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Convergence and Uniqueness Problems
for Dirichlet Forms on Fractals (*)

ROBERTO PEIRONE

Sunto. – M1 è un particolare operatore di minimizzazione per forme di Dirichlet defi-
nite su un sottoinsieme finito di un frattale K che è, in un certo senso, una sorta di
frontiera di K. Viene talvolta chiamato mappa di rinormalizzazione ed è stato usa-

to per definire su K un analogo del funzionale uO sNgrad uN2 e un moto Brownia-
no. In questo lavoro si provano alcuni risultati sull’unicità dell’autoforma (rispet-
to a M1 ), e sulla convergenza dell’iterata di M1 rinormalizzata. Questi risultati so-
no collegati con l’unicità del moto Browniano e con l’omogeneizzazione sui
frattali.

1. – Introduction.

In the last two decades, fractals have been extensively studied, as they
appear to have a good likeness to many physical objects. A problem which
has been investigated by many authors is that of the construction on a fractal
of Dirichlet forms, i.e., functionals analogous to the integral functional

uO sNgraduN2 on an open set in Rn. Information on the general theory of
Dirichlet forms can be found in [3]. The construction of Dirichlet forms can be
also seen as a starting point to construct a «Laplacian» and a «Brownian mo-
tion» on the given fractal. Note that since, usually, a fractal has no interior, it
is impossible to define the gradient (in the usual sense) on it. So, the usual way
of constructing a Dirichlet form is based on a finite-difference scheme that I
will now illustrate.

In particular, I treat this construction for the nested fractals, a class of
highly symmetric fractals introduced by T. Lindstrøm in [10]. In order to
make this notion clear I will now describe two typical examples of nested frac-
tals, the Gasket and the Vicsek set (in R2). Gasket and Vicsek set in Rn for nD2
can be defined similarly, and are sometimes studied (see for example [7] for
the Gasket), but, as noted in [1], the Vicsek set is nested only for n42. Anoth-
er usual example of nested fractal is the snowflake described in [10]. In section
2 I recall the exact definition of nested fractal. To construct the Gasket, start
with an equilateral triangle T , whose vertices are denoted by P1 , P2 , P3 , and

(*) AMS Subject Classification: 31C25, 28A80.
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consider the three similitudes c i , i41, 2 , 3 , in R2 , that are contractions with
factor 1

2
and have Pi as fixed points, in formula c i (x) 4Pi 1

1

2
(x2Pi ). Then

the (Sierpinski) Gasket is the set K defined by

K4 1
n40

Q

Kn

where

K0 4T , Kn11 4 0
i41

3

c i (Kn ) .

The Vicsek set can be constructed analogously, by putting K0 to be a square,
P1 , P2 , P3 , P4 its vertices, and P5 its centre, and c i (x) 4Pi 1

1

3
(x2Pi ), and

Kn11 4 0
i41

4

c i (Kn ). More generally, every nested fractal is constructed start-

ing from a finite set ]c 1 , R , c k ( of contracting similitudes in Rn. Here, a
special role is played by the so-called essential fixed points of the similitudes
(see section 2), which are the vertices of the triangle for the Gasket and of the
square for the Vicsek set.

Given any nested fractal, I denote by V (0) the set of all essential fixed
points, by Vi1 , R , in

the set c i1 , R , in
(V (0) ), where c i1 , R , in

is an abbreviation for

c i1
i R i c in

, and put V (n) 4 0
i1 , R , in41

k

Vi1 , R , in
. The sets Vi1 , R , in

are called n-

cells and are, in some sense, small copies of V (0). To construct a Dirichlet form
on the nested fractal K one has first to consider a Dirichlet form E on V (0) ,
that is a functional E : RV (0)

KR so that, for some cj1 , j2
(E)(4cj1 , j2

) F0 ( j1 c j2)
with cj1 , j2

4cj2 , j1
, we have

E(u) 4 !
j1c j2

cj1 , j2
(u(Pj1

)2u(Pj2
) )2

for all u : V (0) KR. It is easily seen that the coefficients cj1 , j2
of E are unique.

As a notation for the following, let D be the set of all functionals E defined as
above, and let D

A
be the set of those E� D that are irreducible, in the sense

that E(u) 40 if and only if u is constant. Once E� D is given, a Dirichlet form
Sn (E) on V (n) and a Dirichlet form Mn (E) on V (0) can be defined in the follow-
ing way.

S0 (E) 4E

Sn (E)(v) 4 !
i1 , R , in41

k

E(v i c i1 , R , in
) for v�RV (n)

, nF1 ,

Mn (E)(u) 4 inf ]Sn (E)(v) : v� L(n , u)( (u�RV (0)
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where L(n , u) 4 ]v�RV( n )
: v4u on V (0) (. Thus Sn (E) can be seen as the sum

of all «copies» of E on the n-cells, and Mn (E) is, according to the usual termi-
nology, the restriction of Sn (E) to V (0). Note that Mn can be expressed in
terms of M1 , namely Mn 4 (M1 )n. Now if E� D

A
is an eigenform in the sense

that there exists rD0 such that M1 (E) 4rE , a Dirichlet form S on the fractal
can be constructed by S(v) 4 lim

nKQ
Sn (E)(v)Or n (see for example [6]).

Problems concerning the operator Mn were discussed in [10] by a proba-
bilistic formulation; in fact, an eigenform, or more precisely the set of all posi-
tive multiples of an eigenform, corresponds to a Brownian motion (from anoth-
er point of view the eigenforms are related to the possibility of defining «har-
monic functions» on the fractal, see [6]). The equivalence of the two formula-
tions was pointed out by M. Barlow in [1]. In [10] it was proved that on every
nested fractal an eigenform E� D

A
does exist, and in fact E� D

A
G where D

A
G de-

notes the set of those E� D
A

that are «distance invariant». A question dis-
cussed in [10] concerns the uniqueness (up to a multiplicative constant) of the
eigenform in D

A
G , which, of course, corresponds to the uniqueness of the Brow-

nian motion.
After some partial results, the uniqueness was proved by C. Sabot in [17],

Théorème V.1 and Théorème V.2, where in fact a rather general criterion for
existence and uniqueness for eigenforms in a more general combinatorial set-
ting was given. Another proof of the uniqueness was given by V. Metz in [14]
(Theorem 4.2), where a stability result (Corollary 5.2) was also proved, in the
sense that MAn (E)(4Mn (E)Or n ) converges to a multiple of the given eigen-
form if E� D

A
G . As shown by V. Metz in [11] for the Vicsek set, in general

the uniqueness result does not hold for eigenforms in D
A

. The uniqueness
proofs of Sabot and Metz are both based on the behaviour of M1 «near the
boundary» of D

A
G .

In this paper I propose a different approach to handle the uniqueness and
the stability. With regard to the uniqueness, this approach has the advantage
that it leads to a shorter proof of uniqueness on nested fractals, and to some
results that appear to be not easily obtainable by the approaches of Sabot and
Metz. With regard to the stability, using this approach I prove that MAn (E)
converges (in which case I say that E is homogenizable because of the relation-
ship between this property and the homogenization result given by S.Kozlov in
[8]), in a context which is much more general than that of nested fractals, pos-
sibly without uniqueness.

I will now illustrate my approach in a simple example. Namely, I sketch out
how it works to obtain the following statement: In the Sierpinski Gasket, for
every E� D

A
, MAn (E)K

nKQ
aE for some aD0. Here, E denotes that form in D

A

whose coefficients are all equal to 1. In this way, we obtain both uniqueness
and stability. Roughly speaking, I prove that MAn (E) approaches E (with re-
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spect to Hilbert’s projective metric, see Def. 3.1), noting that, if this is not the
case then every maximum (resp. minimum) point u of MAn (E)OMAn (E) produces,
mapping it by certain positive linear operators, many maximum (resp. mini-
mum) points of EOE, namely the «restrictions» to the n-cells of the harmonic
continuation of u on V (n). Then, using a Perron-Frobenius argument, we see
that the existence of «so many» minimum and maximum points of EOE implies
that some «eigenvector» is at the same time a maximum and a minimum point
of EOE. Hence E is a multiple of E, and so we conclude immediately.

Note, however, that this argument implies uniqueness, thus it is not appli-
cable in the general case. For this and other reasons, in the actual proofs pre-
sented in this paper, I use a modification of it. In sections 2 and 3 I deal with
nested fractals, namely in section 2 I present my uniqueness proof and in sec-
tion 3 my stability proof. It is noteworthy that the arguments of sections 2 and
3 use only the combinatorial structure and not the geometry of the fractal. Ac-
cordingly, in section 4 I introduce the notion of combinatorial fractal struc-
ture, and then, in this setting, I generalize the stability result of section 3
(Theorem 4.22). This approach of defining combinatorial fractal structures is
based on that of [15]. However it is essentially the same approach as that of [4]
(cf. also [6], Appendix A), and is similar to that of [17]. The structures defined
here can be seen as p.c.f. self-similar sets in the sense of [6] and include the
structures of the nested fractals. Theorem 4.22 can be schematized as follows:
Existence implies Stability. More precisely, if there exists an eigenform in D

A
,

then every E� D
A

is homogenizable. Instead, the argument of [14] shows that
existence and uniqueness, with some additional assumptions, imply stability.
Hence, for example, unlike the argument of Theorem 4.22, it does not work for
E� D

A
even in nested fractals. Note that Theorem 4.22 is in some sense sharp,

for, if E� D
A

is homogenizable it easily follows that lim
nKQ

MAn (E) is an eigen-

form. Note also that the same proof shows that the same result holds if, in the
definition of Sn , the n-cells are «weighted», as considered for example in [2]
and [17], i.e.,

Sn (E)(v) 4 !
i1 , R , in41

k

ri1
Q Q Qrin

E(v i c i1 , R , in
)

where ri are given positive numbers. The existence, uniqueness and stability
problems discussed in this paper, can be seen as typical problems for nonex-
pansive maps with respect to Hilbert’s projective metric (see [16]).

