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Bollettino U. M. I.
(8) 3-B (2000), 375-409

On Blow-Up and Asymptotic Behavior
of Solutions for some Semilinear

Parabolic Systems of Second Order.

THÉODORE K. BONI

Sunto. – In questo lavoro sotto queste ipotesi si ottiengono alcune condizioni di non
esistenza e di esistenza delle soluzioni per alcuni sistemi parabolici semilineari
del secondo ordine. Inoltre si studia il comportamento asintotico di alcune
soluzioni.

1. – Introduction.

Let V be a bounded domain in Rn with smooth boundary ¯V . Consider the
following boundary value problems:

(I)

¯ui

¯t
4Li ui 1 fi (ui11 ) f *i (ui ) in V3 (0 , T) ,(1.1)

m i
¯ui

¯Ni

1 (12m i ) ui 40 on ¯V3 (0 , T) ,(1.2)

ui (x , 0 ) 4u0
(i) (x) in V ,(1.3)

(II)

¯ui

¯t
4L0 ui 2a(x) ui in V3 (0 , T) ,(1.4)

¯ui

¯N0

1b(x) ui 4gi (ui11 ) on ¯V3 (0 , T) ,(1.5)

ui (x , 0 ) 4u0
(i) (x) in V ,(1.6)

where i41, R , m , um11 4u1 , m i and b(x) are nonnegative functions on ¯V
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with m i G1, a(x) is a nonnegative function in V . For l� ]0, 1 , R , m(,

Ll ui 4 !
k , j41

n
¯

¯xk
ga (l)

kj (x)
¯ui

¯xj
h ,

¯ui

¯Nl

4 !
k , j41

n

cos (n , xk ) a (l)
kj (x)

¯ui

¯xj

.

Here, the coefficients a (l)
kj (x) �C 1 (V) satisfy the following inequalities

l 1
(l) NjN2 F !

k , j41

n

a (l)
kj (x) j k j j Fl 2

(l) NjN2

for any j�Rn and x�V with positive constants l 1
(l) , l 2

(l) . n is the exterior nor-
mal unit vector on ¯V , f *i (s), fi (s), gi (s) are nonnegative and increasing func-
tions for positive values of s with fi (0) 4gi (0) 40. u0

(i) (x) are positive and con-
tinuous functions in V .

In this note, if h1 (s) and h2 (s) are two positive functions defined in (0 , Q),
we put h1 i h2 (s) 4h1 [h2 (s) ].

We want to determine when the nonnegative solutions are global, i.e de-
fined for every t� (0 , Q).

DEFINITION 1.1. – We say that a solution (u1 , R , um ) of the problem (1.1)-
(1.3) or (1.4)-(1.6) blows up in a finite time if there exists a finite time T0 such
that

lim
tKT0

m!
i41

m

Vui (x , t)VL Q (V)n4Q .

T0 is the blow up time of the solution (u1 , R , um ). A point x� V is a blow up
point of the solution (u1 , R , um ) if there exists a sequence (xn , tn ) such that

xn Kx, tn KT0 and lim
nKQ

m!
i41

m

Nui (xn , tn )Nn4Q. The set

EB 4 ]x� V such that x is a blow up point of the solution (u1 , R , um )(

is the blow up set of the solution (u1 , R , um ).

The global existence and blow-up of solutions for parabolic systems of sec-
ond order have been the subject of investigation of many authors (see, for in-
stance [1], [3], [4], [5], [6], [7], [10], [12]). In [4], Escobedo and Herrero have
considered the following system:

¯u

¯t
4Du1v p in V3 (0 , T) ,

¯v

¯t
4Dv1u q in V3 (0 , T) ,

u40 on ¯V3 (0 , T), v40 on ¯V3 (0 , T) ,
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u(x , 0 ) 4u0 (x) in V , v(x , 0 ) 4v0 (x) in V .

They have shown that if pqD1, there are global and blow up nonnegative
solutions. In [12], Rossi and Wolanski have studied the following system:

¯u

¯t
4Du1v p e u in V3 (0 , T) ,

¯v

¯t
4Dv1u q e v in V3 (0 , T) ,

u40 on ¯V3 (0 , T), v40 on ¯V3 (0 , T) ,

u(x , 0 ) 4u0 (x) in V , v(x , 0 ) 4v0 (x) in V .

They have also shown that if pqD1, there are global and blow up nonnega-
tive solutions. In their analysis, they remark that the phenomenon of global
existence and blow up depends on the nature of the domain. In this paper, we
generalize these results considering the problem of the form (1.1)-(1.3). We
also give some conditions under which the solutions of the problem (1.1)-(1.3)
tend to zero and describe their asymptotic behavior. Finally, we study the
asymptotic behavior of some global solutions. For the problem (1.4)-(1.6), some
authors have studied the blow up of the solutions under some conditions (see,
for instance [6], [10]). An interesting question of the problem (1.4)-(1.6) is the
localization of the blow up set. This problem has been studied by some authors
in the case where m42, L0 4D , a(x) 40, b(x) 40, g1 (u2 ) 4u2

p , g2 (u1 ) 4u1
q

with pD1, qD1 (see, for instance [3]). In this paper, we give another charac-
terization of the blow up of solutions for the problem (1.4)-(1.6) and describe
their blow up set. The paper is written in the following manner. In Section 2,
we give some conditions of global existence of solutions for the problem (1.1)-
(1.3). In Section 3, we obtain some conditions under which the solutions of
(1.1)-(1.3) tend to zero as tKQ and describe their asymptotic behavior. In
Sections 4 and 5, we obtain some blow up conditions of solutions for the prob-
lem (1.1)-(1.3). In Section 6, we give the asymptotic behavior of some global
solutions for the problem (1.1)-(1.3) and finally, in Section 7, we study the blow
up set of some blow up solutions for the problem (1.4)-(1.6).

We recall that in this work, we consider the nonnegative solutions.

2. – Global existence.

In this section, we give some conditions under which the solutions of the
problem (1.1)-(1.3) exist globally.

If fi (s) are locally Lipschitz continuous, local existence and uniqueness of
nonnegative solution are well known (see, for instance [9]). Now consider the



THÉODORE K. BONI378

general case. Let (u1n , R , umn ) satisfying uin F1/n be the maximum solution
of the following system

¯ui

¯t
4Li ui 1 fin (ui11 ) f *i (ui ) in V3 (0 , T) ,

m i
¯ui

¯Ni

1 (12m i ) ui 4
1

n
on ¯V3 (0 , T) ,

ui (x , 0 ) 4u0
(i) (x)1

1

n
in V ,

where fin (s) 4 fi (s) for sF1/n . fin are locally Lipschitz in R . Using the maxi-
mum principle, we see that uin (i41, R , m) are nonincreasing sequences
such that uin F0. Therefore ui 4 lim

nKQ
uin (i41, R , m) exist. Using the «vari-

ation of constant formula», we obtain the result.
The following lemma which will be useful later.

COMPARISON LEMMA 2.1. – Let (u1, R , um) satisfying the following
inequalities:

¯ui

¯t
FLi ui 1fi (ui11) f *i (ui) in V3 (0 , T) ,

m i
¯ui

¯Ni

1 (12m i ) ui D0 on ¯V3 (0 , T) ,

ui(x , 0 ) Du0
(i) (x) in V , i41, R , m ,

where um11 4 u1 and ui(x , 0 ) are continuous up to t40. If (u1 , R , um ) is a
solution of the problem (1.1)-(1.3) with initial data (u0

(1) , R , u0
(m) ), then we

have

ui (x , t) E ui(x , t) in V3 (0 , T), i41, R , m .

We call (u1, R , um) supersolution of the problem (1.1)-(1.3).

PROOF. – We have ui(x , 0 )2u0
(i) (x) Dd in V and m i (¯ui /¯Ni )1

(12m i ) ui Dd on ¯V3 (0 , T) for some dD0. Let

T0 4 supmt such that ui(x , t)2ui (x , t) D
d

2
for all in .

T0 D0 because the function ui(x , 0 )2ui (x , 0 ) is continuous up to t40 and
ui(x , 0 )2ui (x , 0 ) Dd . We also have uj(x0 , T0 ) 4uj (x0 , T0 )1d/2 for some
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j� ]1, R , m( and some x0 �V . Therefore we get

¯(uj 2uj )

¯t
2Lj (uj 2uj ) F fj (uj11) f *j (uj)2 fj (uj11 ) f *j (uj ) F0 in V3 (0 , T0 ) ,

because the functions fj (s) and f *j (s) are nonnegative, increasing for positive
values of s . We also have

m j

¯(uj 2uj )

¯Nj

1 (12m j )(uj 2uj ) Dd on ¯V3 (0 , T0 ) ,

uj(x , 0 )2uj (x , 0 ) Dd in V .

