Bollettino

Unione Matematica Italiana

Théodore K. Boni

On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 3-B (2000), n.2, p. 375-409.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2000_8_3B_2_375_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On Blow-Up and Asymptotic Behavior of Solutions for some Semilinear Parabolic Systems of Second Order.

Théodore K. Boni

Sunto. - In questo lavoro sotto queste ipotesi si ottiengono alcune condizioni di non esistenza e di esistenza delle soluzioni per alcuni sistemi parabolici semilineari del secondo ordine. Inoltre si studia il comportamento asintotico di alcune soluzioni.

1. - Introduction.

Let Ω be a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega$. Consider the following boundary value problems:
(I)

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}=L_{i} u_{i}+f_{i}\left(u_{i+1}\right) f_{* i}\left(u_{i}\right) \quad \text { in } \Omega \times(0, T), \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{i} \frac{\partial u_{i}}{\partial N_{i}}+\left(1-\mu_{i}\right) u_{i}=0 \quad \text { on } \partial \Omega \times(0, T) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
u_{i}(x, 0)=u_{0}^{(i)}(x) \quad \text { in } \Omega \tag{1.3}
\end{equation*}
$$

(II)

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}=L_{0} u_{i}-a(x) u_{i} \quad \text { in } \Omega \times(0, T) \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial N_{0}}+b(x) u_{i}=g_{i}\left(u_{i+1}\right) \quad \text { on } \partial \Omega \times(0, T) \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
u_{i}(x, 0)=u_{0}^{(i)}(x) \quad \text { in } \Omega \tag{1.6}
\end{equation*}
$$

where $i=1, \ldots, m, u_{m+1}=u_{1}, \mu_{i}$ and $b(x)$ are nonnegative functions on $\partial \Omega$
with $\mu_{i} \leqslant 1, a(x)$ is a nonnegative function in Ω. For $l \in\{0,1, \ldots, m\}$,

$$
L_{l} u_{i}=\sum_{k, j=1}^{n} \frac{\partial}{\partial x_{k}}\left(a_{k j}^{(l)}(x) \frac{\partial u_{i}}{\partial x_{j}}\right), \quad \frac{\partial u_{i}}{\partial N_{l}}=\sum_{k, j=1}^{n} \cos \left(v, x_{k}\right) a_{k j}^{(l)}(x) \frac{\partial u_{i}}{\partial x_{j}} .
$$

Here, the coefficients $a_{k j}^{(l)}(x) \in C^{1}(\Omega)$ satisfy the following inequalities

$$
\lambda_{1}^{(l)}|\xi|^{2} \geqslant \sum_{k, j=1}^{n} a_{k j}^{(l)}(x) \xi_{k} \xi_{j} \geqslant \lambda_{2}^{(l)}|\xi|^{2}
$$

for any $\xi \in \mathbb{R}^{n}$ and $x \in \Omega$ with positive constants $\lambda_{1}^{(l)}, \lambda_{2}^{(l)} . v$ is the exterior normal unit vector on $\partial \Omega, f_{* i}(s), f_{i}(s), g_{i}(s)$ are nonnegative and increasing functions for positive values of s with $f_{i}(0)=g_{i}(0)=0 . u_{0}^{(i)}(x)$ are positive and continuous functions in Ω.

In this note, if $h_{1}(s)$ and $h_{2}(s)$ are two positive functions defined in $(0, \infty)$, we put $h_{1} \circ h_{2}(s)=h_{1}\left[h_{2}(s)\right]$.

We want to determine when the nonnegative solutions are global, i.e defined for every $t \in(0, \infty)$.

Definition 1.1. - We say that a solution (u_{1}, \ldots, u_{m}) of the problem (1.1)(1.3) or (1.4)-(1.6) blows up in a finite time if there exists a finite time T_{0} such that

$$
\lim _{t \rightarrow T_{0}}\left\{\sum_{i=1}^{m}\left\|u_{i}(x, t)\right\|_{L^{\infty}(\Omega)}\right\}=\infty
$$

T_{0} is the blow up time of the solution $\left(u_{1}, \ldots, u_{m}\right)$. A point $x \in \bar{\Omega}$ is a blow up point of the solution $\left(u_{1}, \ldots, u_{m}\right)$ if there exists a sequence $\left(x_{n}, t_{n}\right)$ such that $x_{n} \rightarrow x, t_{n} \rightarrow T_{0}$ and $\lim _{n \rightarrow \infty}\left\{\sum_{i=1}^{m}\left|u_{i}\left(x_{n}, t_{n}\right)\right|\right\}=\infty$. The set $E_{B}=\left\{x \in \bar{\Omega}\right.$ such that x is a blow up point of the solution $\left.\left(u_{1}, \ldots, u_{m}\right)\right\}$ is the blow up set of the solution $\left(u_{1}, \ldots, u_{m}\right)$.