In section 5 I return to the uniqueness problem but in this case for combi-
natorial structures, and I obtain a generalization of the result for nested frac-
tals. I also show some cases in which the uniqueness in D

A
(not only in D

A
G)

takes place. In particular this uniqueness result holds for strongly symmetric
fractal structures (for example for the Gasket in Rn) (Corollary 5.7). The state-
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ment of Corollary 5.7, as well as the homogenizability for strongly symmetric
structures, has been stated without proof in [15] by S. Mortola and the present
author. For the Gasket (considering only forms having two coefficients equal)
the same result has been previously obtained by Kozlov in [8]. He used the ho-
mogenizability to prove the G-convergence, with respect to a suitable topology,
of the functionals Sn (E)Or n , defined for functions on all of the fractal, even if
E is not an eigenform. So, in some sense, a Dirichlet form can be defined on
the fractal starting from any E� D

A
. The uniqueness in D

A
and homogenizabili-

ty for the Gasket were also proved by other authors (see [12], Example 8.8,
and references therein), and also the homogenizability in D

A
for the Vicsek set

(see [11]).

Acknowledgment. I thank S. Mortola for useful discussions, and V. Metz
for suggesting improvements in the style of my paper, and a simplification of
the argument used in Lemma 3.5 and Prop. 4.7.

2. – Uniqueness of eigenforms on nested fractals.

In this section first I recall the definition and the standard properties of
nested fractals, then, namely from Lemma 2.4 on, I present my uniqueness
proof for the eigenform in D

A
G. In the following I do not prove these standard

properties (apart from Prop. 2.3 which is less trivial) because they are either
explicitly formulated in other papers (see in particular [10] and [14]), or easily
proved. Regarding the strong minimum principle (Prop. 2.1), a precise proof of
it does not appear to be explicit in other papers. It is used in [14], deduced
from Lemma IV.10 and Prop. IV.11 of [10]. However, it seems to me that this
deduction is only correct in some cases like those considered in [10], i.e., when
cj1 , j2

D0 for Pj1
, Pj2

such that VPj1
2Pj2

V is the minimum among the distance
between different points of V (0). This is the case of the eigenform E given by
the Theorem of Lindstrøm, thus it is not difficult to see that this is sufficient
for my proof of uniqueness (it suffices to put E1 4E in Theorem 2.6). I prefer
to omit for the moment the proof of the strong minimum principle and to give
it in a more general setting in Lemma 5.1. Note that the argument of Lemma
5.1 is purely combinatorial and does not use the geometry of nested
fractals.

Before introducing the nested fractals I recall some facts on graphs. A
graph is a pair (V , W) where V is a nonempty set and W is a subset of the set of
the subsets of V having precisely two elements. (V , W) is said to be connected
if for all P , Q�V there exist n41, 2 R , P1 , R , Pn �V such that P1 4P , Pn 4

Q , and ]Pi , Pi11 ( �W for i41, R , n21. When V is clear from the context
we can identify the graph with W , and say for example that W is connected.
Also, if ¯cV 8’V , I denote by (V 8 ; W) the graph (V 8 , ]S�W : S’V 8().
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Consider now a finite set C4 ]c 1 , R , c k ( of similarities of Rn with the
property that we have Vc i (x)2c i (y)V4 (1 /R)Vx2yV for some RD1 and for
every x , y� Rn and i41, R , k. Then, by a theorem of Hutchinson ([5]), there
exists a unique nonempty compact set K in Rn such that K4F(K), where I set

F(A) 4 0
i41

k

c i (A) for every A’ Rn. Now, letting Pi be the fixed point of c i , we

see that the set F n (]Pi () is increasing on n , and K4 0
n40

Q

F n (]Pi (). However,

in the previous formula we can replace the set of all Pi with the set of the so-
called essential fixed points. Namely, Pj is said to be essential if there exist
j 8 , i , i 841, R , k with j 8c j , such that c i (Pj ) 4c i 8 (Pj 8 ). Put V (0) 4

]P1 , R , PN ( to be the set of all essential fixed points (of course NGk), and
Vi1 , R , in

4c i1 , R , in
(V (0) ) where c i1 , R , in

is an abbreviation for c i1
i R i c in

(V¯4V (0) ); every Vi1 , R , in
will be called an n-cell. Finally, put V (n) 4

0
i1 , R , in41

k

Vi1 , R , in
. In this situation, according to [10], K is said to be a nested

fractal if V (0) has at least two elements, and

i) There exists U’Rn , U bounded open and nonempty such that

0
i41

k

c i (U) ’U , and the sets c i (U) are mutually disjoint (open set condi-

tion).

ii) The graph g0
i41

k

c i(V (0)), ]]c i(P), c i(Q)( : i41,R , k, P, Q�V (0), PcQ(h
is connected.

iii) If j1 , j2 41, R , N , j1 c j2 , then the symmetry f j1 , j2
with respect to

Wj1 , j2
4 ]z : Vz2Pj1

V4Vz2Pj2
V(, maps n-cells to n-cells for nF0 and any n-

cell containing elements on both sides of Wj1 , j2
is mapped to itself (symmetry

axiom).

iv) If (i1 , R , in ) c (i 81 , R , i 8n ), then c i1 , R , in
(V (0) ) cc i 81 , R , i 8n (V (0) ),

and c i1 , R , in
(K)Oc i 81 , R , i 8n (K) 4c i1 , R , in

(V (0) )Oc i 81 , R , i 8n (V (0) ) (nesting ax-
iom).

I define D, D
A

, Sn , Mn , E, eigenforms, according to the introduction. I will
also sometimes use the term eigenform for E� D, but, unless specified other-
wise, an eigenform is meant to be an element of D

A
. I define D

A
G to be the set of

those E� D
A

satisfying E(u i s) 4E(u) for all s�G , G denoting the group of
the permutations of V (0) generated by all the reflections f j1 , j2

with respect to
Wj1 , j2

, when Pj1
and Pj2

are different points in V (0).
We can easily prove that Mn maps A into itself when A is D, D

A
, D

A
G . From

the nesting axiom it easily follows that Mn11 4Mn i M1 thus Mn 4 (M1 )n for
all n�N.

Given E� D
A

, I denote by Hn ; E (u) or simply Hn (u) that (unique) v�
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L(n , u) such that Mn (E)(u) 4Sn (E)(v). I also write Hn , m ; E (u) or Hn , m (u) for
Hn ; Mm (E) (u). Note that Hn cannot be defined in this way for E� D, because
«v» in definition of Hn is no longer unique (cf. [14], p. 163). Note also that
Hn ; aE 4Hn ; E when aD0. When E is an eigenform, Hn ; E is called the harmon-
ic continuation of u on V (n). The above-discussed definitions and statements
will be used without mention in the following. Another useful fact is (cf. for
example [6], Theorem 2.9):

PROPOSITION 2.1. – If E� D
A

, u�RV (0)
, then for every P�V (1)

min uGH1 (u)(P) G max u

(weak minimum principle). If E� D
A

G then the two inequalities are strict for
P�V (1) 0V (0) unless u is constant (strong minimum principle). r

Let now E� D
A

, j41, R , N. Then put Tj ; E (or simply Tj) to be that map
from RV (0)

into itself defined by Tj (u) 4H1; E (u) i c j. Moreover, put Tj , n ; E (or
Tj , n) for Tj ; Mn (E) . Obviously the same definitions could be given also when NE

jGk , but I will use them only for jGN. Regarding Tj we have the following
two propositions. Note that the positivity of the matrix in Prop. 2.2 is a simple
consequence of the minimum principle.

PROPOSITION 2.2. – Tj is linear and (Tj (u) )(Pj ) 4u(Pj ). Also, if we consider
Tj as a map from ]u�RV (0)

Nu(Pj ) 40( into itself, it is linear and its matrix
has non-negative entries, and positive entries if E� D

A
G . Finally, we have

Tj (ju) 4jTj (u), where if u : V (0) KR , I denote by j u the function from V (0) to R
defined by j u(P) 4u(P)2u(Pj ). r

PROPOSITION 2.3. – We have

i) Hn1m (u) i c i1 , R , in1m
4Hn (Hm , n (u) i c i1 , R , im

) i c im11 , R , im1n
.

ii) Hm1n , l2n (u) i c i1 , R , im , j , R , j 4

Tj , l2n i R i Tj , l21 (Hm , l (u) i c i1 , R , im
), when mF0, lFnF0.

PROOF. – It follows from the nesting axiom that there exists v�RV (m1n)

such that v i c i1 , R , im1n
4Hn (Hm , n (u) i c i1 , R , im

) i c im11 , R , im1n
, and clearly,

v� L(m1n , u). We easily get

Sm1n (E) (Hm1n (u) )4Mm1n (E)(u) 4Mm (Mn (E) )(u) 4Sm1n (E)(v) .

Thus, we obtain i), and ii) follows from i). r
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As a notation for the following, given a nonempty set A (clear from the con-
text), for every a�A I denote by ea the function from A to R defined by

ea (b) 4
.
/
´

1
0

if a4b
otherwise

, and when A4V (0) I put ej for ePj
.