From the maximum principle, we deduce that uj(x , t)2uj (x , t) Fd in V3

(0 , T0 ). This implies that uj(x0 , T0 )2uj (x0 , T0 ) Dd/2 , which is a contradic-
tion. Then we have the result. r

THEOREM 2.2. – Suppose that

lim
sK0

f1 i(c2 f2 ) i R i (cm fm )(s)

s
40 ,

where cj ( j42, R , m) are positive constants. Then there exists a positive
constant a0 such that any solution (u1 , R , um ) of the problem (1.1)-(1.3) with
initial data (u0

(1) , R , u0
(m) ) exists globally for u0

(i) (x) Ea0 .

REMARK 2.3. – Suppose that the functions fm (s), fm21 i fm (s),
R , f2 i R i fm (s) are convex for small positive values of s and fm (0) 40,
fm21 i fm (0) 40, R , f2 i R i fm (0) 40. If

lim
sK0

f1 i R i fm (s)

s
40 ,

then we have

lim
sK0

f1 i (c2 f2 ) i R i (cm fm )(s)

s
40 ,

where cj ( j42, R , m) are positive constants.
In fact, since fi (s) are increasing functions, we obtain

lim
sK0

f1 i (c2 f2 ) i R i (cm fm )(s)

s
G lim

sK0

f1 i (c *2 f2 ) i R i(c *m fm )(s)

s
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where c *j F sup ]1, cj (. It follows that

lim
sK0

f1 i (c2 f2 ) i R i (cm fm )(s)

s
G lim

sK0

f1 i f2 i R i fm (c *2 Rc *m s)

s
40 ,

because the functions fm (s), fm21 i fm (s), R , f2 i R i fm (s) are convex for
small positive values of s with fm (0)40, fm21 i fm (0)40, R , f2 i R i fm (0)4
0.

PROOF OF THEOREM 2.2. – For k� ]1, R , m(, let F k (x) be a solution of the
following problem:

Lk F k (x) 421 in V ,(2.1)

m k
¯F k (x)

¯Nk

1 (12m k ) F k (x) 40 on ¯V ,(2.2)

F k (x) D0 in V .(2.3)

Let

ui 4ai (F i (x)1d) ,(2.4)

where d is a positive constant, and ai (i41, R , m) are positive constants
which will be indicated later. Put Ki 4 sup

x�V
]F i (x)1d(. We have

(2.5)
¯ui

¯t
2Li ui 2fi (ui11) f *i (ui) Fai 2 fi (ai11 Ki11 ) f *i (ai Ki ) ,

(2.6) m i
¯ui

¯Ni

1 (12m i ) ui 4

aigm i
¯F i (x)

¯Ni

1 (12m i ) F i (x)h1ai d(12m i ) 4ai d(12m i ), i41, R , m ,

where um11 4 u1, am11 4a1 , Km11 4K1 . Show that there exist ai (i41,
R , m) such that

ai F fi (ai11 Ki11 ) f *i (ai Ki ), i41, R , m21 ,(2.7)

am F fm (a1 K1 ) f *m (am Km ) .(2.8)

Let al (l42, R , m) satisfy the following relations

fi (ai11 Ki11 ) 4
ai

f *i (ai Ki )
, i41, R , m21 .(2.9)
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(2.9) may be written in the following form

ai Ki 4cai
fi (ai11 Ki11 ), i41, R , m21 ,(2.10)

where for k� ]1, R , m21(, cak
is a positive constant which depends on ak .

Therefore, we have

a2 K2 4 (ca2
f2 ) i R i (cam21

fm21 )(am Km ) .(2.11)

Now, show that we can determine a1 such that the inequality (2 . 8 ) be satis-
fied. Since f1 i (ca2

f2 ) i R i (cam21
fm21 ) is an increasing function, multiplying

inequality (2.8) by Km , we obtain

(2.12) f1 i (ca2
f2 ) i R i(cam21

fm21 )(am Km )

F f1 i (ca2
f2 ) i R i (cam21

fm21 )[Km fm (a1 K1 ) f *m (am Km ) ] .

From (2.9), (2.11) and (2.12), it follows that

(2.13)
1

f *1 (K1 a1 )
4

f1 (a2 K2 )

a1

4
f1 i(ca2

f2 ) i R i (cam21
fm21 )(am Km )

a1

F

f1 i (ca2
f2 ) i R i (cam21

fm21 )[ fm (a1 K1 ) Km f *m (am Km ) ]

a1

.

By hypothesis, the last term of (2.13) tends to zero as a1 tends to zero. Then
take a1 so small that (2.13) holds. This implies that (2.8) is satisfied. Put K 8i 4

inf
x�V

]F i (x)1d(. Since (2.7) and (2.8) are valid, taking a0 4 inf
l� ]1, R , m(

al K 8l

from (2.4)-(2.6), we see that (u1, R , um) is a supersolution of the problem (1.1)-
(1.3). Therefore (u1 , R , um ) exists globally, which gives the result. r

COROLLARY 2.4. – Let fi (ui11 ) 4ui11
pi , f *i (ui ) 4e ui or f *i (ui ) 41 where pi

are positive numbers. If »
i41

m

pi D1, then there exists a positive constant a0

such that any solution (u1 , R , um ) of the problem (1.1)-(1.3) with initial data

(u0
(1) , R , u0

(m) ) exists globally for !
i41

m

Vu0
(i) (x)VL Q (V) Ga0 .

THEOREM 2.5. – Suppose that m i 40 (i41, R , m) and there exists j�
]1, R , n( such that V%%V 1 3 (0 , l)3V 2 where V 1 %Rj21 and V 2 %Rn2 j.
Then if l is small enough, there exists a positive constant a0 such that any
solution (u1 , R , um ) of the problem (1.1)-(1.3) with initial data
(u0

(1) , R , u0
(m) ) exists globally for u0

(i) (x) Ea0 .
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PROOF. – Put ui 4ai (F i (x)1d) where ai are positive numbers. As in the
proof of Theorem 2.2, it is sufficient to show that

ai F fi (ai11 Ki11 ) f *i (ai Ki ) , i41, R , m ,(2.14)

where am11 4a1 , Km11 4K1 with Ki 4 sup
x�V

]F i (x)1d(. Since V 1 and V 2 are

two bounded domains, there exist numbers lk (k41, R , j21, j11, R , n)

such that V%% »
k41

j21

[0 , lk ]3 (0 , l)3 »
k4 j11

n

[0 , lk ] 4I . Let c i (x1 , xj , x2 ) func-

tions defined in I by

c i (x1 , xj , x2 ) 4
1

2a0
(i)

xj (l2xj ), i41, R , m ,(2.15)

where a0
(i) 4 inf

x�V
a (i)

jj (x) D0, with xj � (0 , l), x1 � »
k41

j21

[0 , lk ] and x2 �

»
k4 j11

n

[0 , lk ]. We have

Li c i (x1 , xj , x2 )11 G0 in I , c i (x1 , xj , x2 ) F0 on ¯I .(2.16)

Since c i (x1 , xj , x2 ) D0 in V, from the maximum principle, c i FF i in V ,
where for i� ]1, R , m(, F i (x) is the solution of the following problem

Li F i 11 40 in V , F i 40 on ¯V .(2.17)

Since Vc i VL Q (I) G l 2 /8a0
(i) , we also have wi0 4VF i VL Q (V) G l 2 /8a0

(i) . It follows
that Ki tends to zero as d and l tend to zero. Since fi (0) 40, choose d and l so
small that the inequalities (2.14) hold. Hence the result. r

3. – Asymptotic behavior of solutions which tend to zero.

In this section, we suppose that Li 4L0 , m i 4m 0 . We give some conditions
under which the solutions of the problem (1.1)-(1.3) tend to zero as tKQ . We
also describe the asymptotic behavior of these solutions. We suppose that for
positive values of s , fi (s) (i41, R , m) are functions of class C 1 such that
fi (0) 4 fi8 (0) 40. Suppose that for any interval [0 , A] with AD0, there exist a
constant C * depending on A and pD1 such that

fi (s) GC * s p for s� [0 , A] .(3.1)

Let W(x) and l , be respectively, the first eigenfunction and the first eigenval-
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ue of the following boundary value problem:

2L0 W(x) 4lW in V ,(P1)

m 0
¯W(x)

¯N0

1 (12m 0 ) W(x) 40 on ¯V ,(P2)

W(x) D0 in V , s
V

W(x) dx41.(P3)

Define for ri D0 (i41, R , m),

U *(ri ) 4 inf ]sD0 such that fi (s) 4ri s(,

and put

a4a(r1 , R , rm ) 4 sup
l� ]1, R , m(

rl f *l (U *(rl21 ) ) ,

where r0 4rm .

