e.g. [5]) that the boundary tori of M have a similarity
structure induced by the hyperbolic structure on Int (M). In the particular
situation under consideration this may be seen directly, because the boundary
tori are naturally triangulated by the horospherical sections of the ideal tetra-
hedra. These sections are Euclidean triangles, and they are glued along edges
by similarities. Moreover, M is complete if and only if the tori are actually
Euclidean. (This may also be seen directly, but not so easily, see [1] for
details.)

From this fact one is lead to the question whether a similarity structure on
a triangulated torus is Euclidean. The necessary and sufficient condition for
this to happen is that the holonomy of the structure should consist of transla-
tions. Taking a pair of simplicial generators of the fundamental group of the
torus the condition can be rephrased by requiring that the dilation compo-
nents of the holonomy of these generators should be 1 . Now, the dilation com-
ponent of the holonomy of a simplicial loop can be computed as the product of
all moduli found on one of the sides (left or right) of the loop, so again the re-
sult is a rational function of the z1 , R , zn . Summing up one has:

PROPOSITION 2.2. – Under the assumptions of Proposition 2.1, suppose
that M has k boundary tori. Then the combinatorics of F determines a sys-
tem MF of 2k rational equations with integer coefficients in n variables, with
the property that the structure on M defined by a solution z1 , R , zn �p 1 of
C*F is complete if and only if (z1 , R , zn ) is also a solution of MF .

As a consequence of Mostow’s rigidity (Theorem 1.1) one can show that a
simultaneous solution z of CF and MF with zi �p 1 , if any, is unique.

THE TRIANGULATION CONJECTURE. – The method described above is a very
effective one for constructing hyperbolic structures, and it is wonderfully im-
plemented by the software SnapPea [18]. However it is still an open question
whether this method is a general one or not. On one hand, it is very easy to see
that, even if M is complete hyperbolic, there are plenty of triangulations F for
which the system ]CF , MF( does not have a solution in p 1 . On the other
hand, it is commonly conjectured that at least one F exists such that
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]CF , MF( has a solution. As a matter of fact, the way SnapPea works is rough-
ly as follows. It starts with some F and it tries to solve the corresponding sys-
tem. If it finds a solution, M is hyperbolic, and SnapPea can compute the vol-
ume and several other invariants. If it does not find a solution, then it checks
whether the combinatorics of F implies the existence of some topological ob-
structions to hyperbolicity. If not, then it changes the triangulation and it
starts over again. On a counterexample to the conjecture stated above, Snap-
Pea would never halt, which is not known to have happened yet. (SnapPea is
actually smarter than I have just described, so it does stop in some cases even
if it does not find a genuine solution, but the geometric conjecture has inde-
pendent interest.)

I conclude this section by rephrasing the triangulation conjecture in a
more direct geometric way, which does not require to mention equations:

CONJECTURE 2.3. – If M is a non-compact, finite-volume and complete hy-
perbolic 3-manifold then M admits a topological ideal triangulation which
can be isotoped to a geodesic one.

The process of isotoping a triangulation to a geodesic one is best described
as «straightening». I refer to [8] for some remarks on this process.

3. – Partially flat triangulations.

The following weaker version of Conjecture 2.3 has been established
in [4]:

THEOREM 3.1. – If M is a non-compact, finite-volume and complete hyper-
bolic 3-manifold then M can be obtained by pairing the faces of finitely many
geodesic ideal polyhedra in H3 .

CUTTING POLYHEDRA INTO TETRAHEDRA. – Since an ideal polyhedron can be
easily cut into ideal tetrahedra, one may believe (and many of us actually did
for quite a while) that Theorem 3.1 implies Conjecture 2.3. This is actually not
true, because while cutting the faces of the polyhedra one has to be careful and
do it coherently with the face-pairings, which is not at all clear to be possible
(see [17] for a sufficient condition recently established). Figure 2 shows how
the difficulty can arise. The same figure also suggests how to generalize the
notion of geodesic ideal triangulation in order to get a general existence re-
sult. I will call partially flat a triangulation in which there are some genuine
ideal tetrahedra and some tetrahedra which have flattened out into quadrilat-
erals with distinct vertices. One sees from Fig. 2 that Theorem 3.1 implies
that a partially flat triangulation always exists.
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Figure 2. – If two paired pentagonal faces (A1 , R , A5 ) and (A 81 , R , A 85 ) as in the figu-
re are subdivided by the dotted lines shown, the «flat» tetrahedra (A 91 , A 92 , A 93 , A 95 ) and
(A 91 , A 93 , A 94 , A 95 ) must be inserted.