Now, I will investigate the eigenforms. By a theorem of Lindstrøm (see
[10], Theorem V.5) we know that an eigenform in D

A
G does exist. r in the defini-

tion of eigenform is called the eigenvalue of the eigenform, and in the follow-
ing r will denote the eigenvalue of this, thus of any, eigenform, for, it is easy to
see that different eigenforms have the same eigenvalue (see for example [1],
this could be also deduced from Remark 3.2). Also, clearly, every positive mul-
tiple of an eigenform is an eigenform as well. I will now prove that the eigen-
form in D

A
G is unique up to a multiplicative constant. If E1 , E2 � D

A
, let l 1 (4

l 1 (E1 , E2 ) ) 4 max (E2 (u) /E1 (u) ) , l 2 (4l 2 (E1 , E2 ) )4 min (E2 (u)OE1 (u) ) ,
where the maximum and the minimum are taken over all nonconstant u. Note
that l 6 (E1 , E2 ) 4l

Z

(E2 , E1 ). Also, put

A 6 (4A 6 (E1 , E2 ) )4 ]u�RV (0)
: E2 (u) 4l 6 (E1 , E2 ) E1 (u)( ,

AA6 (4 AA6 (E1 , E2 ) )4 ]u�A 6 : u nonconstant( .

LEMMA 2.4. – If E1 , E2 are eigenforms and u�A 6 (E1 , E2 ) then Tj ; E1
(u) 4

Tj ; E2
(u) �A 6 (E1 , E2 ) for all j41, R , N .

PROOF. – (Cf. [17], Lemme V.8) I show only the proof for A 2 , that for A 1

being analogous. We have

rE2 (u) 4M1 (E2 )(u) 4 !
i41

k

E2 (H1; E2
(u) i c i )F(2.1)

!
i41

k

l 2 E1 (H1; E2
(u) i c i )F(2.2)

!
i41

k

l 2 E1 (H1; E1
(u) i c i )4

l 2 M1 (E1 )(u) 4l 2 rE1 (u) 4rE2 (u) .

Thus the inequalities in (2.1) and (2.2) are in fact equalities. By the equality
in (2.1) we have E2 (H1; E2

(u) i c i )4l 2 E1 (H1; E2
(u) i c i ) for all i41, R , k

for, F holds for all i. By the equality in (2.2), and the uniqueness of the har-
monic continuation, we have H1; E2

(u) 4H1; E1
(u) and this concludes the

proof. r
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PROPOSITION 2.5. – Let E1 , E2 � D
A

. Then

i) A 6 is closed.

ii) u�A 6¨ c1 u1c2 �A 6 (c1 , c2 �R.

iii) E2 is a multiple of E1 ` AA1OAA2
c¯.

iv) If E1 , E2 � D
A

G and s�G , then u� AA6` u i s� AA6.

PROOF. – The proof is a simple verification. r

THEOREM 2.6. – If E1 and E2 are eigenforms in D
A

G , then )aD0 such that
E2 4aE1 .

PROOF. – By the transitivity of G and Prop. 2.5 iv), there exist u6� AA6 ,
which take minimum at the same point, for example min u64u6 (P1 ), and we
can assume, in view of Prop. 2.5 ii) that such a minimum is 0. By Prop 2.5 ii) and
Lemma 2.4, by putting

u6 , n 4 N (T1; E1
n (u6 ) )

(here and in the following I denote by N(v) the vector vOVvV when v is a nonze-
ro element of a normed linear space), we have u6 , n � AA6. On the other hand,
by Prop. 2.2, using the Perron-Frobenius Theorem (see for example [18]), we
see that u1 , n , u2 , n converge to the same limit u. By Prop. 2.5 i), we have u �
AA1OAA2 , and by Prop 2.5 iii) we conclude. r

REMARK 2.7. – If K is the Gasket in Rn , by symmetry we easily see that
E1 4 E is an eigenform. Also, every eigenform in D

A
(not only in D

A
G) is a positi-

ve multiple of E. Indeed, given E2 eigenform, we can imitate the proof of Theo-
rem 2.6. Now, even though here we can have Pj(1) cPj(2) , Pj(6) denoting any
minimum point of u6 ; nevertheless, by a symmetry argument, u6 , nKnKQ

uj(6) ,

where uk �RV (0)
is defined by uk 4 N(12ek ), and uj(6) � AA6 , but, since uj(6) at-

tains its maximum at any jc j(6), by the same argument as before, uj � AA6 for
all j(c j(6) ). Therefore, AA1OAA2

c¯. r

3. – Homogenization on nested fractals.

In this section I prove that, given E� D
A

G , E is homogenizable, i.e., we have
MAn (E)K

nKQ
EA for some EA � D

A
G , where I put MAn (E) 4Mn (E)Or n and the con-

vergence is meant to be pointwise. However, we can make the linear space
generated by D a Banach space, by introducing the norm V V defined by VEV4

sup
VuV41, u(P1 ) 40

NE(u)N. It is easy to see that in D, the pointwise convergence

amounts to the convergence in norm and to the convergence of the coeffi-
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cients, for, when E� D we have cj1 , j2
(E) 4 (1O4)(E(u21, j1 , j2

)2E(u1, j1 , j2
) ) ,

where I put

ua , j1 , j2
4aej1

1ej2
.

It is not difficult to verify that Mn is continuous from D into itself, and that the
map from D

A
3RV (0)

to RV (n)
defined by (E , u) OHn ; E (u), is continuous. It easi-

ly follows that if E� D
A

and MAn (E)K
nKQ

EA, then EA is an eigenform. These facts

will be used in the following without explicit mention.
In addition to the convergence of MAn (E) for E� D

A
G , we could prove simi-

larly an analogous result for E� D
A

provided some stronger assumptions on
the connectedness of the graph are satisfied. This kind of assumption permits
us to conclude that for every E� D

A
, M1 (E) satisfies the strong minimum prin-

ciple, which is essential in our argument. However, the result is valid also
without this assumption, but we have to modify the proof substantially. Thus, I
do not discuss this assumption deeply, and in the next section I shall prove
that result in a more general setting which includes every nested fractal. I will
now introduce two particular cases of a certain semimetric, called Hilbert’s
projective metric (see for example [16] for information on this topic). The case
on D

A
, in some sense, has been tacitly used in section 2, and has been used in

the uniqueness proofs of [14] and [17]. As there is no possibility of confusion I
use the same letter l in the two cases.

DEFINITION 3.1. – Given E1 , E2 � D
A

let l(E1 , E2 ) 4 ln (l 1 (E1 , E2 ) )2

ln (l 2 (E1 , E2 ) ). If A is a finite nonempty set and v1 , v2 �RA , and (v1 )j F0,
(v2 )j F0 for all j�A , and the set of those j for which (v1 )j 40 is the same as the
set of those j for which (v2 )j 40, and is nonempty, put l 1 (v1 , v2 ) 4

max
(v1 )jD0

((v2 )j O (v1 )j ) , l 2 (v1 , v2 ) 4 min
(v1 )jD0

((v2 )j O (v1 )j ) , and l(v1 , v2 ) 4

ln (l 1 (v1 , v2 ) )2 ln (l 2 (v1 , v2 ) ).

Note that in this section A denotes a finite nonempty set, and usually A4

V (0) 0]Pj (, and (v1 )j D0, (v2 )j D0 for all j , in previous definition. As known
from the general theory of Hilbert’s projective metric, l is a semimetric in the
sense that it is symmetric and satisfies the triangular inequality, but l(x , y) 4

0 if and only if y is a multiple of x. Also, l(ax , by) 4l(x , y) for all aD0, bD0.
In particular, in the argument of l 6 , Mn (E) can be replaced by MAn (E). More-
over, note that l 1 and l 2 (thus also l) are continuous.

REMARK 3.2. – If EA � D
A

is an eigenform with eigenvalue r , then, for
every E� D

A
we can easily see that l 2 (EA, E) EA G MAn (E) Gl 1 (EA, E) EA.

It follows that every subsequence of MAn (E) has a subsequence convergent
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to some E 8� D
A

. In fact, it suffices to take a subsequence which is convergent,
if evaluated at any u61, j1 , j2

. r

PROPOSITION 3.3. – Given E1 , E2 � D
A

, put l 6 , n 4l 6 (Mn (E1 ), Mn (E2 ) ).
Then for every n�N, if a is one of the symbols 1 , 2 , we have

al a , n Gal a , 0 ,(3.1)

) lim
nKQ

l a , n �]0 , 1Q[ .(3.2)

Also, if in (3.1) the equality holds, then for every m such that 0 GmGn we
have l a , m 4l a , 0 , and for every u�A a (Mn (E1 ), Mn (E2 ) ) we have

Hn2m, m; E1
(u) ic i1, R , in2m

4Hn2m, m; E2
(u) ic i1, R ,in2m

�A a(Mm(E1), Mm(E2)) .

PROOF. – (3.1) is easily proved (see for example [14]) and (3.2) is a simple
consequence of (3.1). In order to prove the last statement, note that if u�
A a (Mn (E1 ), Mn (E2 ) ) , then

l 2 , 0 Mn (E1 )(u) 4Mn (E2 )(u) 4Mn2m (Mm (E2 ) )(u) 4

Sn2m (Mm (E2 ) )(Hn2m , m ; E2
(u) )4

!
i1 , R , in2m41, R , k

Mm (E2 ) (Hn2m , m ; E2
(u) i c i1 , R , in2m

)F

!
i1 , R , in2m41, R , k

l 2 , 0 Mm (E1 ) (Hn2m , m ; E2
(u) i c i1 , R , in2m

)F

l 2 , 0 Mn2m (Mm (E1 ) )(u) 4l 2 , 0 Mn (E1 )(u)

and we can proceed like in Lemma 2.4. r

In the proof of Theorem 2.6 I used the fact that, by the Perron-Frobenius
Theorem, the iterated of a positive linear operator contracts the cone of non-
negative vectors to a half-line. Here we need an improvement in this result,
that is, under certain conditions, we can replace the iterated of a single positi-
ve linear operator by the composition of possibly different positive linear oper-
ators (Prop. 3.5), and in Lemma 3.6 this result will be applied to the operators
Tj , n .