REMARK 3.1. – We have U *(ri ) D0 for ri D0.

THEOREM 3.2. – Suppose that there are constants C, ri such that:

0 Ea(r1 , R , rm ) El , ui (x , 0 ) ECW(x) EU *(ri21 ) in V .

Then any solution (u1 , R , um ) of the problem (1.1)-(1.3) exists globally
and

lim
tKQ

e lt ui (x , t) 4Ci W(x) ,

uniformly in V, where Ci (i41, R , m) are positive constants.

The proof of Theorem 3.2 is based on the following lemmas

LEMMA 3.3. – Under the hypotheses of Theorem 3.2, any solution
(u1 , R , um ) of the problem (1.1)-(1.3) exists globally and

0 Gui (x , t) ECW(x) e (2l1a(r1 , R , rm ) ) t in V3 (0 , Q), i41, R , m

where C is a positive constant.

PROOF. – Put

vi (x , t) 4CW(x) e (2l1a) t .(3.2)
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We obtain

(3.3)
¯vi

¯t
2L0 vi 4avi11 Fri f *i (U *(ri21 ) ) vi11 in V3 (0 , T), i41, R , m ,

where vm11 4v1 . Since 0 Gui (x , 0 ) EU *(ri21 ), let t1 be the first tD0 such
that

0 Gui (x , t) EU *(ri21 ) in V3 (0 , t1 ),(3.4)

but uj (x1 , t1 ) 4U *(rj21 ) for some j� ]1, R , m( and x1 in V . Therefore by
the definition of U *(ri ), we have

fi (ui11 ) Eri ui11 in V3 (0 , t1 ).(3.5)

We deduce that

¯ui

¯t
2L0 ui Eri f *i (U *(ri21 ) ) ui11 in V3 (0 , t1 ).(3.6)

We also have

ui (x , 0 ) ECW(x) 4vi (x , 0 ) in V .(3.7)

From the maximum principle for parabolic systems(see for instance [11]), it
follows that

ui (x , t) Evi (x , t) in V3 (0 , t1 ),

that is

0 Gui (x , t) ECW(x) e (2l1a) t in V3 (0 , t1 ).(3.8)

We conclude that t1 4Q . In fact suppose that t1 EQ . Then we have

uj (x1 , t1 ) GCW(x1 ) e (2l1a) t1 .

Therefore, we deduce that

U *(rj21 ) 4uj (x1 , t1 ) ECW(x1 ).

This is a contradiction because by hypothesis CW(x1 ) EU *(rj21 ). Then we
conclude that t1 4Q and

0 Gui (x , t) GCW(x) e (2l1a) t in V3 (0 , Q),

which gives the result. r

LEMMA 3.4. – Under the hypotheses of Theorem 3.2, there exists a positive
constant M(r) depending on r such that for any solution (u1 , R , um ) of the
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problem (1.1)-(1.3), the following estimates hold

Nui (x , t)NGM(r)e 2lt in V3 (0 , Q), i41, R , m .

PROOF. – Assume at first that lcp n (l2r) for any nF1. Let (S *(t) )tF0

the semigroup of contractions of L 2 (V) generated by 2L0 with (1.2) as bound-
ary data. Let (S(t) )tF0 the restriction of (S *(t) )tF0 to L Q (V). It is well known
that there is a positive constant M such that

NS(t)NGMe 2lt(3.9)

for any tF0. Moreover, ui may be written in the following form

(3.10) ui (N , t) 4S(t) ui (N , 0 )2s
0

t

S(t2s) fi (ui11 (N , s) ) f *i (ui (N , s) ) ds .

Since Nfi (s)NGC * NsNp for s� [0 , C], by Lemma 3.3, there is a positive con-
stant C1 such that

(3.11) Vui (N , t)VL Q (V) GMe 2lt
Vui (N , 0 )VL Q (V) 1MC1s

0

t

e 2l(t2s)2p(l2r)s ds .

Since lcp(l2r), there are two positive constants A and B such that

Vui (N , t)VL Q (V) GAe 2lt 1Be 2p(l2r) t .

Iterating this process we have the result. If there is nF1 such that l4

p n (l2r), there exists p1 �]1 , p[ such that

p1
n (l2r) ElEp1

n11 (l2r),

that is to say

p1
m (l2r) cl ,

for any mF1. Moreover there exists a positive constant K such that Nfi (s)NG

KNsNp1 for NsNGC . Applying the above method, we obtain the result.

PROOF OF THEOREM 3.2. – Let wi (x , t) 4e lt ui (x , t). We have

¯wi

¯t
2L0 wi 4lwi 1e lt fi (e 2lt wi11 ) f *i (e 2lt wi ) .
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Put wi (x , t) 4Ci*(t) W(x)1w1 i (x , t), where for j� ]1, R , m(, w1 j is the pro-
jection of wj on [Ker (L0 1lI) ]» . Then there exists a positive constant C2 such
that

N dCi*(t)

dt N GC2 e 2(p21) lt

for any tD0. Therefore (dCi*(t) /dt)� LC 1 (0 , Q) and lim
tKQ

Ci*(t) (i41, R , m)

exist. Let S2 (t) the restriction of S(t) to [Ker(L0 1lI) ]» . It is well known that
there is a positive constant M2 such that

VS2 (t)VGM2 e 2l 2 t ,

where l 2 Dl is the second eigenvalue of the problem (P1)-(P3). Put u1 i 4

e 2lt w1 i . It follows that

u1 i (N , t) 4S2 (t) u1 i (N , 0 )2s
0

t

S2 (t2s) g2 i (ui11 (N , s) ) g2*i (ui (N , s) ) ds ,

where for j� ]1, R , m(, g2 j (uj11 ) is the projection of fj (uj11 ) on [Ker
(L0 1lI) ]» . Since Ng2 i (ui11 (N , s) )NGCe 2pls , we obtain

Vu1 i (N , t)VL Q (V) GMe 2l 2 t 1s
0

t

e 2l 2 (t2s) e 2pls ds .

Therefore

Vw1 i (N , t)VL Q (V) GMe (l2l 2 ) t 1M2 e 2(p21)lt .

Then we have

lim
tKQ

e lt ui (x , t) 4Ci W(x), i41, R , m

uniformly in V , where Ci (i41, R , m) are positive constants, which yields
the result. r

COROLLARY 3.4. – Suppose that fi (ui11 ) 4ui11
pi , f *i (ui ) 4e ui, with pi D1.

Then there exists a positive constant b such that any solution (u1 , R , um ) of
the problem (1.1)-(1.3) exists globally and

lim
tKQ

e lt ui (x , t) 4Ci W(x)

uniformly in V for u0
(i) (x) Gb where Ci (i41, R , m) are positive con-

stants.
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4. – Blow up solutions.

In this section, we give some conditions under which the solutions of the
problem (1.1)-(1.3) blow up in a finite time.

Let z be the solution of the following problem:

¯z

¯t
4Lk z1lf *k (z) in V3 (0 , T),(Q1)

m k
¯z

¯Nk

1 (12m k )z40 on ¯V3 (0 , T),(Q2)

z(x , 0 ) 4u0
(k) (x) F0 in V ,(Q3)

where k� ]1, R , m(.

LEMMA 4.1. – Let w0 be the maximum of the solution for the following
boundary value problem

Lk w11 40 in V , m k
¯w

¯Nk

1 (12m k )w40 on ¯V ,

where m k E1. Suppose that f *k (s) is positive and increasing for positive
values of s with f *k (0) D0. If

lD
1

w0

s
0

Q

ds

f *k (s)
,

then the solution z of the problem (Q1)-(Q3) blows up in a finite time.