PARTIALLY FLAT SOLUTIONS. – Having decided to consider also flat tetrahe-
dra one is now forced to enlarge the space of moduli, by considering
p 1 0]0, 1 , Q( rather than p 1 only (moduli 0 , 1 , Q are associated to wilder
degenerations than just flattening, so I do not consider them). The fact that
for every finite-volume, non-compact and complete hyperbolic 3-manifold M a
partially flat triangulation F exists can now be expressed by the condition that
the system ]CF , MF( has a partially flat solution z1 , R , zn , namely one with
the zi’s in p 1 0]0, 1 , Q(, but not all in ¯p 1 . Actually, if there are flat tetrahe-
dra, the angle equations are no more implied by the edge equations, so I rein-
troduce them and consider C*F rather than CF only.

The converse of the existence result just stated was proved in [10]:

THEOREM 3.2. – Consider a topological ideal triangulation F of a 3-mani-
fold M bounded by tori. Then a partially flat solution of ]C*F , MF( defines a
finite-volume and complete hyperbolic structure on M .
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The subtle point in the proof of this result is that the scheme valid for gen-
uine solutions cannot be applied, because a partially flat solution of C*F only
does not allow to construct a hyperbolic structure on M . Quite surprisingly,
there are cases where z solves C*F but the space obtained by pairing the gen-
uine and flat tetrahedra corresponding to z is not homeomorphic to M . The ar-
gument in [10] shows how to use both C*F and MF to show that a partially flat
solution z of both yields a hyperbolic structure on M .

The next section is devoted to a careful explanation of the phenomenon of
degeneration of topology for partially flat solutions of C*F only.

4. – Degeneration of partially flat solutions.

I start by considering the 2-dimensional Euclidean (rather than 3-dimen-
sional hyperbolic) setting, both because it serves as a good model and because
it naturally appears on the boundary of the 3-dimensional hyperbolic setting.
Note in particular that hyperbolic compatibility corresponds exactly to simi-
larity compatibility on the boundary, and hyperbolic completeness corre-
sponds to flatness of the similarity structure. I will always use the fact that an
oriented similarity structure is the same as a complex affine structure, and I
will consider the group Aff (C) of complex-affine automorphisms of the
plane.

EXAMPLE OF DEGENERATION. – The following example is taken from [10]. It
must be enclosed as it is referred to below.

PROPOSITION 4.1. – For every a , b� (0 , 1 ) and w�p 1 , setting x4 (a(12

b)(12w) )21 , one has that x�p 1 and the compatibility equations of the tri-
angulation of the torus described by Fig. 3 are satisfied. However, the corre-
sponding identification space is non-Hausdorff.

Figure 3. – A counterexample to compatibility in 2 dimensions.
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The identification space appearing in this statement is defined as the quo-
tient space of the geometric versions of the triangles (so, two genuine «fat»
ones and two which have flattened out to segments), under the only isometric
edge-pairings compatible with the combinatorial ones described in Fig. 3. To
explain the degeneration better I define this space more carefully.

IDENTIFICATION SPACE, DEVELOPING MAP AND HOLONOMY. – Consider the
torus T and a topological triangulation F of T , possibly with self-adjacencies
and multiple adjacencies. I denote by Di the triangles of F and consider a par-
tially flat solution z1 , R , zn of the compatibility equations of F . By replacing
each Di by a (fat or flat) triangle with modulus zi , and then performing the
same simplicial glueings as between the Di’s, one gets an identification space
which will be denoted by X . I am interested in understanding the cases where
X fails to be homeomorphic to T .

I start by noting that zi determines up to the action of Aff (C) a map
c i : Di KC , which maps simplicially Di to a triangle with modulus zi . Of course
c i is injective if and only if zi is in p 1 rather than R0]0, 1(. With the aim of
defining the developing map and the holonomy I will now describe how to
choose a «fundamental domain» Q of T , in a suitable abstract sense. Then I
will modify the c i’s in order to make them match on Q .

I denote by G(F) the graph having the Di’s as vertices, and edges corre-
sponding to the pairings. I note that G(F) can be embedded in T as the 1-
skeleton of the cellularization dual to F . I select a maximal tree t 0 in G(F) and
define:

t4t 0 Ng0]e : e edge of G(F), Im (H1 (t 0 Ne) KH1 (T) )40(h .

Note that Im (H1 (t) KH1 (T) )40. I define Q0 as the quotient space of the dis-
joint union of the Di’s modulo the glueings corresponding to edges of G(F)
which lie in t 0 . I define Q in a similar way using t , and I note that there is a
natural projection q : Q0 KQ .