The global existence and blow-up of solutions for parabolic systems of second order have been the subject of investigation of many authors (see, for instance [1], [3], [4], [5], [6], [7], [10], [12]). In [4], Escobedo and Herrero have considered the following system:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\Delta u+v^{p} \quad \text { in } \quad \Omega \times(0, T), \\
\frac{\partial v}{\partial t}=\Delta v+u^{q} \quad \text { in } \quad \Omega \times(0, T), \\
u=0 \quad \text { on } \quad \partial \Omega \times(0, T), \quad v=0 \quad \text { on } \quad \partial \Omega \times(0, T),
\end{gathered}
$$

$$
u(x, 0)=u_{0}(x) \quad \text { in } \quad \Omega, \quad v(x, 0)=v_{0}(x) \quad \text { in } \quad \Omega .
$$

They have shown that if $p q>1$, there are global and blow up nonnegative solutions. In [12], Rossi and Wolanski have studied the following system:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\Delta u+v^{p} e^{u} \quad \text { in } \quad \Omega \times(0, T), \\
\frac{\partial v}{\partial t}=\Delta v+u^{q} e^{v} \quad \text { in } \quad \Omega \times(0, T), \\
u=0 \quad \text { on } \quad \partial \Omega \times(0, T), \quad v=0 \quad \text { on } \quad \partial \Omega \times(0, T), \\
u(x, 0)=u_{0}(x) \quad \text { in } \quad \Omega, \quad v(x, 0)=v_{0}(x) \quad \text { in } \Omega .
\end{gathered}
$$

They have also shown that if $p q>1$, there are global and blow up nonnegative solutions. In their analysis, they remark that the phenomenon of global existence and blow up depends on the nature of the domain. In this paper, we generalize these results considering the problem of the form (1.1)-(1.3). We also give some conditions under which the solutions of the problem (1.1)-(1.3) tend to zero and describe their asymptotic behavior. Finally, we study the asymptotic behavior of some global solutions. For the problem (1.4)-(1.6), some authors have studied the blow up of the solutions under some conditions (see, for instance [6], [10]). An interesting question of the problem (1.4)-(1.6) is the localization of the blow up set. This problem has been studied by some authors in the case where $m=2, L_{0}=\Delta, a(x)=0, b(x)=0, g_{1}\left(u_{2}\right)=u_{2}^{p}, g_{2}\left(u_{1}\right)=u_{1}^{q}$ with $p>1, q>1$ (see, for instance [3]). In this paper, we give another characterization of the blow up of solutions for the problem (1.4)-(1.6) and describe their blow up set. The paper is written in the following manner. In Section 2, we give some conditions of global existence of solutions for the problem (1.1)(1.3). In Section 3, we obtain some conditions under which the solutions of (1.1)-(1.3) tend to zero as $t \rightarrow \infty$ and describe their asymptotic behavior. In Sections 4 and 5 , we obtain some blow up conditions of solutions for the problem (1.1)-(1.3). In Section 6, we give the asymptotic behavior of some global solutions for the problem (1.1)-(1.3) and finally, in Section 7, we study the blow up set of some blow up solutions for the problem (1.4)-(1.6).

We recall that in this work, we consider the nonnegative solutions.

2. - Global existence.

In this section, we give some conditions under which the solutions of the problem (1.1)-(1.3) exist globally.

If $f_{i}(s)$ are locally Lipschitz continuous, local existence and uniqueness of nonnegative solution are well known (see, for instance [9]). Now consider the
general case. Let ($u_{1 n}, \ldots, u_{m n}$) satisfying $u_{i n} \geqslant 1 / n$ be the maximum solution of the following system

$$
\begin{gathered}
\frac{\partial u_{i}}{\partial t}=L_{i} u_{i}+f_{i n}\left(u_{i+1}\right) f_{* i}\left(u_{i}\right) \quad \text { in } \quad \Omega \times(0, T) \\
\mu_{i} \frac{\partial u_{i}}{\partial N_{i}}+\left(1-\mu_{i}\right) u_{i}=\frac{1}{n} \quad \text { on } \quad \partial \Omega \times(0, T) \\
u_{i}(x, 0)=u_{0}^{(i)}(x)+\frac{1}{n} \quad \text { in } \quad \Omega
\end{gathered}
$$

where $f_{\text {in }}(s)=f_{i}(s)$ for $s \geqslant 1 / n$. $f_{\text {in }}$ are locally Lipschitz in \mathbb{R}. Using the maximum principle, we see that $u_{i n}(i=1, \ldots, m)$ are nonincreasing sequences such that $u_{i n} \geqslant 0$. Therefore $u_{i}=\lim _{n \rightarrow \infty} u_{i n}(i=1, \ldots, m)$ exist. Using the «variation of constant formula», we obtain the result.