PROOF. – Assume at first that u0
(k) (x) 40. Let (0 , Tmax ) be the maximum

time interval in which the classical solution z of the problem (Q1)-(Q3) exists.
From the maximum principle, z(x , t) F0 in V3 (0 , Tmax ). Put

v(x , t) 4F(z(x , t) )4s
0

z

ds

lf *k (s)
.(4.1)

We have

(4.2)
¯v

¯t
2Lk v4

1

lf *k (z)
gzt 2 !

i , j41

n ¯

¯xi
ga (k)

ij (x)
¯z

¯xj
hh1

k !
i , j41

n

a (k)
ij (x) zxi

zxjl f 8*k (z)

lf 2
*k (z)

.
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Since f *k (z) is an increasing function, we also have

v(x , t) 4s
0

z

ds

lf *k (s)
F

z

lf *k (z)
.(4.3)

From (Q1) and (4.2) we deduce that

¯v

¯t
2Lk v21 F0 in V3 (0 , Tmax ).(4.4)

From (4.3), we also have

m k
¯v

¯Nk

4
1

lf *k (z)
m k

¯z

¯Nk

4
2(12m k ) z

lf *k (z)
F2(12m k ) v ,(4.5)

that is to say

m k
¯v

¯Nk

1 (12m k )vF0 on ¯V3 (0 , Tmax ).(4.6)

Since w0 Ds
0

Q

ds

lf *k (s)
and zEQ in V3 (0 , Tmax ), we have

sup
(x , t) �V3 (0 , Tmax )

v(x , t) Ew0 .(4.7)

Let z be the solution of the following problem:

¯z

¯t
4Lk z11 in V3 (0 , Q),(4.8)

m k
¯z

¯Nk

1 (12m k )z40 on ¯V3 (0 , Q),(4.9)

z(x , 0 ) 40 in V .(4.10)

From the maximum principle, we obtain

v(x , t) Fz(x , t) in V3 (0 , Tmax ).(4.11)

We also have

lim
tKQ

z(x , t) 4w(x).(4.12)

Therefore from (4.7) and (4.12), there exist x0 �V and a finite t0 such
that

z(x0 , t0 ) D sup
(x , t) �V3 (0 , Tmax )

v(x , t),(4.13)

which implies that t0 FTmax . In fact, suppose that t0 ETmax . From (4.11), we
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have v(x0 , t0 ) Fz(x0 , t0 ) which contradicts (4.13). Consequently, Tmax is finite
and z blows up in a finite time.

Now, suppose that u0
(k) (x) F0. From the maximum principle

z(x , t) Fu1 (x , t) in V3 (0 , T1 )(4.14)

where u1 is a solution of the problem (Q1)-(Q2) with u1 (x , 0 ) 40 and (0 , T1 ) is
the maximum time interval in which the solutions z and u1 exist. From the
above result, we know that u1 blows up in a finite time because

w0 Ds
0

b

ds

lf *k (s)
.(4.15)

Therefore, from (4 . 14), z blows up in a finite time, which yields the
result. r

THEOREM 4.2. – Suppose that there exists k� ]1, R , m( such that

f *k (0) D0, s
0

Q

(ds/f *k (s) )EQ and lim
sKQ

fk (s) 4Q. Fix (u0
(1) , R , u0

(m) ). There

exists g 0 D0 such that, if gDg 0 then the solution (u1g , R , umg ) of the prob-
lem (1.1)-(1.3) with initial data (u0

(1) , R , gu0
(k11) , R , u0

(m) ) blows up in a fi-
nite time.

PROOF. – Since u0
(k11) (x) D0 in V , there exists a ball B such that B %%V

and u0
(k11) (x) FeD0 in B (this is possible because u0

(k11) (x) is continuous in
V). Let z be the solution of the following problem

¯z

¯t
4Lk z1l 0 f *k (z) in B3 (0 , T),(4.16)

z40 on ¯B3 (0 , T),(4.17)

z(x , 0 ) 4u0
(k) (x) F0 in B ,(4.18)

where l 0 is such that z blows up in a finite time T0 (this is possible because of
Lemma 4.1). Let w(x , t) be the solution of the following problem:

¯w

¯t
2Lk11 w40 in V3 (0 , T0 ),(4.19)

w40 on ¯V3 (0 , T0 ),(4.20)

w(x , 0 ) 4u0
(k11) (x) in V .(4.21)
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Then we have

a4 inf
x� B3(0 , T0 )

w(x , t) D0(4.22)

because u0
(k11) (x) D0 in B. From the maximum principle,

u(k11) g (x , t) Fgw(x , t) in V3 (0 , T0 ).(4.23)

Therefore we obtain

inf
(x , t) �B3 (0 , T0 )

u(k11)g (x , t) Fg inf
(x , t) �B3 (0 , T0 )

w(x , t) 4ga .(4.24)

Since fk is increasing and lim
tKQ

fk (t) 4Q , from (4.24), take g 0 D0 such that

fk (u(k11)g ) Dl 0 for gDg 0 . Therefore if gDg 0 , ukg satisfies the following
problem

¯ukg

¯t
DLk ukg1l 0 f *k (ukg ) in B3 (0 , T0 ),(4.25)

ukgD0 on ¯B3 (0 , T0 ),(4.26)

ukg (x , 0 ) 4u0
(k) (x) F0 in B .(4.27)

From the maximum principle

ukg (x , t) Fz(x , t) in V3 (0 , T0 ) for gDg 0 .

Therefore if gDg 0 , the solution (u1g , R , umg ) blows up in a finite time
T 8GT0 . r

COROLLARY 4.3. – Suppose that there exists k� ]1, R , m( such that
fk (uk11 ) 4uk11

pk , f *k (uk ) 4e uk or f *k (uk ) 4uk
p

*
k 1e, with eD0, pk D0 and

p *k D1. Fix (u0
(1) , R , u0

(m) ). There exists g 0 D0 such that, if gDg 0 then the
solution (u1g , R , umg ) of the problem (1.1)-(1.3) with initial data
(u0

(1) , R , gu0
(k11) , R , u0

(m) ) blows up in a finite time.

THEOREM 4.4. – Let Li 4di D where di (i41, R , m) are positive constants
and suppose that there exists k1 � ]1, R , m( such that f *k1

(0 ) D0,

s
0

Q

ds

f *k1
(s)

EQ and lim
sKQ

fk1
(s) 4Q. Suppose also that lim inf

tKQ
( fi ( s ) /fi8 ( s ) )D0

(i41, R , m),

lim inf
sK0

f *m (s) fm i f1 i R i fm21 (s)

s
D0
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and

lim inf
sKQ

f *m (s) fm i f1 i R i fm21 (s)

s
D0 .

Then if V contains a large ball, any positive solution of the problem (1.1)-
(1.3) blows up in a finite time.

PROOF. – Let f 1 D0 be a solution of the following problem

Df 1 (x) FaD0 if f 1 (x) Gc1 , f 1 40 on ¯B1 ,(4.28)

where B1 is a ball of radius 1. Put f k (x) 4f(x/k). Then f k satisfies the follow-
ing relations

Df k (x) F
a

k 2
D0 if f k Gc1 , f k 40 on ¯Bk ,(4.29)

Df k (x) F
2L

k 2
D0 (2L4 inf

x�B1
Df 1 (x) ) ,(4.30)

where Bk is a ball of radius k . Let ui 4ai (t) f k (x), where ai (t) (i41, R , m)
are increasing functions which will be determined later. Our aim is to show
that (u1, R , um) is a subsolution of the problem (1.1)-(1.3). Then, it is sufficient
to show that the following inequalities hold

(4.31) ai8 (t) f k (x) Gai (t) di Df k (x)1 fi (ai11 (t) f k (x) ) f *i (ai (t) f k (x) ) ,

(4.32) am8 (t) f k (x) Gam (t) dm Df k (x)1 fm (a1 (t) f k (x) ) f *m (am (t) f k (x) ) ,

where (i41, R , m21). If f k Gc1 , the inequalities (4.31) and (4.32) are valid
if

ai8 (t) c1 G
a

k 2
di ai (t), i41, R , m21,(4.33)

am8 (t) c1 G
a

k 2
dm am (0).(4.34)

For f k Fc1 , let c2 4 sup f k . Then the inequalities (4.31) and (4.32) are true
if

ai8 (t)c2 G2ai (t) di
L

k 2
1 fi (ai11 (t) c1 ) f *i (ai (t) c1 ) , i41, R , m21,(4.35)



THÉODORE K. BONI392

am8 (t) c2 G2am (t) dm
L

k 2
1 fm (a1 (t) c1 ) f *m (am (t) c1 ) .(4.36)

Thus our new aim is to show that we may determine the functions ai (t)
(i41, R , m) for that the inequalities (4.33), (4.34), (4.35) and (4.36) be true.
Take am (t) 4et1am (0), ai (t) c1 4 fi (c1 ai11 (t) ) (i41, R , m21) and put
d i 4 inf

sFc1 ai11 (0)
( fi (s) /fi8 (s) ) . Then the inequalities (4.33) and (4.34) hold if

c1 eG
a

c1 k 2
di d i , i41, R , m21,(4.37)

ec1 G
a

k 2
dm am (0)(4.38)

and the inequalities (4.35) and (4.36) are true if

(4.39) efi8 (c1 ai11 (t) )G2
1

c1

fi (c1 ai11 (t) ) di
L

k 2
1

fi (ai11 (t) c1 ) f *i (ai (t) c1 ) , i41, R , m21,

(4.40) ec2 G2am (t) dm
L

k 2
1 fm i f1 i f2 i R i fm21 (c1 am (t) ) f *m (am (t) c1 ) .