I fix now an index i and a map c i as described above, i.e. I select a geomet-
ric model of Di in C . Note that if Di is joined to Di in t 0 I can choose the geo-
metric model of Di in such a way that the glueing between Di and Di is geomet-
rically given by the identity. Since t 0 is a tree I can proceed like this and ar-
range all the maps c i’s in such a way that the disjoint union of the c i’s induces
a well-defined map D0 : Q0 KC .

I can now define a map r 0 : H1 (G(F) )K Aff (C) as follows. I note that
H1 (G(F) ) is freely generated by the (arbitrarily oriented) edges lying in
G(F)0t 0 . If e is one such edge which goes from Di0

to Di1
, I define r(e) as the

complex-affine automorphism of C which geometrically realizes the glueing
corresponding to e , namely the glueing between D0 (Di0

) and D0 (Di1
). Before



CARLO PETRONIO666

giving the first statement, I note that H1 (T) is a quotient of H1 (G(F) ) , and de-
note by h the projection.

PROPOSITION 4.2. – There exist well-defined maps

r : H1 (T) K Aff (C) , D : QKC

such that r 0 4r i h and D0 4D i q .

PROOF OF 4.2. – The existence of r easily implies the existence of D , by defi-
nition of q . To check that r exists one must show that r 0 is the identity on the
boundaries of the 2-cells of the cellularization dual to F . This is readily
implied by the fact that z1 , R , zn solve the compatibility equations
C*F . 4.2o

GEOMETRIC FUNDAMENTAL DOMAIN AND ACTION OF THE HOLONOMY. – The
underlying idea of the constructions described above is as follows: Q is an ab-
stract fundamental domain for T , and D(Q) is its geometric realization corre-
sponding to z1 , R , zn . Moreover the r(e)’s for e edge of G(F)0t represent the
geometric versions of the glueings which allow to get T from Q . This seems to
suggest that the identification space X to be understood is simply the quotient
of D(Q) under the action of these r(e)’s, and indeed this is the case when
z1 , R , zn is a fat solution also of the completeness equations MF . By [10] the
same is true for partially flat solutions of C*F and MF , but the situation
changes dramatically when MF is dropped, even if one restricts to fat sol-
utions. The point is that on one hand D : QKC can be far from injective in this
case, and on the other hand Im (r) may be non-discrete.

EXAMPLE 4.3. – Consider the similarity structure a on T obtained by iden-
tifying T to C* /Z , where Z acts as n(w) 42n Qw . If one considers a triangula-
tion of T made of triangles which are straight in a, then D(Q) will typically
be an annulus (whereas Q is a disc), so D cannot be injective. However, it is
true in this case that T4D(Q) /Im (r). But, by considering a (suitable)
double cover TKT and the pull-back a

A
of a under this cover, one gets a case

where the typical map D : QKC will be 2-to-1 almost everywhere, and
D(Q) /Im (r) does not define on T the right similarity structure

EXAMPLE 4.4. – Let t� (0 , 1 ) be an irrational real number. By glueing to-
gether the opposite edges of the quadrilateral in C with vertices 1, 2 , 2eitp and
eitp one gets the torus T with a similarity structure a, and it is clear that for a

the Im (r)-orbit of every point in D(Q) is non-discrete in D(Q).

These examples show that it may not be possible to recover X directly from
D(Q) and Im (r). However my conjecture is that D(Q) and Im (r) determine
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whether X`T or not. Before stating the conjecture precisely, I need a
result:

PROPOSITION 4.5. – The group Im (r) consists either of translations or of
transformations all having a common fixed point w0 . In the former case X is
homeomorphic to T and z1 , R , zn define a Euclidean structure on T up to
scaling.

PROOF OF 4.5. – Since H1 (T) `Z2 , the first assertion follows from the
analysis of pairs of commuting elements in Aff (C). For the second assertion
one notes that Im (r) consists of translations if and only if z1 , R , zn is a sol-
ution also of MF , and the results of [10] apply. 4.5o

CONJECTURE 4.6. – The space X is homeomorphic to T if and only if the
common fixed point of Im (r) lies outside D(Q), and in this case a similarity
structure is naturally defined on T .

As a supporting evidence for this conjecture, I note that in the example of
Proposition 4.1 indeed w0 belongs to D(Q). In general, it should not be hard to
see that if w0 �D(Q) then X is non-Hausdorff. For the opposite implication, I
believe that if w0 �D(Q) then X is obtained, if not exactly from D(Q), from the
preimage of D(Q) under a finite covering of C0]w0 ( over itself. Of course, by
Example 4.4, to get T one must not let the whole of Im (r) act on D(Q). The
right set of glueing maps is probably obtained by taking the holonomy of loops
in T which lift to simple paths in ¯Q . I denote this (finite) subset of Aff (C) by
r(¯Q).