LEMMA 3.4. – Let T : RA KRA be a linear operator. Suppose T is positive
in the sense that its matrix has entries D0, and v1 , v2 are in RA and have
components D0. Then l(T(v1 ), T(v2 ) )Gl(v1 , v2 ), and the equality holds only
when l(v1 , v2 ) 40.
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PROOF. – The proof is a simple verification (see [18], Ch. 3, Lemma
3.2). r

PROPOSITION 3.5. – Suppose T1 , R , Tn , R , TQ are positive linear opera-
tors from RA into itself, and there exists s : NKN strictly increasing such
that Ts(n)KnKQ

TQ . Let C4 ]u�RA : ua F0 (a�A , uc0(. Then there exists

v � C
i

such that sup
v�C

l(T1 i R i Tn (v), v )K
nKQ

0.

PROOF. – Clearly Tn (C) ’ C
i

for all n. Put diam (E) 4 sup
v1 , v2�E

l(v1 , v2 ) for E’

C
i

, Ec¯ , diam ¯40. Put h n 4 sup (Tn (ei )j OTn (ei )j 8 ) where the sup is taken
over all i , j , j 8�A. A simple calculation yields: diam Tn (C

i

) G2 ln h n , thus
there exists hD0 such that diam Ts(n) (C

i

) Gh (n . Put now Tm , n 4Tm i R i Tn

(for 1 GmGn). By Lemma 3.4, we have

diam Tm , n (C
i

) Gh if )h : mGs(h) Gn ,

diam Tm , n (C
i

) Gdiam Tm11, n (C
i

) if m11 Gn ,

and using a standard result in Hilbert’s projective metric (see [16], Theorem
2.3, and references therein) we get diam Ts(n) (E) G tanh (hO4) diam (E) for
every E’ C

i

, thus

diam T1 i R i Tn (C)K
nKQ

0(3.3)

(it is not difficult, in fact, to prove (3.3) without using the results of [16]). Also,
letting Fn 4 N(T1 i R i Tn ( N(C) )) , we see that Fn is a decreasing sequence of

nonempty compact sets. Thus, if we take v � 1
n41

Q

Fn , we easily get v �

1
n41

Q

T1 i R i Tn (C), and in view also of (3.3) we conclude the proof. r

Note that the thesis of Prop. 3.5 easily implies that for every vn �C we have
N (Tn (vn ) )K

nKQ
N(v).

LEMMA 3.6. – Suppose E� D
A

G is not an eigenform. Then there exists n�N
such that l(Mn (E), Mn11 (E) )El(E , M1 (E) ).

PROOF. – If on the contrary, l(Mn (E), Mn11 (E) )4l(E , M1 (E) ) for every
n , let s : NKN be strictly increasing, let j(6) 41, R , N , and let u6 , n �
AA6 (Ms(n) (E), Ms(n)11 (E) ) be such that u6 , n (Pj(6) ) 4 min u6 , n 40. Put
u6 , n , l 4Hs(n)2 l , lA (u6 , n ) i c j(6), R , j(6) (when 0 G lGs(n)), where lA can be l or
l11 (see Prop. 3.3). By Prop. 3.3 again we have

u6 , n , l �A 6 (Ml (E), Ml11 (E) ) .(3.4)
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Also, by Prop. 2.3 we have u6 , n , l 4Tj(6), lA i R i Tj(6), lA 1s(n)2 l21 (u6 , n ), and
u6 , n �C where C is as in Prop. 3.5 with A4V (0) 0]Pj(6) (. In view of Prop. 2.2
and Remark 3.2 we can apply Prop. 3.5, thus

) lim
nKQ

N(u6 , n , l ) 4u6 ; l 4u6 ; l11 ,

hence, there exists u6 (obviously nonconstant) such that N(u6 , n , l )KnKQ
u6

for all l , and by (3.4) u6� AA6 (Ml (E), Ml11 (E) ). In conclusion, Ml11 (E)(u6 )4
l 6 (E , M1 (E) ) Ml (E)(u6 ). Since E is not an eigenform, then l 1(E, M1(E))D
l 2(E, M1(E)), and this implies (Ml(E)(u1)OMl(E)(u2))K

lKQ
1Q, in contrast to

Remark 3.2. r

LEMMA 3.7. – Suppose E� D
A

, s : NKN is strictly increasing and

MAs(n) (E)K
nKQ

EA .(3.5)

Then for every m�N we have l(Mm (EA), Mm11 (EA) )4

lim
nKQ

l(Mn (E), Mn11 (E) ). If in addition EA is an eigenform, then

MAn (E)K
nKQ

EA.

PROOF. – Recall that by Prop. 3.3, the sequence l 6 , n 4

l 6 (Mn (E), Mn11 (E) ) is convergent to some l 6�]0 , 1Q[. Thus,
l(Mm (EA), Mm11 (EA) )4 lim

nKQ
l(Mm1s(n) (E), Mm1s(n)11 (E) )4 ln (l 1 Ol 2 ). If EA

is an eigenform, then, by Prop. 3.3 again, the sequence l 6 (EA, Mn (E) ) is con-
vergent and to the limit 1 by (3.5), thus, using also Remark 3.2,
MAn (E)K

nKQ
EA. r

THEOREM 3.8. – Given E� D
A

G there exists an eigenform EA � D
A

G such that
MAn (E)K

nKQ
EA.

PROOF. – Consider s : NKN strictly increasing and EA � D
A

G such that
MAs(n) (E)K

nKQ
EA. By Lemmas 3.6 and 3.7 EA is an eigenform and we conclude by

Lemma 3.7 again. r

4. – Homogenization on fractal structures.

In this section we study the homogenization in the more general setting of
combinatorial fractal structures.

DEFINITION 4.1. – A prefractal structure is a triple (V , W , C) where V is a
finite set having at least two elements, W is a finite set containing V , and C
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is a finite set of one-to-one maps from V to W such that

W4 0
c�C

c(V) ,

(P�V)c (P) �C : for P , Q�V , c�C((c(P) 4Q) ` (P4Q , c4c (P) ) ) ,

PcQ¨c (P) cc (Q) .

REMARK 4.2. – Let (V , W , C) be a prefractal structure, V4 ]P1 , R , PN (,
C4 ]c 1 , R , c k (, and c i 4c (Pi ) for i41, R , N. Let R 4

]((i1 , j1 ), (i2 , j2 ) ) : c i1
(Pj1

) 4c i2
(Pj2

)(. We have

i) kFNF2,

ii) R is an equivalence relation on ]1, R , k(3 ]1, R , N(,

iii) (i , j1 ) R(i , j2 ) ` j1 4 j2 ,

iv) (i , i) R(i 8 , j) ` i4 i 84 j.

If conversely we have an equivalence relation R on ]1, R , k(3

]1, R , N( with kFNF2 such that i), ii), iii), iv) hold, we get a prefractal
structure (V , W , C) with V4 ]P1 , R , PN (, C4 ]c 1 , R , c k (, c i 4c (Pi ) ,
and c i1

(Pj1
) 4c i2

(Pj2
) ` (i1 , j1 ) R(i2 , j2 ); also, this prefractal structure is

unique up to an isomorphism. For example we can take V4 ]Pj 4 ( j , j): j4

1, R , N(, W4 (]1, R , k(3 ]1, R , N()O R, c i ( j , j) 4 (i , j). In the follow-
ing I will often identify a prefractal structure with the triple (N , k , R), and I
will define R by exhibiting a set of relations generating it. Here, an isomor-
phism between two prefractal structures F1 4 (V1 , W1 , C 1 ) and F2 4

(V2 , W2 , C 2 ) is meant to be a pair (T , t) where T is a bijection from W1 to W2

such that TNV1
is a bijection from V1 to V2 and t is a bijection from C 1 to C 2 such

that (t(c) ) i TNV1
4T i c (c�C 1. r

DEFINITION 4.3. – A fractal structure is a triple (V , X , C) where V is a fi-
nite set, X is a set containing V , and C is a set of one-to-one maps from X to X
such that (V , 0

c�C
c(V), ]c NV : c�C( ) is a prefractal structure, X4

0c i1
i R i c in

(V) where the union is taken over all n�N , c i1
, R , c in

�C ,
and, when c , c 8�C and ccc 8 , then c NV cc 8NV .

DEFINITION 4.4. – Given two fractal structures F 4 (V , X , C) and F84

(V 8 , X 8 , C 8 ), an isomorphism from F to F8 is a pair (T , t) where T is a bijec-
tion from X to X 8 such that TNV is a bijection from V to V 8 , and t is a bijection
from C to C 8 such that t(c) i T4T i c for all c�C. I say that two fractal
structures F and F8 are isomorphic if there exists an isomorphism from F

to F 8.
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In the following, given a fractal structure (V , X , C) I enumerate V as V4

V (0) 4 ]Pj : j41, R , N( and C4 ]c i : i41, R , k(, in such a way that
c (Pj ) 4c j . I define Vi1 , R , in

and V (n) as in case of nested fractals. It is immedi-
ate to verify that V (n) ’V (n11) for all n.

DEFINITION 4.5. – I say that the fractal structure (V , X , C) satisfies the
(combinatorial) nesting axiom if (i1 , R , in ) c (i 81 , R , i 8n ) ¨ Vi1 , R , in , i O
Vi 81 , R , i 8n , i 8’Vi1 , R , in

.

It is not difficult to see that, if F is a prefractal structure, then there exists
a (unique up to an isomorphism) fractal structure F 4 (V , X , C) satisfying the
nesting axiom such that (V (0) , V (1) , ]c NV (0) : c�C() CF. Thus, in the follow-
ing, to define a fractal structure satisfying the nesting axiom, I will describe
only the corresponding prefractal structure, by simply exhibiting N , k , R,
using notation of Remark 4.2.