Let k be so large that (Ldi /c1 k 2 ) E (1 /2) f *i (c1 ai (0) ) (i41, R , m21). The
inequalities (4.39) hold if

eGd ik2
Ldi

c1 k 2
1 f *i (c1 ai (0) )l , i41, R , m21.(4.41)

Let k * be such that f *m (s) Fk *
s

fm i f1 i R i fm21 (s)
for sDam (0) c1 . Then

the inequality (4.40) is true if

ec2 Gam (0) k2dm
L

k 2
1k *l .(4.42)

Let k again be such that dm (L/k 2 ) Ek * /2 . Thus we may choose e small enough
that the inequalities (4.41) and (4.42) be valid. Take ai (0) be sufficiently small
that ui(x , 0 ) Eu0

(i) (x) in Bk . Therefore, there exists a ball Bk such that

¯ui

¯t
2di Dui G fi (ui11) f *i (ui) in Bk 3 (0 , T),

ui 40 on ¯Bk 3 (0 , T),

ui(x , 0 ) Eu0
(i) (x) in Bk , i41, R , m ,
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where um11 4 u1. Since (u1 , R , um ) is a positive solution of the problem (1.1)-
(1.3), by Comparison lemma 2.1, we deduce that ui (x , t) F ui(x , t). Therefore
we have

lim
tKQ

ui (x , t) 4Q .

By Theorem 4.2, we obtain the result. r

COROLLARY 4.5. – Let Li 4di D where di (i41, R , m) are positive con-
stants and suppose that there exists k� ]1, R , m( such that f *k (uk ) 4e uk or
f *k (uk ) 4uk

p
*

k 1e. Suppose also that fi (ui11 ) 4ui11
pi (i41, R , m),

f *m (um )4e um or f *m (um )4um
p

*
m 1e with eD0, pi D0 and p *m D12 »

i41

m

pi F0.

Then if V contains a large ball, any positive solution (u1 , R , um ) of the prob-
lem (1.1)-(1.3) blows up in a finite time.

5. – Other blow up solutions.

In this section, we give other conditions under which the solutions of the
problem (1.1)-(1.3) blow up in a finite time in the case where m42, m i 41,

Li 4L0 , f1 4 f , f1*4 f *, f2 4g and f2*4g *. If s
Q

(ds/f *(s) ) EQ or

s
Q

(ds/g *(s) ) EQ , we easily show that any solution (u , v) of the problem (1.1)-
(1.3) with initial data (u0 , v0 ) blows up in a finite time. In fact, suppose that

s
Q

(ds/f *(s) ) EQ . From the maximum principle, we have v(x , t) FcD0. Then
u is a solution of the following problem

¯u

¯t
FL0 u1 f (c) f *(u) in V3 (0 , T),

¯u

¯N0

40 on ¯V3 (0 , T),

u(x , 0 ) 4u0 (x) D0 in V .

It is well known that any solution of the above problem blows up in a finite
time (see, for instance [9]). Hence the result. Thus, in this section, we assume

that s
Q

(ds/f *(s) ) 4Q and s
Q

(ds/g *(s) ) 4Q . Consider the following sys-
tem:

a 18 (t) 4 f * (a 1 (t) ) f(a 2 (t) ) ,(R1)
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a 28 (t) 4g(a 1 (t) ) g * (a 2 (t) ) .(R2)

We have

da 1

da 2

4
f * (a 1 (t) ) f(a 2 (t) )

g(a 1 (t) ) g * (a 2 (t) )
,

that is to say

g(a 1 ) da 1

f *(a 1 )
4

f (a 2 ) da 2

g *(a 2 )
.

Let G(s) be a primitive of g(s) /f *(s) and F(s) that of f (s) /g *(s) with F(0) 4

G(0) 40. Then we have G(a 1 ) 4F(a 2 ), that is to say a 2 4F 21 [G(a 1 ) ] 4

k(a 1 ), where F 21 is the inverse function of F . We suppose that k(z) 4

F 21
i G(z) is an increasing function for positive values of z .

THEOREM 5.1. – Suppose that k(0) 4 f (0) 4g(0) 40 and

s
1Q

dz

f *(z) f(k(z) )
EQ or s

1Q

dz

g(k 21 (z) ) g *(z)
EQ .

Then any solution (u , v) of the problem (1.1)-(1.3) initial data (u0 , v0 ) blows
up in a finite time.

PROOF. – Put c0 4 inf
x�V

u0 (x) D0, d0 4 inf
x�V

v0 (x) D0. Let

u 4a 1 (t), v 4a 2 (t)

with t4et2ew(x)1ec , a 1 (0) 4c0 /2* , where 2* is big enough that
k(2(c0 /2*))Ed0 /2 and w(x) satisfies the following problem:

L0 w(x) 4d in V ,
¯w

¯N0

41 on ¯V ,(5.1)

with d4N¯VN/NVN , c is such that c2w(x) D0. Since a 81 (t) F0 and a 1 (0) D0,
there is t1 such that a 1 (t1 ) 42(c0 /2*). Take eD0 so small that

2ew(x)1ecG t1 , e1edE1.

Therefore, we obtain

u(x , 0 ) Ga 1 (t1 ) Eu(x , 0 ) in V .(5.2)
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Similarly since k(z) is an increasing function, we get

v(x , 0 ) Ga 2 (t1 ) 4kg2
c0

2*
hEv(x , 0 ) in V .(5.3)

We also have

¯u

¯t
2L0 u 4a 18 (t)(e1eL0 w)2e 2 a 19 (t) !

i , j41

n

a (0)
ij (x)

¯w

¯xi

¯w

¯xj

,(5.4)

¯v

¯t
2L0 v 4a 28 (t)(e1eL0 w)2e 2 a 29 (t) !

i , j41

n

a (0)
ij (x)

¯w

¯xi

¯w

¯xj

.(5.5)

Since f (s), f *(s), g(s), g *(s) are nonnegative and increasing for positive values
of s , we have a 91 (t) F0, a 92 (t) F0. From (5.4) and (5.5) it follows that

¯u

¯t
2L0 u E f (v) f *(u) in V3 (0 , T),(5.6)

¯v

¯t
2L0 v Eg(u) g *(v) in V3 (0 , T).(5.7)

We also have

¯u

¯N0

42e
¯w

¯N0

a 18 (t) E0 on ¯V3 (0 , T),(5.8)

¯v

¯N0

42e
¯w

¯N0

a 28 (t) E0 on ¯V3 (0 , T).(5.9)

Applying Comparison lemma 2.1, we deduce that

u(x , t) F u(x , t) in V3 (0 , T),(5.10)

v(x , t) F v(x , t) in V3 (0 , T).(5.11)

On the other hand, a 1 (t) and a 2 (t) satisfy the following relations:

s
c0 /2*

a 1 (t)

dz

f *(z) f(k(z) )
4 t and s

k(c0 /2*)

a 2 (t)

dz

g(k 21 (z) ) g *(z)
4 t .
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This implies that (u, v) blows up in a finite time because

s
1Q

dz

f *(z) f(k(z) )
EQ or s

1Q

dz

g(k 21 (z) ) g *(z)
EQ ,

which leads to the result. r

REMARK 5.2. – Let f (s) 4s p1 , f *(s) 4s p2 , g(s) 4s q1 , g *(s) 4s q2 . We
have

k(s) 4m p1 2q2 11

q1 2p2 11
n1/(p12q211)

s (q12p211) /(p12q211) ,

f *(s) f(k(s) )4m p1 2q2 11

q1 2p2 11
np1 /(p12q211)

s (p1 q12p2 q21p11p2 ) /(p12q211) ,

g *(s) g(k 21 (s) )4m q1 2p2 11

p1 2q2 11
nq1 /(p12q211)

s (p1 q12p2 q21q11q2 ) /(q12p211) .

If p2 D1 or q2 D1, then any solution of the problem (1.1)-(1.3) with initial
data (u0 , v0 ) blows up in a finite time.

If p2 G1, q2 G1 and p1 q1 2p2 q2 1p2 1q2 D1, then any solution (u , v) of
the problem (1.1)-(1.3) with initial data (u0 , v0 ) blows up in a finite time.

6. – Asymptotic behavior of global solutions.