To conclude this paragraph I note en passant that the construction of Q , D
and r described above actually depends on the maximal tree in G(F) chosen at
the beginning, but the relevant geometric properties do not depend on the
tree.

3-DIMENSIONAL CASE. – I have already noted that the compatibility and
completeness equations of a triangulation F of a 3-manifold M actually live on
the boundary tori of M . Moreover the argument in [10] suggests that if there
is no degeneration of topology on ¯M then everything goes well also in M . So
it is natural to extend Conjecture 4.6 to the following one:

CONJECTURE 4.7. – The identification space corresponding to a partially
flat solution z1 , R , zn of C*F is homeomorphic to M if and only if:

1) On each boundary torus there is a fat triangle, and

2) On each boundary torus the holonomy either consists of trans-
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lations or it has common fixed point outside the developed image of
the fundamental domain.

If this is the case then z1 , R , zn define a hyperbolic structure on M .

It is also possible that condition (1) is automatic, or at least implied by con-
dition (2). Several examples I have worked out seem to suggest that a totally
flat torus forces everything to be flat.

I note that Conjecture 4.7 would have as a direct consequence the following
fact stated in [10]:

PROPOSITION 4.8. – If z (0) is a partially flat solution of ]C*F , MF( then
there exist a neighbourhood U of z (0) in Cn such that all partially flat sol-
utions z of CF lying in U define a hyperbolic structure on M .

The proof of this result was omitted in [10] because the proof we had at
that time was very complicated. I believe the right proof goes through Conjec-
ture 4.7. The next sections explain the motivations for being interested in non-
complete solutions near the complete one. Concerning the previous statement,
note that any solution of CF (even a non-partially flat one), close enough to one
of C*F , is automatically a solution also of C*F . This fact will be tacitly used
below.

5. – Hyperbolic Dehn filling.

In this section I will state Thurston’s hyperbolic Dehn filling theorem and
give an outline of the general strategy to prove it. Then I will quickly mention
the contribution to the proof given in [9]. I will not attempt to explain here the
many reasons why this theorem is considered to be of paramount importance
in 3-dimensional topology. The reader is addressed to [9]. Let M be an orien-
table manifold bounded by tori T1 , R , Tk , such that Int (M) is (complete) hy-
perbolic (by Theorem 1.2 one knows that all non-compact, finite-volume hyper-
bolic manifolds look like this). For all i , choose a basis l i , m i of H1 (Ti ), and de-
note by C the set of coprime pairs of integers, together with a symbol Q . For
c1 , R , ck �C denote by Mc1 R ck

the manifold obtained from M as follows: if ci 4

Q , remove Ti ; if ci 4 (pi , qi ), then glue to M along Ti the solid torus D 2 3S 1 ,
with the meridian S 1 3 ]*( being glued to a curve homologous to pi l i 1qi m i .
Such a manifold is said to be obtained from M by Dehn filling, and the filling
coefficients c1 , R , ck are known to determine it up to homeomorphism. Note
that the set C of filling coefficients can be topologized as a subset of S 2 4

R2 2]Q(, and that M4MQ , R , Q .
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THEOREM 5.1. – Under the assumptions just stated there exists a neigh-
bourhood U of (Q , R , Q) in C k , such that for (c1 , R , ck ) �U the manifold
Mc1 Rck

admits a complete finite-volume hyperbolic structure.

Two proofs of this result are known, and both are based on the following
general scheme:

1) A space Def (M) of «deformations» of the complete structure on M is
considered. The elements of Def (M) are non-complete hyperbolic structures
on M which, in a suitable case, are close to the complete structure. In both
proofs Def (M) is actually a germ of algebraic variety.

2) The structure of Def (M) near the complete point is studied, and in
particular it is shown that Def (M) has complex dimension exactly k
there.

3) The completions of the elements of Def (M) are analyzed, and the in-
formations on Def (M) itself are used to show that all the Dehn-filled mani-
folds of the statement arise as hyperbolic completions of deformed struc-
tures.

The proof originally due to Thurston [14] uses the fact that the hyperbolic
structure on M determines a holonomy representation r 0 : p 1 (M) K PSL2 (C).
The set Def (M) is then defined as the space of all representations r : p 1 (M) K

PSL2 (C). If p 1 (M) has a presentation with g generators and r relations then
this space is a subset of PSL2 (C)g defined by r algebraic equations.