DEFINITION 4.6. – I say that a prefractal structure (V , W , C) is connected
if the graph (W , ]]c(P), c(Q)(: c�C , P , Q�V , PcQ() is connected. I say
that a fractal structure is connected if the corresponding prefractal structure
is connected.

Given a nested fractal, but this construction is valid for a more general
class of fractals, we can define a fractal structure in the following way. Let V (0)

be the set of all essential fixed points and let X4N c i1 , R , in
(V (0) ) where the

union is taken over all n�N , i1 , R , in 41, R , k and let C4 ]c i NX : i4

1, R , k(. Then, (V (0) , X , C) is a fractal structure and I say that it is the frac-
tal structure of K and similarly for the prefractal structure (here c i are the
similitudes defining the fractal; note that it is possible in fact that a fractal is
defined by different sets of similitudes, so to be precise I should specify that
the fractal structure is related not only to the fractal, but also to the set of
similitudes). Recall (see [10], Prop. VI.13 and Corollary 4.14) that if K is a
nested fractal, then with the above notation we have V (0) OVi 4 ]Pi (, so that
the properties in Def. 4.1 are in fact satisfied.

From now on, I fix a fractal structure F 4 (V , X , C) and assume it
is connected and satisfies the nesting axiom. In this situation we can
repeat the same definitions as in the case of nested fractals. A remarkable
difference is that, as known using slight modifications of nested fractals
(see [4] for example), in fractal structures the existence of an eigenform
is in general not guaranteed. However, in case there exists an eigenform,
the results of sections 2 and 3 are still valid, apart from those related
to the group G , which here is, a priori, not defined. Also, many results
do not depend on the existence of an eigenform, and are thus valid for
every fractal structure. Thus I will refer when convenient to results of
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sections 2 and 3 (obviously, in this case Pj , V (0) , and so on, are those
defined in this section).

In the rest of this section I will prove that, if there exists an eigenform,
then every E� D

A
is homogenizable. Note that, clearly, every eigenform is ho-

mogenizable, so, in particular, if N42, every E� D
A

, being an eigenform, is ho-
mogenizable. Note also that it is not difficult to verify that the eigenvalue r is
necessarily E1 (see [17]). The difficulty in imitating the proof of homogeniz-
ability of section 3 is that in this case E in general does not satisfy the strong
minimum principle (1) thus the operators Tj , n are not necessarily positive.
Thus, I first prove a variant of Prop. 3.5 (Prop. 4.7), then, but this requires
some preliminary results, I prove that such a variant is suitable for operators
Tj , n (Lemma 4.21), and finally, in Theorem 4.22, I imitate with slight modifica-
tions the proof of section 3.

PROPOSITION 4.7. – Suppose T1 , R , Tn , R , TQ are linear maps from RA to
RA where A is a finite nonempty set, and there exists B’A such that

i) (Tn (ej ) )j 840 if j�B , j 8�B , n�NN ]Q(.

ii) B4B1, n NB2, n where B1, n 4]j�B : (Tn (ej ) )j 8D0(j 8�B( , B2, n 4

] j�B : (Tn (ej ) )j 840(j 8�B( , and B1, n c¯ , for every n�NN ]Q(.

iii) There exists s : NKN strictly increasing with Ts(n)KnKQ
TQ , and

B1, s(n) 4B1, Q for every n�N.
Then, putting C4 ]v�RA : vj D0(j�B , vj 40(j�B(, there exists v �C

such that N (T1 i R i Tn (vn ) )K
nKQ

v, if vn �C for every n.

PROOF. – We can imitate the proof of Prop. 3.5. The proof of formula
(3.3) in this case is very similar. Here in the definition of h n the sup
is taken over i�B1, n , j , j 8�B , and C plays the role of C

i

. It remains

to prove that 1
n41

Q

T1 i R i Tn (C) c¯. Here we have to modify the proof

of Prop. 3.5 because Tn maps C0]0( (which corresponds to C of proof
of Prop. 3.5), into a set containing (possibly) 0 , that therefore we cannot
normalize. Thus, we consider C 84 ]v�RA 0]0(: vj F0(j , vj 40 (j�B1, Q(,
and by the hypothesis we easily get

N(T1 iR iTs(n11)(N(C 8)))’N(T1 iR iTs(n)(N(C)))’N(T1 iR iTs(n)(N(C 8)))

for all n. Then, put Fn 4 N(T1 i R i Ts(n) ( N(C 8 ) )) , and take v � 1
n41

Q

Fn.

(1) For example, the strong minimum principle is not satisfied in the fractal structu-
re described in Remark 5.12, cf. Prop. 4.10.
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It follows that v � 1
n41

Q

T1 i R i Tn (C), and we conclude as in proof of Prop.
3.5. r

In case of nested fractals the coefficients of M1 (E) are strictly positive
when E� D

A
G , but for fractal structures and E� D

A
, this may fail. Thus, we are

led to investigate deeplier some graphs related to the fractal structures. For
E� D, I put

grn 4]]c i1 , R , in
(Pj1

), c i1 , R , in
(Pj2

)( : j1 c j2 ( ,

grn (E) 4]]c i1 , R , in
(Pj1

), c i1 , R , in
(Pj2

)(: j1 c j2 , cj1 , j2
(E) D0( ,

gr0
A 4]]Pj1

, Pj2
(: j1 c j2 , and )nF2, Q1 , R , Qn �V (1) : Q1 4Pj1

, Qn 4Pj2
,

Qi , Qi11 �Vg(i) for some g(i) if 1 G iGn21, g(i) DN if 1 E iEn21( .

From our hypotheses it easily follows that the graphs grn , gr0
A are connected,

and, in case E� D
A

, grn (E) is also connected. At first glance, the graph gr0
A does

not seem to be very natural. However, it is useful because it is a connected
graph contained in all gr0 (M1 (E) ) (Corollary 4.12). This graph has also been
studied in [17] where it is called L0 , and its connectedness is proved, as well as
the statement of Corollary 4.12. Now, if (V , W) is a graph and V 8’V , we say
that P , Q�V are connected in (V 8 ; W) or simply in V 8 , if there exist
P1 , R , Pm �V such that, P1 4P , Pm 4Q , Pj �V 8 if 1 E jEm , and
]Pj , Pj11 ( �W for 1 G jEm. We say that a subset of V 8 is a component of
(V 8 ; W) if it is the set of all P�V 8 that are connected in (V 8 ; W) to a given P �
V 8 (thus V is connected if and only if it has precisely one component). We have
the following lemma.

LEMMA 4.8. – Suppose that (V , W) is a connected graph. Let Q1 , R , Qn �V
with Qn 4Q1 , and Qi cQi11 for i41, R , n21, nF3. Then for at least one
i41, R , n22, Qi and Qi12 are connected in (V0]Qi11 (; W).

PROOF. – If the lemma is false we can take the smallest nF3 for which
there exist Q1 , R , Qn �V satisfying the hypotheses of the Lemma, but such
that Qi and Qi12 are not connected in V0]Qi11 (, for every i41, R , n22.
Clearly, nF4, and also we have Qi cQj for ic j , unless ]i , j( 4 ]1, n(. I will
now prove that Qi and Qi11 are connected in V0]Q2 ( for i43, R , n21. If Qi

and Qi11 are not connected in V0]Q2 ( for some i43, R , n21, then Qi11 and
Q2 are connected in V0]Qi ( (because V is connected), thus Qi21 and Q2 are not
connected in V0]Qi (. Therefore, by considering Q2 , R , Qi , Q2 we have con-
tradicted the definition of n. Since Qi and Qi11 are connected in V0]Q2 (, for
i43, R , n21, it is easy to conclude that Q3 and Qn 4Q1 are connected in
V0]Q2 (, contrary to our assumption. r
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In order to prove Lemma 4.21, we need a more precise version of the mini-
mum principle, which will lead us to determine the zeroes of the matrix of Tj .
To obtain this I will introduce the set of those points that are in some sense
reachable from P�V (1) in E.

DEFINITION 4.9. – Given P �V (1) and E� D
A

, let R; E (P) (4R(P) )4]P�
V (0) : P and P are connected in (V (1) 0V (0) ; gr1 (E) )(. Put also R; Mn (E) (P) 4

Rn ; E (P) 4Rn (P).

PROPOSITION 4.10. – Given P �V (1) 0V (0) and E� D
A

, we have

min
P�R(P)

u(P) GH1 (u)(P) G max
P�R(P)

u(P) ,

and the inequalities are strict unless u is constant on R(P) (hence, if for some
P �V (1) 0V (0) we have R(P) cV (0) , then the strong minimum principle does
not hold). If (V (0) 0]P(; gr0 (E) ) is connected for all P�V (0) , then

min
P�V (0)

u(P) EH1 (u)(P) E max
P�V (0)

u(P)

unless u is constant on V (0).

PROOF. – The proof is a light variant of that of the minimum princi-
ple. r

PROPOSITION 4.11. – Let E� D
A

. Then, if j1 c j2 ,

]Pj1
, Pj2

( �gr0 (M1 (E) ) ` Pj1
�R; E (Pj2

) .

PROOF. – As noted in [17], this property can be seen as a simple conse-
quence of the probabilistic interpretation of M1 (E). It would also be possible
to give a non-probabilistic proof. r

COROLLARY 4.12. – gr0
A ’gr0 (M1 (E) ) (E� D

A
. r

COROLLARY 4.13. – There exist n1 , n2 F1 such that for every E� D
A

and for
every nFn1 we have gr0 (Mn (E) )4gr0 (Mn1n2

(E) ). Moreover, if E4

lim
nKQ

MAs(n) (E 8 ) with E 8� D
A

, s : NKN strictly increasing, and there exists an

eigenform, then the same holds for every n , i.e., gr0 (Mn (E) )4gr0 (Mn1n2
(E) )

for all n�N.