In this section, we suppose that the functions a 1 (t) and a 2 (t) of the system
(R1)-(R2) are replaced by a(t) and b(t) respectively. We also suppose that
f *(s) 4g *(s) 41. Under the conditions in below, we obtain the asymptotic be-
havior of any solution for the problem (1.1)-(1.3). Thus we have the following
theorem:

THEOREM 6.1. – Suppose that for positive values of s, the functions f(s) and
g(s) are concave with f(0) 4g(0) 40,

s
Q

ds

f [k(s) ]
4s

Q

ds

g[k 21 (s) ]
4Q ,

lim
tKQ

f 8 [k(t) ] g(t)

f(k(t) )
4 lim

tKQ

g 8 (t) f [k(t) ]

g(t)
40 .

Then if (u , v) is a solution of the problem (1.1)-(1.3) with initial data (u0 , v0 )
we have:
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(i) (u , v) exists globally and

lim
tKQ

u(x , t) 4 lim
tKQ

v(x , t) 4Q

uniformly in x�V.

(ii) Moreover if

lim
sKQ

sf[k(H(s) )]
H(s)

Gc2 or lim
sKQ

sg[k 21 (K(s))]
K(s)

Gc3 ,

where c2 and c3 are two positive constants, we also have

u(x , t) 4a(t) (11o(1) ) as tKQ ,

or

v(x , t) 4b(t) (11o(1) ) as tKQ ,

where H(s) and K(s) are the inverse functions of

G(s) 4s
1

s

ds

f [k(s) ]
and M(s) 4s

1

s

ds

g[k 21 (s) ]

respectively, a 8 (t) 4 f(b(t) ) , b 8 (t) 4g(a(t) ) with a(0) 41, b(0) 4k(1).

PROOF. – (i) Put

w(x , t) 4a(t)1c(x) f(b(t) ) , z(x , t) 4b(t)1c(x) g(a(t) ) ,

with

a 8 (t) 4lf(b(t) ) , a(0) 41,

b 8 (t) 4lg(a(t) ) , b(0) 4k(1),

where c and l will be determined later. Since

s
Q

ds

f [k(s) ]
4s

Q

ds

g[k 21 (s) ]
4Q ,

we have

lim
tKQ

a(t) 4 lim
tKQ

b(t) 4Q .(6.1)

We also have

¯w

¯t
2L0 w2 f (z) 4

f(b(t) )(l2L0 c)1b 8 (t) f 8 (b(t) ) c(x)2 f(b(t) )2c(x) g(a(t) ) f 8 (y),
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¯z

¯t
2L0 z2g(w) 4

g(a(t) )(l2L0 c)1a 8 (t) g 8 (a(t) ) c(x)2g(a(t) )2c(x) f(b(t) ) g 8 (z),

with y� [b(t)1c(x) g(a(t))] and z� [a(t), a(t)1c(x) f(b(t))]. Let c be a po-
sitive solution of the following problem

l2L0 c412d ,
¯c

¯N0

42 d .

Take lG1/2 and d4NVN/(NVN1N¯VN)2NVN/(NVN1N¯VN) l . Therefore the
function c exists. Then, we obtain

¯w

¯t
2L0 w2 f (z) 42 df(b(t) )1b 8 (t) f 8 (b(t) ) c(x)2c(x) g(a(t) ) f 8 (y),

¯z

¯t
2L0 z2g(w) 42dg(a(t) )1a 8 (t) g 8 (a(t) ) c(x)2c(x) f(b(t) ) g 8 (z),

¯w

¯N0

42df(b(t) ) ,
¯z

¯N0

42 dg(a(t) ) .

Since lim
tKQ

f 8 [k(t) ] g(t)

f(k(t) )
4 lim

tKQ

g 8 (t) f [k 21 (t) ]

g(t)
40, there exists t1 F0 such

that

¯w

¯t
2L0 w2 f (z) E0 in V3 (t1 , Q),

¯z

¯t
2L0 z2g(w) E0 in V3 (t1 , Q).

Since f and g are concave, there exists l so small that

¯lw

¯t
2L0 lw2 f (lz) E0 in V3 (t1 , Q),

¯lz

¯t
2L0 lz2g(lw) E0 in V3 (t1 , Q),

u(x , 0 ) D lw(x , t1 ), v(x , 0 ) D lz(x , t1 ).

From the maximum principle we deduce that

lim
tKQ

u(x , t) 4 lim
tKQ

v(x , t) 4Q

uniformly in x�V .
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(ii) Put

w1 (x , t) 4a 1 (t)1c 1 (x) f(b 1 (t) ) , z1 (x , t) 4b 1 (t)1c 1 (x) g(a 1 (t) )

with

a 18 (t) 4g12
e

2
h f(b 1 (t) ) , a 1 (0) 41

and

b 18 (t) 4g12
e

2
h g(a 1 (t) ) , b 1 (0) 4k(1).

We have

¯w1

¯t
2L0 w1 2 f (z1 ) 4 f(b 1 (t) )g12

e

2
2L0 c 1h1

g12
e

2
h c 1 (x) f 8 (b 1 (t) ) g(a 1 (t) )2 f(b 1 (t) )2c 1 (x) f 8 (y1 ) g(a 1 (t) ) ,

¯z1

¯t
2L0 z1 2g(w1 ) 4g(a 1 (t) )g12

e

2
2L0 c 1h1

g12
e

2
h c 1 (x) g 8 (a 1 (t) ) f(b 1 (t) )2g(a 1 (t) )2c 1 (x) g 8 (z1 ) f(b 1 (t) ) ,

¯w1

¯N0

4 f(b 1 (t) )
¯c 1

¯N0

,
¯z1

¯N0

4g(a 1 (t) )
¯c 1

¯N0

,

with

y1 � [b 1 (t), b 1 (t)1c 1 (x) g(a 1 (t))]

and

z1 � [a 1 (t), a 1 (t)1c 1 (x) f(b 1 (t))] .

Let c 1 be a positive solution of the following problem:

2
e

2
2L0 c 1 42 d ,

¯c 1

¯N0

42 d .

c 1 exists if and only if d4NVN/(NVN1N¯VN)(e/2 ). If e40 then d40. Put
d(r) 4NVN/(NVN1N¯VN) r . We have d 8 (0) D0. Then for any eD0 small
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enough, it follows that d(e/2 ) D0. Therefore, we obtain

¯w1

¯t
2L0 w1 2 f (z1 ) 42 df(b 1 (t) )1

g12
e

2
h c 1 (x) f 8 (b 1 (t) ) g(a 1 (t) )2c 1 (x) f 8 (y1 ) g(a 1 (t) ) ,

¯z1

¯t
2L0 z1 2g(w1 ) 42 dg(a 1 (t) )1

g12
e

2
h c 1 (x) g 8 (a 1 (t) ) f(b 1 (t) )2c 1 (x) g 8 (z1 ) f(b 1 (t) ) ,

¯w1

¯N0

42 df(b 1 (t) ) ,
¯z1

¯N0

42 dg(a 1 (t) ) .

Then there exists T1 D0 such that

¯w1

¯t
2L0 w1 2 f (z1 ) E0 in V3 (T1 , Q),

¯z1

¯t
2L0 z1 2g(w1 ) E0 in V3 (T1 , Q),

¯w1

¯N0

E0 on ¯V3 (T1 , Q),

¯z1

¯N0

E0 on ¯V3 (T1 , Q).

Since lim
tKQ

u(x , t) 4 lim
tKQ

v(x , t) 4Q uniformly in x�V , there exists tD0 such
that

u(x , t) Dw1 (x , T1 ), v(x , t) Dz1 (x , T1 ).

From the maximum principle, we get

u(x , t1t) Fw1 (x , t1T1 ) 4a 1 (t1T1 )1c 1 (x) f(b 1 (t1T1 ) ) ,(6.2)

v(x , t1t) Fz1 (x , t1T1 ) 4b 1 (t1T1 )1c 1 (x) g(a 1 (t1T1 ) ) .(6.3)

Put w2 (x , t) 4a 2 (t)1c 2 (x) f(b 2 (t) ) , z2 (x , t) 4b 2 (t)1c 2 (x) g(a 2 (t) ) with
a 28 (t) 4 (11e/2 ) f(b 1 (t) ) , a 2 (0) 41 and b 28 (t) 4 (11e/2 ) g(a 1 (t) ) , b 2 (0) 4



ON BLOW-UP AND ASYMPTOTIC BEHAVIOR ETC. 401

k(1). We have

¯w2

¯t
2L0 w2 2 f(z2 ) 4 f(b 1 (t) )g11

e

2
2L0 c 2h1

g11
e

2
h c 2 (x) f 8 (b 2 (t) ) g(a 2 (t) )2 f(b 2 (t) )2c 2 (x) f 8 (y2 ) g(a 2 (t) ) ,

¯z2

¯t
2L0 z2 2g(w2 ) 4g(a 2 (t) )g11

e

2
2L0 c 2h1

g11
e

2
h c 2 (x)g 8 (a 1 (t) ) f(b 2 (t) )2g(a 2 (t) )2c(x) g 8 (z2 ) f(b 2 (t) ) ,

¯w2

¯N0

4 f(a 1 (t) )
¯c 2

¯N0

,
¯z2

¯N0

4g(a 1 (t) )
¯c 2

¯N0

,

with

y2 � [b 2 (t), b 2 (t)1c 2 (x) g(a 2 (t))]

and

z2 � [a 2 (t), a 2 (t)1c 2 (x) f(b 2 (t))] .