Another proof sketched by Thurston and later developed by Neumann and
Zagier [7] starts from a geodesic ideal triangulation of M and defines Def (M)
as the set of solutions of the compatibility equations C F only. A difficulty with
this approach, however, is that it is not known whether the initial triangulation
always exists or not (Conjecture 2). Using a triangulation which is only par-
tially flat makes the situation harder to understand, because near a partially
flat solution of C*F and MF there will exist solutions of CF involving moduli zi

with negative imaginary part. This corresponds geometrically to having «in-
verted» tetrahedra, i.e. tetrahedra which overlap with other tetrahedra, thus
contributing in a negative fashion to the volume. It is not quite clear in this
case how to formally define the identification space associated to such a sol-
ution, and [9] was precisely devoted to this matter. The next section explains
in detail where the subtle points arise and which questions remain open.

6. – Triangulations with inverted tetrahedra.

The idea of deforming a partially flat triangulation, described and motivat-
ed in the previous section, raises the following general question.
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Figure 4. – A triangulation with an inverted triangle in dimension 2.

QUESTION 6.1. – Let F be topological ideal triangulation of a compact ori-
ented 3-manifold M bounded by tori, and let z1 , R , zn be a solution of C*F
with the zi’s lying in C0]0, 1(. Under what assumptions do z1 , R , zn define
a hyperbolic structure on M?

I can describe the situation in a way which makes the difficulty more trans-
parent. The moduli z1 , R , zn define geometric tetrahedra in H3 . Some of
these tetrahedra are flat, and others are marked as being inverted. Then
there are glueing instructions between the faces, and one wants to understand
the space resulting from the glueing. An example in one dimension less is de-
scribed in Fig. 4. This figure shows on the left a portion of triangulation with
an almost flat triangle (the triangles have been pulled apart to be seen more
clearly), and on the right a deformation of the same triangulation in which the
previously almost flat triangle has become an inverted one. One sees quite
clearly in the figure that the triangles overlap, and in particular the inverted
triangle contributes negatively to the area, so it must be in some sense re-
moved from the rest.

The subtle point which arises while abstractly glueing genuine tetrahedra
with inverted ones is that it is not clear at all how to formally define the result-
ing space. If one thinks of the construction dynamically, one finds himself in
the situation of having to remove the inverted tetrahedra from regions which
do not quite exist yet. This difficulty was by-passed in [9] by considering only
the solutions of C*F which lie near a special solution of C*F and MF , namely one
which arises by subdividing an Epstein-Penner decomposition and inserting
flat tetrahedra as described in Fig. 2. The following seems however very rea-
sonable to me:

CONJECTURE 6.2. – The set of moduli z1 , R , zn which define a hyperbolic
structure on M is open in the space of solutions of C*F . In particular, all sol-
utions near a complete partially flat solution are hyperbolic.
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In the rest of this section I will sketch a method for proving the 2-dimen-
sional analogue of the second part of this conjecture. Extending the method to
the 3-dimensional case might require a considerable technical effort, I do not
attempt to do this here. The basic idea is as follows. I construct a fundamental
domain for the space to be constructed by considering the image of the devel-
oping map defined in Section 3 and discarding the points which contribute
negatively to the area. Then I glue the edges of this domain using the holono-
my also defined in Section 3.

Let me first remark that the construction of Q , D and r , which I have de-
scribed for a partially flat solution z1 , R , zn of C*F , makes sense also if the zi’s
belong to C0]0, 1(. Here F is a triangulation of the torus with n triangles.
Now I assume that the solution z lies arbitrarily close to a partially flat one z (0)

of ]C*F , MF(, and I add subscripts z and z (0) to D and r to emphasize the sol-
ution which I am considering (of course Q depends only on F and the tree cho-
sen in G(F), not on the solution).

Theorem 3.2 implies that T is obtained from Dz (0) (Q) under the action of
r z (0) (¯Q), which consists of translations. This is no longer true at z , as one sees
for instance in Fig. 5: here the shadowed triangle is contained in Dz (Q) but it
must be removed to get the right fundamental domain for r z (¯Q).

I conclude by formalizing the construction of the «right» fundamental do-
main, and stating what I think should be true. For w�Dz (Q) I define

e z (w) 4 !
i41

n

!
x� Int (Di ), D(x) 4w

sgn (4(zi ) )

Fz 4 ]w�Dz (Q) : e z (w) D0( .

CONJECTURE 6.3. – Let z be a solution of CF sufficiently close to a partially
flat solution of ]C*F , MF(. Then Fz is a polygon, the elements of r z (¯Q) define
a set of edge-pairings on Fz , and the space resulting from these pairings is
homeomorphic to T . In particular, z defines a similarity structure on T .

Figure 5. – The right geometric fundamental domain may be smaller than the image of
the developing map.
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