PROOF. – The first statement follows from the fact that, by Prop. 4.11,
gr0 (Mn11 (E) ) depends only on gr0 (Mn (E) ). For the second statement, it suf-
fices to note that, by Remark 3.2 there exists E1 � D

A
such that E4 MAn1

(E1 ),
with E1 limit point of MAs(n)2n1

(E 8 ). r
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In order to study the positivity of the coefficients of the matrix of Tj , I now
define some subsets of V (0) related to gr0 (Mn (E) ).

DEFINITION 4.14. – Given E� D
A

, j1 c j2 , let Cj1 , j2 , n ; E (or simply Cj1 , j2 , n ) be
the component of (V (0) 0]Pj1

(, gr0 (Mn (E) )) containing Pj2
. Let C 8j1 , j2 , n ; E (4

C 8j1 , j2 , n ) 4]Pj �V (0) 0]Pj1
(: Pj2

�Rn (c j1
(Pj ) )(. Let C 8j1 , A , n ; E (4C 8j1 , A , n ) 4

0
Pj2�A

C 8j1 , j2 , n ; E for A’V (0) 0]Pj1
(. When n40 I omit n and write simply Cj1 , j2

and similar.

REMARK 4.15. – We can easily verify that C 8j1 , j2
is a union of components of

(V (0) 0]Pj1
(, gr0 (E) ). r

REMARK 4.16. – We easily see that C 8j1 , j2
c¯ if and only if Pj2

�
R(Pj1

). r

PROPOSITION 4.17. – For all j , j1 , j2 41, R , N , j1 c j2 , E� D
A

we have
(Tj1

(ej2
) )(Pj ) F0 and the inequality is strict if and only if Pj �C 8j1 , j2

. More-
over, Tj1 ; E (ej2

) and Tj1 ; E 8 (ej2
) have the same zeroes if gr0 (E) 4gr0 (E 8 ).

PROOF. – This easily follows from Prop. 4.10. r

A simple consequence of Prop. 4.17 is that if u takes its minimum at Pj ,
then Tj (u) also takes its minimum at Pj . However, it is important to note that
it is sufficient that Pj is a minimum point for u restricted to R(Pj ), to have that
Tj (u) takes its minimum at Pj , and similarly for the maximum. This motivates
the following definition.

DEFINITION 4.18. – Given E� D
A

and u�RV (0)
, for a41, 21 I define

D a
; E (u) (4D a (u) ) to be the set of those Pj �V (0) such that au(Pj ) Gau(P) for

all P�R(Pj ) and the inequality is strict for at least one P�R(Pj ). Put also
D; E (u) 4D 1

; E (u)ND 21
; E (u), D a

n ; E 4D a
n 4 D a

; Mn (E) and Dn ; E 4Dn 4D; Mn (E).

REMARK 4.19. – Note that if E� D
A

, and A is a component of
(V (0) 0]Pj (; gr0 (M1 (E) )) and u�RV (0)

is not constant on AN ]Pj (, then
D(u)OAc¯. Indeed we can choose P�A such that for some a41, 21,
au(P) Fau(Q) for every Q : ]P , Q( �gr0 (M1 (E) ) , and the inequality is strict
for some Q : ]P , Q( �gr0 (M1 (E) ). By Prop. 4.11, P�D a (u). r

LEMMA 4.20. – Let E� D
A

, u�RV (0)
, Pj �D a

1 (u). Then

a(jTj , 1 (u) )F0 .(4.1)

Moreover, if we put A4]P�V (0) : aj u(P)D0(, A 84]P�V (0):aj Tj, 1(u)(P)D0(,
we have A 84C 8j , A , 1 , and Pj �D a

; E 8 (Tj , 1 (u) ) for every E 8� D
A

.
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PROOF. – Since j Tj , 1 (u) 4Tj , 1 (j u), (4.1) and the formula A 84C 8j , A , 1 follow
from Prop. 4.17. Also, given Ph �R1 (Pj )OA , by Remark 4.16 C 8j , h , 1 c¯. By Re-
mark 4.15 C 8j , h , 1 contains a component of (V (0) 0]Pj (; gr0 (M1 (E) )). Hence, in
view of Corollary 4.12, C 8j , h , 1 contains some P�V (0) such that ]P , Pj ( � gr0

A ’
gr0 (M1 (E 8 ) ). In conclusion, since Ph �A , then P�C 8j , A , 1 4A 8 , and by Prop.
4.11, P�R; E 8 (Pj ). Therefore, by using also (4.1), Pj �D a

; E 8 (Tj , 1 (u) ). r

LEMMA 4.21. – There exists n3 F1 such that, if hFn1 1n2 1n3 , E� D
A

, u
nonconstant, and Mh11 (E)(u) 4l 6 (E , M1 (E) ) Mh (E)(u), then there exist m
with 0 GmGn3 , i1 , R , im 41, R , k , j41, R , N , B’V (0) 0]Pj (, a41, 21,
such that

i) a j Hm , h2m (u) i c i1 , R , im
(P) F0 and the inequality is strict if only if

P�B.

ii) Putting Tn 4Tj , n1n1
, then for suitable B1, n , B2, n , i) and ii) of Prop.

4.7 are satisfied.

PROOF. – Suppose

hF (n2 12)(N21)1n1 .(4.2)

Then there exist m with 1 GmG (n2 12)(N22)11, j , j 8c j , i1 , R , im21 4

1, R , k such that

.
/
´

Pj�DAh2m(Hm21, h2(m21)(u) ic i1, R , im21
)

jHl, h2l(u) ic i1, R , im21, j, R , j(P)40 (P�CAj, j 8, h2l; l4m, R , m1n211
(4.3)

where I write DAi (v) for Di (v)NDi11 (v), and CAj , j 8 , i for Cj , j 8 , i OCj , j 8 , i11 . To
see this, let Pj0

�V (0) ; by Remark 4.19 there exists j1 c j0 such that Pj1
�

Dh21 (u). If (4.3) is false, using Remark 4.19, we inductively find Pj2
, R , PjN

,
b(0), R , b(N21), and i1 , R , ib(N21) such that b(0) 40, b(s11)2b(s) �
]1, R , n2 12( for s40, R , N22, and

Pjs11
� DAh2b(s)21 (Hb(s), h2b(s) (u) i c i1 , R , ib(s)

)0(CAjs , js21 , h2b(s) N ]Pjs
()

for s41, R , N21. Thus Pjs11
and Pjs21

are not connected in (V (0) 0]Pjs
(; gr0

A)
(see Corollary 4.12), and since, clearly two of the indices j0 , R , jN are equal,
this contradicts Lemma 4.8, thus (4.3) holds. Put

HAl , s 4Hl , s (u) i c i1 , R , im21 , j , R , j
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when lFm21, sF0 and where the index j appears l2 (m21) times. We
have

HAl , h2 l 4 HAl , h112 l(4.4)

if m21 G lGh by Prop. 3.3. Also, if sF1, lFm21, by Prop. 2.3

HAl11, s21 4Tj , s21 (HAl , s ) .(4.5)

By (4.3) there exists a41, 21 such that

Pj �D a
h2m (HAm21, h2 (m21) )ND a

h112m (HAm21, h2 (m21) ) .

By Lemma 4.20, (4.4) and (4.5), using a recursive argument, when mG lGh21
we have

a j H
A

l , h2 l F0(4.6)

and, putting Al 4 ]P�V (0) : a j H
A

l , h2 l (P) D0(, for hA 4h , h11 we get

Al11 4C 8j , Al , hA 2(l11) c¯ if mG lGh22 ,(4.7)

and by (4.3) we have Al ’Cj , j 8 , hA 2l if mG lGm1n2 11, thus by Remark 4.15 we
have

Al 4Cj , j 8 , hA 2l if mG lGm1n2 11 .(4.8)

Since (4.8) holds both for hA 4h and for hA 4h11, putting m4m11 we have
Am 4Am11 4R4Am1n2

. Now, putting n3 4 (n2 12)(N21)2n2 , we have
1 GmGn3 , and (4.2) amounts to hFn1 1n2 1n3 . Also, by Corollary 4.13 and
(4.7) there exists B such that Al 4B if mG lGh2n1 , and, thanks to (4.6), we
get i). Also, in view of Corollary 4.13 and (4.8) we see that B4Cj , j 8 , h2 l if lG
h2n1. Thus, by (4.7) and Remark 4.15 we see that for every Pj1

�B , C 8j , j1 , h2 l is
either ¯ or B , and is B for at least one Pj1

�B. By Prop. 4.17 we easily get
ii). r

THEOREM 4.22. – Suppose there exists an eigenform in D
A

. Then every E�
D
A

is homogenizable.