Let c 2 be a positive solution of the following problem:

e

2
2L0 c 2 42m ,

¯c 2

¯N0

42 m .

c 2 exists if and only if m42 (e/2 )NVN/(NVN1N¯VN). If e40 then d40. Put
m(r) 42r(NVN/(NVN1N¯VN) ) . Since m(e/2 ) 4d(2e/2 ) and d 8 (0) D0, it fol-
lows that m(e/2 ) E0. Therefore, we obtain

¯w2

¯t
2L0 w2 2 f (z2 ) 42 mf(b 2 (t) )1

g11
e

2
h c 2 (x) f 8 (b 2 (t) ) g(a 2 (t) )2c 2 (x) f 8 (y2 ) g(a 2 (t) ) ,

¯z2

¯t
2L0 z2 2g(w2 ) 42 mg(a 2 (t) )1

g11
e

2
h c(x) g 8 (a 2 (t) ) f(b 2 (t) )2c(x) g 8 (z2 ) f(b 2 (t) ) ,

¯w2

¯N0

42mf(b 2 (t) ) ,
¯z2

¯N0

42 mg(a 2 (t) ) .

Since lim
tKQ

w2 (x , t) 4 lim
tKQ

z2 (x , t) 4Q uniformly in x�V , there exists T2 D0



THÉODORE K. BONI402

such that

u(x , t) Ew2 (x , T2 ), v(x , t) Ez2 (x , T2 ).

From the maximum principle, we get

u(x , t1t) Gw2 (x , t1T2 ) 4a 2 (t1T2 )1c 2 (x) f(b 2 (t1T2 ) ) ,(6.4)

v(x , t1t) Gz2 (x , t1T2 ) 4b 2 (t1T2 )1c 2 (x) g(a 2 (t1T2 ) ) .(6.5)

Therefore (u , v) exists globally. For any gD0, we have

lim
tKQ

a(t2g)

a(t)
41.(6.6)

In fact, since a(t) is increasing and convex, we obtain

a(t)2gf(k(a(t) ))Ga(t2g) Ga(t).

Moreover since by hypothesis we have 0G lim
tKQ

f [k(a(t))]Oa(t)Gc2 lim
tKQ

1/t40,
we deduce that lim

tKQ
a(g2 t) /a(t) 41. On the other hand, show that for all

eD0 small enough, we have

12
c2 e

2
G lim inf

tKQ

a 1 (t)

a(t)
G lim sup

tKQ

a 1 (t)

a(t)
G1.(6.7)

In fact

1 F
a 1 (t)

a(t)
4

H(t2 (e/2 ) t)
H(t)

F
H(t)2 (e/2 ) tf[k(H(t))]

H(t)
.

Since lim
sKQ

sf(k(H(s) ))/H(s) Gc2 , we have the result. We also have

1 G lim inf
tKQ

a 2 (t)

a(t)
G lim sup

tKQ

a 2 (t)

a(t)
G11

3c2 e

2
.(6.8)

In fact

1 G lim inf
tKQ

a 2 (t)

a(t)
G lim sup

tKQ

a 2 (t)

a(t)
G

1

12 (c2 e/2(12e/2 ) )
G11

3c2 e

2
.

From (6.2)-(6.8), we deduce that for any eD0 small enough, we get

12k1 eG lim inf
tKQ

u(x , t)

a(t)
G lim sup

tKQ

u(x , t)

a(t)
G11k2 e ,(6.9)

where k1 and k2 are two positive constants. Then we deduce that

u(x , t) 4a(t) (11o(1) ) as tKQ .
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Making the same reasoning for v , we obtain

v(x , t) 4b(t) (11o(1) ) as tKQ ,

which yields the result. r

REMARK 6.2. – Let f (s) 4s p1 , g(s) 4s q1 with p1 G1, q1 G1. p1 q1 E1. We
have

k(s) 4m p1 11

q1 11
n1/(p111)

s (q111) /(p111) ,

f(k(s) )4m p1 11

q1 11
np1 /(p111)

s (p1 q11p1 ) /(p111) ,

g(k 21 (s) )4m q1 11

p1 11
nq1 /(p111)

s (p1 q11q1 ) /(q111) .

Moreover any solution (u , v) of the problem (1.1)-(1.3) initial data (u0 , v0 )
exists globally and

lim
tKQ

u(x , t)

t (p111) /(12p1 q1 )
4 yg p1 11

q1 11
hp1 /(p111)g 12p1 q1

11p1
hz(11p1 ) /(12p1 q1 )

,

lim
tKQ

v(x , t)

t (q111) /(12p1 q1 )
4 yg q1 11

p1 11
hq1 /(p111)g 12p1 q1

11q1
hz(11q1 ) /(12p1 q1 )

.

7. – Blow up set.

In this section, we suppose that for positive values of s , the functions gi (s)
are positive, increasing and convex with gi (0) 40. Under our hypotheses, lo-
cal existence and uniqueness of a classical solution for the problem (1.4)-(1.6)
up to some time T0 can be found in [1]. Here, we are interested in the blow up
and blow up set of the solutions for the problem (1.4)-(1.6). We give some con-
ditions under which the solutions of the problem (1.4)-(1.6) blow up in a finite
time and describe their blow up set.

DEFINITION 7.1. – A function g(s) is called the convex minimal function of
the functions gi (s) if g(s) is positive, continuous, and piecewise convex with
gi (s) Fg(s) in (0 , Q) and g 8 (s) is positive and continuous in (0 , Q). We
write g(s) 4cm(g1 (s), R , gm (s) ).
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In an interval (a , b) with aEb , a� [0 , Q[ and b�]0 , Q], g(s) may
be constructed in the following manner:

If gi (s) Fgi0
(s) in (a , b), i41, R , m for a certain i0 � ]1, R , m( then

g(s) 4gi0
(s).

If m42 and g1 (s) Eg2 (s) in ]a , s0 [, g1 (s0 ) 4g2 (s0 ), g1 (s) Dg2 (s) in ]s0 , b[,
then a line z4as2b with positive a , b may be taken to be tangent to g1 (s) at
s1 � (a , s0 ) and to g2 (s) at s2 � (s0 , b) for some s1 , s2 . Then g(s) is given
by:

g(s) 4g1 (s) in (a , s1 ),

g(s) 4as2b in (s1 , s2 ),

g(s) 4g2 (s) in (s2 , b).

If g1 (s) 4g2 (s) has more than one solution in (a , b), then cm(g1 , g2 ) may be
constructed by repeated use of the above construction. If mF2, we construct
at first g12 4cm(g1 , g2 ). After, we construct g123 4cm(g12 , g3 ) by the method
described above and by iteration, we obtain g12R m 4cm(g12R m21 , gm ). There-
fore we take g4g12R m .

Let m42, g1 (s) 4s p , g2 (s) 4s q . If pDq , then

cm(s p , s q ) 4s p for 0 GsEs1 ,

cm(s p , s q ) 4bs2c for s1 GsEs2 ,

cm(s p , s q ) 4s q for s2 Gs

where

s1 4g q

p
hq/(p2q)g p21

q21
h(q21) /(p2q)

,

s2 4g q

p
hq/(p2q)g p21

q21
h(p21) /(p2q)

,

s1 E1 Es2 ,

b4
q (q(p21) /(p2q) )

p (p(q21) /(p2q) ) g p21

q21
h((q21)(p21) /(p2q) )

,

c4g q

p
hqp/(p2q) (p21)(q(p21) /(p2q) )

(q21)(p(q21) /(p2q) )
,

cEbEc11.

If p4q , then cm(s p , s q ) 4s p .
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THEOREM 7.2. – Suppose that L0 u0
(i) (x)2a(x)u0

(i) (x) D0 and

s
Q

ds

cm(g1 (s), R , gm (s) )
EQ .