PROOF. – By Lemma 3.7 it is sufficient to find E1 limit point of MAn (E) for
which the formula

l(Mn (E1 ), Mn11 (E1 ) )4l(E1 , M1 (E1 ) )D0 (n�N(4.9)
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does not hold. I will prove that (4.9) does not hold if we take E1 to be a limit
point of MAn (E) for which gr0 (E1 ) has the minimal number of elements. In view
of Remark 3.2, there exists s : NKN strictly increasing such that

MAs(n) (E1 )K
nKQ

E2 � D
A

and we can assume that s(n) fs(m) (mod n2) for all n , m , and by replacing
s(n) by s(n)1h for some h�N , we can assume that for all n , s(n) is an inte-
ger multiple of n2 . Note that, if s 8 : NKN strictly increasing is such that
MAs 8 (n) (E)K

nKQ
E1 , we have

l(MAs 8 (n)1s(n) (E), E2 )G

lgMAs(n) (MAs 8 (n) (E) ) , MAs(n) (E1 )h1l(MAs(n) (E1 ), E2 ) G

l(MAs 8 (n) (E), E1 )1l(MAs(n) (E1 ), E2 )K
nKQ

0

and, using Remark 3.2, there exists a limit point of MAn (E) which is a multiple
of E2 . Thus, by our assumption on E1 , using also Corollary 4.13, we easily
get

gr0 MAs(n) (E1 ) 4gr0 (E1 ) 4gr0 (E2 ) .(4.10)

Now, if (4.9) holds, there exist u6 , n � AA6 (Ms(n) (E1 ), Ms(n)11 (E1 ) ) and, using
Lemma 4.21, by passing to a subsequence we can assume that s(n) Fn1 1n2 1

n3 , and there exist m(6) Gn3 , i1, 6 , R , im(6), 641, R , k , j641, R , N ,
B6’V (0) 0]Pj6 (, a641, 21 such that

j(6)Hm(6), nA 2m(6); E1
(a6 u6 , n ) i c i1, 6 , R , im(6), 6

(P) F0

and the inequality is strict if and only if P�B6 for nA 4s (n), s(n)11 (see
Prop. 3.3). Putting Tn , 64Tj(6), n1n1 ; E1

, then Tn , 6 , nF1, satisfy the hypothe-
ses of Prop. 4.7 with TQ4Tj(6); E2

by Lemma 4.21 and (4.10), in view also of
Prop. 4.17. Put now

u6 , n , l 4j(6) Hs(n)2 l , lA; E1
(a6 u6 , n ) i c i1, 6 , R , im(6), 6 , j6 , R , j6

where lA can be l or l11, if 1 G lGs(n)2m(6), in view of Prop. 3.3, and we
derive a contradiction as in proof of Lemma 3.6. r

REMARK 4.23. – So far, we have considered only forms with nonnegative co-
efficients, but we could also consider forms E with possibly negative coeffi-
cients (cf. for example [14]), but such that E(u) F0 for every u and the equali-
ty holds only when u is constant. This set P of forms fits Hilbert’s projective
metric l better than D

A
, and in view of a result of [16] (Theorem 4.2), if there
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Fig. 1. – See Remark 4.24.

are no eigenforms in P then every limit point of N (Mn (E) ) is reducible when
E� D

A
. On the other hand, if we know that there exists an eigenform in P, then

the argument of Theorem 4.22 works, as easily verified, for E� D
A

(it appears
to be nontrivial to extend it for E� P), thus obviously there exists an eigen-
form in D

A
, namely the limit of MAn (E). In conclusion, there are two possibili-

ties: either there exists an eigenform and every E� D
A

is homogenizable, or
there are no eigenforms and every limit point of N (Mn (E) ) is reducible for
every E� D

A
. r

REMARK 4.24. – I do not know whether, when there are no eigenforms,
every E� D

A
is homogenizable even in the weaker sense that N (Mn (E) ) is con-

vergent (the limit would be reducible by Remark 4.23). However, if E� D 0 D
A

,
E may fail to be homogenizable, even in this weaker sense. Consider the pre-
fractal structure given by, N4k44, R defined by the relations
(i1 , j1 ) R(i2 , j2 ) for j1 f i1 1u (mod 4), i2 f i1 2u (mod 4), j2 f i1 22u (mod 4),
u461 (see Figure 1: P5 4c 1 (P4 ) 4c 2 (P3 ), P6 4c 2 (P1 ) 4c 3 (P4 ), P7 4

c 3 (P2 ) 4c 4 (P1 ), P8 4c 4 (P3 ) 4c 1 (P2 )) (2). For AF0, BF0, let EA , B be de-
fined by EA , B (u) 4A(u(P1 )2u(P2 ) )2 1A(u(P3 )2u(P4 ) )2 1B(u(P1 )2

u(P4 ) )2 1B(u(P2 )2u(P3 ) )2. Then it is easy to see that, when AD0

Mn (EA , 0 ) 4

.
`
/
`
´

1

2n
EA , 0

1

2n
E0, A

if n even

if n odd .

r

(2) In this figure, as well as in Figures 2 and 3, I describe the fractal structure by
picturing V (1).
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Fig. 2. – See Remark 5.12.

Fig. 3. – See Remark 5.13. Here, P4R , Q4S.

5. – Uniqueness of eigenforms in fractal structures.

In this section I generalize the uniqueness results of section 2 to the case
of fractal structures. In the following G denotes a transitive subgroup of the
group Per (V (0) ) of all permutations of V (0) (more generally, by Per (A) I mean
the group of all permutations of a nonempty set A), and of course D

A
G (resp.

DG ) denotes the set of those E� D
A

(resp. E� D) such that E(u i s) 4E(u) for
every s�G. In order to extend Theorem 2.6 to fractal structures, the only non-
trivial fact to prove is the strong minimum principle (s.m.p.). Note, in fact, that
the uniqueness argument of Theorem 2.6, unlike those of [14] and [17], does
not use any specific property of nested fractals. We see, in view of Prop. 4.10,
that E� D

A
satisfies s.m.p. provided (V (0) 0]P(; gr0 (E) ) is connected for all

P�V (0). Note that this is trivially true if cj1 , j2
D0. We will now see that every

E� D
A

G satisfies s.m.p., in particular we will finally prove completely Prop.
2.1.
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LEMMA 5.1. – Let E� D
A

G . Then E satisfies s.m.p..

PROOF. – Suppose P�V (0) is such that (V (0) 0]P(; gr0 (E) ) is disconnected.
Since E� D

A
G and G is transitive, it is easy to see that (V (0) 0]Q(; gr0 (E) ) is

disconnected for every Q�V (0). Now, we can easily find Q0 , R , QN �V (0) such
that Qi cQi11 , and Qi and Qi12 are not connected in (V (0) 0]Qi11 (; gr0 (E) ) ,
and this contradicts Lemma 4.8. r

THEOREM 5.2. – Any two eigenforms in D
A

G are multiples of each
other. r

PROOF. – We can proceed in the exactly same way as in Theorem
2.6. r

I state explicitly the following result which is implicit in the proofs of Theo-
rem 2.6 and Remark 2.7.

LEMMA 5.3. – If E� D
A

satisfies s.m.p., then there exists a unique eigenvec-
tor uj (4uj ; E ) of Tj such that Vuj V41, uj (Pj ) 40, uj (P) F0 for all P. If in ad-
dition, E 8� D

A
and E , E 8 are eigenforms, and u� AA6 (E , E 8 ) and u attains

its minimum or its maximum at Pj , then uj � AA6 (E , E 8 ); if in addition, uj

takes its maximum at Pj 8 then uj 8� AA6 (E , E 8 ). r

In order to understand better the questions concerning the existence and
uniqueness of eigenforms, I will introduce the notion of symmetry with re-
spect to a transitive group of permutations of V (0). The following definitions,
for the case G4Per (V (0) ), have been introduced in [15]. In fact, the defini-
tions of [15] slightly differ (a priori) from those in Def. 5.4, but they are equiv-
alent in the practical cases. Notions like that of strongly G-symmetric struc-
ture have been introduced in other articles (using a different terminology), (cf.
for example [9], [17]). Instead, the notion of weakly G-symmetric structure, to
my knowledge, has not appeared in other papers (apart from [15] for the case
G4Per (V (0) )). One of the reasons of introducing it is that the structure of
every nested fractal is weakly G-symmetric (Remark 5.5). Prop. 5.6 is, in some
sense, the natural generalization of the analogous and well known result for
nested fractals, but I prefer to prove it in detail in order to clarify the role of
G-symmetry. Corollary 5.7 has been stated in [15]. The uniqueness results in
Corollary 5.7 and Theorem 5.10 are obtained by using the method of section 2,
essentially Lemma 2.4, and, at first glance, they do not appear to be simply ob-
tainable by the methods of [14] and [17]; instead the existence result in Theo-
rem 5.10 and the non-existence example of Remark 5.13 can also be obtained
using the method of [17].
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DEFINITION 5.4. – a) F is weakly G-symmetric if for every s�G , there
exist sA �Per (V (1) ) with sANV (0) 4s , b�Per (]1, R , k(), t i , s�G for i4

1, R , k , such that sA i c i 4c b(i) i t i , s for all i41, R , k.

b) F is strongly G-symmetric if in the preceding definition we can take
t i , s4s.

I omit «G» when G4Per (V (0) ) and write simply weakly symmetric,
strongly symmetric.

Note that, a priori, F can be weakly symmetric but not weakly G-symmet-
ric.

REMARK 5.5. – The Gasket in Rn is strongly symmetric. The Vicsek set in Rn

is weakly symmetric, and strongly G1-symmetric for suitable G1. These facts
can be easily verified and are suggested by geometrical considerations. More-
over, it is not difficult to see that the Vicsek set in Rn is not strongly symmetric
and the snowflake is not weakly symmetric. If F is the fractal structure of a
nested fractal, then F is weakly G-symmetric where G is the group described
in section 2. Indeed, from the properties of the nested fractals it easily follows
that, for every i41, R , k , f j1 , j2

i c i 4c b(i) i t i , j1 , j2
on V (0) for suitable b(i),

where t i , j1 , j2
is an isometric transformation of V (0) , and it is easy to prove that

every isometric transformation of V (0) is in G. If, in addition, every c i has the
form c i (x) 4Qi 1 (x/R) for some Qi �Rn , RD1 (this occurs for the most usual
nested fractals, in particular for those considered in this paper), then it is easy
to verify that t i , j1 , j2

4f j1 , j2
, so F is strongly G-symmetric. Here, I have used

the simple fact that it is sufficient that a) (resp. b)) of Def. 5.4 holds when s is
in a set of generators of G , to have that F is weakly (resp. strongly)
G-symmetric. r

PROPOSITION 5.6. – If F is weakly G-symmetric, then M1 (D
A

G ) ’ D
A

G .

PROOF. – Given E� D
A

G and s�G , we have

M1 (E)(u i s) 4 min
v� L(1 , u i s)

!
i41

k

E(v i c i ) 4

min
v� L(1 , u)

!
i41

k

E(v i sA i c i ) 4 min
v� L(1 , u)

!
i41

k

E(v i c b(i) i t i , s ) 4

min
v� L(1 , u)

!
i41

k

E(v i c b(i) ) 4 min
v� L(1 , u)

!
i41

k

E(v i c i ) 4M1 (E)(u) . r
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COROLLARY 5.7. – If F is weakly symmetric, then E is an eigenform. If in
addition F is strongly symmetric, then every eigenform is a multiple of E.

PROOF. – For the first statement it is sufficient to note that D
A

Per (V (0) ) 4

]tE: tD0(, for the second it is easy to see that strong symmetry permits us to
imitate the argument of Remark 2.7. r

REMARK 5.8. – If there exists an eigenform on F and F is weakly G-symmet-
ric, then there exists an eigenform in D

A
G . Indeed, by Theorem 4.22, given E�

D
A

G , then E is homogenizable, and by Prop. 5.6 and a trivial argument,
lim

nKQ
MAn (E) is in D

A
G and, also is an eigenform. r

REMARK 5.9. – I have not investigated deeply the problem of the existence
of an eigenform. Apart from the Theorem of Lindstrøm and Corollary 5.7,
rather general results are given by C. Sabot in [17], and it is well known that
not all fractal structures have eigenforms (in D

A
). However, we now see that

there is always a non-zero eigenform in D. A similar result is given in [13], but
there it is not proved that the eigenform is not 0. Clearly, there exists cD0

such that the set P4mE� D: M1 (E) FcE , !
i41

N

E(ei ) 41n contains some E�

D
A

, thus is nonempty. It is not difficult, using the convexity of the elements of
D and the fact that P is equibounded on the compact subsets of RV (0)

, to prove
that P is a compact and convex subset of D. Let M×1 : PKP be defined by

M×1 (E) 4
M1 (E)

!
i41

N

M1 (E)(ei )
.

We can easily see that in fact M×1 (E) �P (E�P , and that M×1 is continuous. By
the Schauder Theorem there exists E�P such that M×1 (E) 4E. r

We will now see that when N is prime we have existence and uniqueness of
eigenform in D

A
, provided it is sufficiently symmetric. As seen in the introduc-

tion, it is known that the Vicsek set shows that for N44 this could not occur.
Some particular cases of this uniqueness result (either N43 or N45 with an
additional condition, for nested fractals) have been proved in [9].

THEOREM 5.10. – If F is weakly G-symmetric, and N is prime, then there
exists an eigenform. If in addition F is strongly G-symmetric, then the eigen-
form is unique up to a multiplicative constant.

PROOF. – For the existence we can imitate the proof in Remark 5.9.
L e t P4 ]E� D

A
G : E(e1 ) 41(. Le t M×1 : PKP b e d e f i n e d b y M×1 (E) 4

(M1 (E)OM1 (E)(e1 ) ). Clearly, P is convex. Also, if E�P , then E(e1 ) 41, thus
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E(ei ) 41 for every i for, if s�G satisfies s(P1 ) 4Pi , then E(ei ) 4E(ei i s) 4

E(e1 ) 41. By convexity, P is equibounded on every bounded set, thus is rela-
tively compact. It remains to prove that P is closed. For this it suffices to prove
that every E� DG for which E(e1 ) 41 is in D

A
. Now, there exist j1 , j2 : j1 c j2 ,

and cj1 , j2
(E) D0. Note that G being transitive, it is easy to see that ordG is an

integer multiple of N , thus since N is prime, G contains a cyclic permutation s ,
and we can choose s in G , such that s (Pj1

) 4Pj2
. Let Pjn

4s n21 (Pj1
) for n4

1, R , N. Since E� DG , we easily deduce cjn , jn11
(E) 4cj1 , j2

(E) D0 for n4

1, R , N21. Thus (V (0) , gr0 (E) ) is connected and E� D
A

. Suppose now F is
strongly G-symmetric and prove the uniqueness of the eigenform up to a mul-
tiplicative constant. Let E1 � D

A
G , E2 � D

A
be eigenforms. Put uj 4uj , E1

and

S(Pj ) 4 ]Pj 8�V (0) : uj (Pj 8 ) 4 max uj (

for j41, R , N. Since F is strongly G-symmetric it is easy to see that

S(s (Pj ) )4s(S(Pj ) ) (s�G .(5.1)

Also, by Lemma 5.3, there exists uj1
� AA6 (E1 , E2 )(4 AA6 ), and, if uj � AA6 and

Pj 8�S(Pj ), then uj 8� AA6. Let Pj2
�S(Pj1

), and let s�G be a cyclic permutation
such that s(Pj1

) 4Pj2
. By (5.1) we see that uj � AA6 for all j41, R , N , thus

AA1OAA2
c¯ . r

REMARK 5.11. – The case N43 can be discussed rather in detail. The first
fact to note is that if E� D

A
is an eigenform satisfying s.m.p., then every eigen-

form is a multiple of E. Indeed, if E 8� D
A

is an eigenform, by Lemma 5.3 we
find uj1

, uj2
� AA1 (E , E 8 ) with j1 c j2 , uj 81 , uj 82 � AA2 (E , E 8 ) with j 81 c j 82 . Since

N43, AA1 (E , E 8 )OAA2 (E , E 8 ) c¯.
It follows that if there exist two eigenforms which are not multiples of each

other, then there exist j1 , j2 41, 2 , 3 such that cj1 , j2
(E) 40 for every E eigen-

form. Indeed, if there exists an eigenform E� D
A

such that cj1 , j2
(E) D0 for all

j1 , j2 , then E satisfies s.m.p. and thus, as seen above, every eigenform is a mul-
tiple of E. So, for every eigenform E� D

A
, we have cj1 , j2

(E) 40 for some j1 , j2

(depending on E). On the other hand the set Ei of all eigenforms in D
A

is con-
nected, for it is easy to deduce from Theorem 4.22 that the map
EOVEV lim

nKQ
N (Mn (E) ) is a continuous surjection from D

A
to Ei. Now, it is easy

to conclude that we can find j1 , j2 such that cj1 , j2
(E) 40 for every

E�Ei.
In view of Prop. 4.11, a case in which every E� D

A
satisfies cj , j 8 (M1 (E) )D0

for jc j 8 , E� D
A

, is when any two points of V (0) can be connected in V (1) 0V (0) ,
using only any two of the three coefficients, more precisely: Given j1 , j2 , j3 , j4 ,
j5 ; Pj1

and Pj2
are connected in (V (1) 0V (0) ; gr1 ) by a path whose edges have the
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form ]c i (Pj3
), c i (Pj4

)( or ]c i (Pj3
), c i (Pj5

)(. Thus, under this condition, any
two eigenforms are multiples of each other. Note that this condition is satis-
fied by many fractal structures, for example by many kinds of «asymmetric
gasket» (some kinds of asymmetric gasket are considered in [4] and
[17]). r

REMARK 5.12. – The following example shows that under the sole condition
N43, we can have infinitely many eigenforms which are, mutually, not multi-
ples of each other. Suppose N4k43, and R is the equivalence relation de-
fined by (1 , 2 ) R(2 , 1 ), (1 , 3 ) R(3 , 1 ) (see Figure 2). Then, it is easy to see
that every Ea of the form Ea (u) 4a(u(P1 )2u(P2 ) )2 1 (u(P1 )2u(P3 ) )2 , aD0,
is an eigenform in D

A
. r

REMARK 5.13. – By Corollary 5.7 there exists an eigenform if the structure
is weakly symmetric. Here I give an example of a strongly G-symmetric fractal
structure without eigenforms (cf. also Theorem 5.10). Consider the prefractal
structure with N44, k44m , (m42, 3 , 4 R), and R defined by the follow-
ing relations:

(1 , 3 ) R(3 , 1 ), (2 , 4 ) R(4 , 2 ), (D(am1k), D( (a11)m11)) R

(D(am1k11), D(am11))

for a40, 1 , 2 , 3 , k41, R , m , where D : Z4m K ]1, R , 4m( is defined by
D(am11) 4a11, D(am1k) 4a(m21)1k13, for a40, 1 , 2 , 3 , k4

2, R , m (see Figure 3). Then it is easy to see that F is strongly G-symmetric,
where G is the group generated by the «rotation of pO2». To see that F has no
eigenforms (for sufficiently large m), consider u1 , u2 : V (0) KR defined by
u1 4e1 1e3 , u2 4e1 1e2. If E� D

A
, then E� D

A
G if and only if we have c1, 2 (E) 4

c2, 3 (E) 4c3, 4 (E) 4c1, 4 (E), c1, 3 (E) 4c2, 4 (E). Moreover, if E� D
A

G , then
c1, 2 (E) 4 (1O4) E(u1 ), c1, 3 (E) 4 (1O2) E(u2 )2 (1O4) E(u1 ), thus by simple
calculations it is possible to see that for sufficiently large m , if E� D

A
G , and

(c1, 3 (E)Oc1, 2 (E) )FA where A is a suitable constant D0, we have b n F2n b 0 ,
where b n 4c1, 3 (Mn (E) )Oc1, 2 (Mn (E) ). Therefore there are no eigenforms (for
example by Remark 3.2). r
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