Then, any solution (u1 , R , um ) of the problem (1.4)-(1.6) blows up in a finite
time T and there exists a positive constant d such that

!
i41

m 1

m
sup
x�V

ui (x , t) GGp (d(T2 t) )

where Gp is the inverse function of G *(s) 4s
s

Q

ds

cm(g1 (s), R , gm (s) )
.

PROOF. – Let wi 4uit . Since L0 u 0
(i) (x)2a (x) u 0

(i) (x) D0, we have
wi (x , 0 ) D0. Therefore wi (i41, R , m) satisfy the following relations

wit 2L0 wi 42a(x) wi in V3 (0 , T),(7.1)

¯wi

¯N0

1b(x) wi 4g 8i (ui11 ) wi11 on ¯V3 (0 , T ) ,(7.2)

wi (x , 0 ) D0 in V .(7.3)

From the maximum principle, there exists a number c such that

uit (x , t) FcD0 in V3 (e 0 , T)(7.4)

for e 0 D0. Put

Ji (x , t) 4uit 2dgi (ui11 ) .(7.5)

We have

(7.6) Jit 2L0 Ji 4 (uit 2L0 ui )t 2dgi8 (ui11 )(u(i11) t 2L0 ui11 )1

dg 9i (ui11 ) !
k , j41

n

a (0)
kj (x)

¯ui11

¯xk

¯ui11

¯xj

42a(x) Ji 1

a(x) d[gi8 (ui11 ) ui11 2gi (ui11 ) ]1dg 9i (ui11 ) !
k , j41

n

a (0)
kj (x)

¯ui11

¯xk

¯ui11

¯xj

,

(7.7)
¯Ji

¯N0

1b(x) Ji 4

gi8 (ui11 ) Ji11 1db(x)[gi8 (ui11 ) ui11 2gi (ui11 ) ] on ¯V3 (0 , T).

Since for positive values of s , the functions gi (s) are convex with gi (0) 40,



THÉODORE K. BONI406

from (7.6) and (7.7), we obtain

Jit 2L0 Ji 1a(x)Ji F0 in V3 (0 , T),(7.8)

¯Ji

¯N0

1b(x) Ji Fgi8 (ui11 )Ji11 on ¯V3 (0 , T).(7.9)

From (7.4) and (7.5), take d small enough that

Ji (x , e 0 ) D0 in V .(7.10)

From the maximum principle, we have

uit Fdgi (ui11 ) in V3 (e 0 , T).(7.11)

Put w(x , t) 4
1

m
!

i41

m

ui and g(s) 4cm(g1 (s), R , gm (s) ) . From (7.11) and by
the

definition of g(s), we get

wt Fd !
i41

m 1

m
g(ui11 ) Fdg(w) .(7.12)

The inequality (7.12) implies that

2(G *(w) )t 4
wt

g(w)
Fd .(7.13)

Integrating (7.13) over (e 0 , T), it follows that

QDG * (w(x , e 0 ) )FG * (w(x , e 0 ) )2G * (w(x , T) )Fd(T2e 0 ).(7.14)

This implies that T is finite and w blows up in a finite time T . On the other
hand, integrating (7.13) over (t , T), we see that

G * (w(x , t) )FG * (w(x , t) )2G * (w(x , T) )Fd(T2 t).(7.15)

Since G * is decreasing, then its inverse function Gp is also decreasing and
from (7.15), we obtain

w(x , t) GGp [d(T2 t) ],

which gives the result. r

THEOREM 7.3. – Under the hypotheses of Theorem 7.2, suppose that
there exists a positive constant C0 such that

sg 8 (Gp (s) )GC0 for sD0

where g(s) 4cm(g1 (s), R , gm (s) ). Then any solution (u1 , R , um ) of the
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problem (1.4)-(1.6) blows up in a finite time T and EB %¯V , where EB

is the blow up set of the solution (u1 , R , um ).

PROOF. – By Theorem 7.2, we know that (u1 , R , um ) blows up in a finite
time T . Thus our aim in this proof is to show that EB %¯V . Let d(x) 4

dist (x , ¯V) and v(x) 4d 2 (x) for x�Ne (¯V) where

Ne (¯V) 4 ]x�V such that d(x) Ee(.

Since ¯V is of class C 2 , then the function v(x) �C 2 (Ne (¯V) ) if e is sufficiently
small. On ¯V , we have

L0 v2
C0

v
!

i , j41

n

a (0)
ij (x) vxi

vxj
4

!
i41

n

a (0)
ii (x) vxi xi

1!
i41

n u!
j41

n
¯a (0)

ij (x)

¯xj

v vxi
2

C0

v
!

i , j41

n

a (0)
ij vxi

vxj
4

2 !
i41

n

a (0)
ii (x)12d!

i41

n u!
j41

n
¯a (0)

ij (x)

¯xj

v dxi
24C0 !

i , j41

n

a (0)
ij (x) dxi

dxj
F

22 !
i41

n

Na (0)
ii (x)N22d 8!

i41

n

N!
j41

n
¯a (0)

ij (x)

¯xj
NN˜dN24C0 l 2

(0) N˜dN2

where d 84 sup
x� V, y� V

Vx2yV . Therefore, there exists a positive constant C1 such
that

L0 v2
C0

v
!

i , j41

n

a (0)
ij vxi

vxj
F2C1 on ¯V .(7.16)

Since v�C 2 (Ne (¯V) ) for e sufficiently small, let e 0 be so small that

L0 v2
C0

v
!

i , j41

n

a (0)
ij vxi

vxj
F22C1 in Ne 0

(¯V).(7.17)

We extend v to a function of class C 2 (V) such that vFC *0 D0 in V2Ne 0
(¯V).

Therefore, we deduce that

L0 v2
C0

v
!

i , j41

n

a (0)
ij (x) vxi

vxj
F2 C * in V(7.18)

for some C *D0. Multiplying (7.18) by e small enough, we may assume without
loss of generality that C *E1. Put w *(x , t) 4C1 Gp (t) where t4d(v(x)1
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C *(T2 t) ) and C1 D1 is a constant which will be indicated later. We get

(7.19) w *t 2L0 w *42 dC1 Gp8 (t)yC *1L0 v1d
Gp9 (t)

Gp8 (t)
!

i , j41

n

a (0)
ij (x) vxi

vxj
z .

Since Gp (s) is the inverse function of G(s), we have Gp8 (s) 42 g(Gp (s) ) and
G 9p (s) 42 Gp8 (s) g 8 (Gp (s) ) . Consequently

w *t 2L0 w *4dC1 g(Gp (s) )kC *1L0 v2dg 8 (Gp (t) ) !
i , j41

n

a (0)
ij (x) vxi

vxj
l .(7.20)

Since sg 8 (Gp (s) )GC0 for sD0, using the fact that g 8 (Gp (s) ) is a decreasing
function (g 8 is increasing and Gp is decreasing), we have

w *t 2L0 w *FdC1 g(Gp (t) ) yC *1L0 v2
C0

v
!

i , j41

n

a (0)
ij (x) vxi

vxj
z .(7.21)

Therefore from (7.18), we deduce that

w *t 2L0 w *1a(x) w *F0 in V3 (e 0 , T).(7.22)

On ¯V , we have w *(x , t) 4C1 Gp (dC *(T2 t) )DGp (d(T2 t) ) because C1 D1
and C *E1. Then by Theorem 7.2, we obtain

w *(x , t) D !
i41

m 1

m
ui (x , t) on ¯V3 (e 0 , T).(7.23)

Choose C1 large enough that

w *(x , e 0 ) 4C1 Gp (d(v(x)1C *(T2e 0 ) ))D !
i41

m 1

m
ui (x , e 0 ).(7.24)

Consequently, from the maximum principle we deduce that

!
i41

m 1

m
ui (x , t) Ew *(x , t) in V3 (e 0 , T).

Then if V 8%%V we have

!
i41

m 1

m
ui (x , t) GC1 Gp (d(v(x)1C *(T2 t) ))GC1 Gp (dv(x) ) .

It follows that

!
i41

m 1

m
sup

x�V 8 , t� [e 0 , T)
ui (x , t) G sup

x�V 8

C1 Gp (dv(x) )EQ ,

which yields the result. r
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COROLLARY 7.4. – Let gi (s) 4s pi, where pi D1. Suppose that L0 u0
(i) (x)2

a(x)u0
(i) (x) D0. Then any solution (u1 , R , um ) of the problem (1.4)-(1.6)

blows up in a finite time and we have EB %¯V where EB is the blow up set of
the solution (u1 , R , um ).
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