The following lemma which will be useful later.
COMPARISON LEMMA 2.1. - Let $\left(\overline{u_{1}}, \ldots, \overline{u_{m}}\right)$ satisfying the following inequalities:

$$
\begin{aligned}
& \frac{\partial \overline{u_{i}}}{\partial t} \geqslant L_{i} \overline{u_{i}}+f_{i}\left(\overline{u_{i+1}}\right) f_{* i}\left(\overline{u_{i}}\right) \quad \text { in } \quad \Omega \times(0, T), \\
& \mu_{i} \frac{\partial \overline{u_{i}}}{\partial N_{i}}+\left(1-\mu_{i}\right) \overline{u_{i}}>0 \quad \text { on } \quad \partial \Omega \times(0, T), \\
& \overline{u_{i}}(x, 0)>u_{0}^{(i)}(x) \quad \text { in } \quad \Omega, \quad i=1, \ldots, m,
\end{aligned}
$$

where $\overline{u_{m+1}}=\overline{u_{1}}$ and $\overline{u_{i}}(x, 0)$ are continuous up to $t=0$. If $\left(u_{1}, \ldots, u_{m}\right)$ is a solution of the problem (1.1)-(1.3) with initial data $\left(u_{0}^{(1)}, \ldots, u_{0}^{(m)}\right)$, then we have

$$
u_{i}(x, t)<\overline{u_{i}}(x, t) \quad \text { in } \quad \Omega \times(0, T), \quad i=1, \ldots, m
$$

We call $\left(\overline{u_{1}}, \ldots, \overline{u_{m}}\right)$ supersolution of the problem (1.1)-(1.3).
Proof. - We have $\bar{u}_{i}(x, 0)-u_{0}^{(i)}(x)>\delta$ in Ω and $\mu_{i}\left(\partial \overline{u_{i}} / \partial N_{i}\right)+$ $\left(1-\mu_{i}\right) \overline{u_{i}}>\delta$ on $\partial \Omega \times(0, T)$ for some $\delta>0$. Let

$$
T_{0}=\sup \left\{t \text { such that } \overline{u_{i}}(x, t)-u_{i}(x, t)>\frac{\delta}{2} \text { for all } i\right\}
$$

$T_{0}>0$ because the function $\overline{u_{i}}(x, 0)-u_{i}(x, 0)$ is continuous up to $t=0$ and $\bar{u}_{i}(x, 0)-u_{i}(x, 0)>\delta$. We also have $\overline{u_{j}}\left(x_{0}, T_{0}\right)=u_{j}\left(x_{0}, T_{0}\right)+\delta / 2$ for some
$j \in\{1, \ldots, m\}$ and some $x_{0} \in \Omega$. Therefore we get

$$
\frac{\partial\left(\overline{u_{j}}-u_{j}\right)}{\partial t}-L_{j}\left(\overline{u_{j}}-u_{j}\right) \geqslant f_{j}\left(\overline{u_{j+1}}\right) f_{* j}\left(\overline{u_{j}}\right)-f_{j}\left(u_{j+1}\right) f_{* j}\left(u_{j}\right) \geqslant 0 \text { in } \Omega \times\left(0, T_{0}\right),
$$

because the functions $f_{j}(s)$ and $f_{* j}(s)$ are nonnegative, increasing for positive values of s. We also have

$$
\begin{gathered}
\mu_{j} \frac{\partial\left(\overline{u_{j}}-u_{j}\right)}{\partial N_{j}}+\left(1-\mu_{j}\right)\left(\overline{u_{j}}-u_{j}\right)>\delta \quad \text { on } \quad \partial \Omega \times\left(0, T_{0}\right), \\
\bar{u}_{j}(x, 0)-u_{j}(x, 0)>\delta \quad \text { in } \quad \Omega
\end{gathered}
$$

From the maximum principle, we deduce that $\overline{u_{j}}(x, t)-u_{j}(x, t) \geqslant \delta$ in $\Omega \times$ $\left(0, T_{0}\right)$. This implies that $\bar{u}_{j}\left(x_{0}, T_{0}\right)-u_{j}\left(x_{0}, T_{0}\right)>\delta / 2$, which is a contradiction. Then we have the result.

Theorem 2.2. - Suppose that

$$
\lim _{s \rightarrow 0} \frac{f_{1} \circ\left(c_{2} f_{2}\right) \circ \ldots \circ\left(c_{m} f_{m}\right)(s)}{s}=0
$$

where $c_{j}(j=2, \ldots, m)$ are positive constants. Then there exists a positive constant a_{0} such that any solution (u_{1}, \ldots, u_{m}) of the problem (1.1)-(1.3) with initial data $\left(u_{0}^{(1)}, \ldots, u_{0}^{(m)}\right)$ exists globally for $u_{0}^{(i)}(x)<a_{0}$.

REMARK 2.3. - Suppose that the functions $f_{m}(s), f_{m-1} \circ f_{m}(s)$, $\ldots, f_{2} \circ \ldots \circ f_{m}(s)$ are convex for small positive values of s and $f_{m}(0)=0$, $f_{m-1} \circ f_{m}(0)=0, \ldots, f_{2} \circ \ldots \circ f_{m}(0)=0$. If

$$
\lim _{s \rightarrow 0} \frac{f_{1} \circ \ldots \circ f_{m}(s)}{s}=0
$$

then we have

$$
\lim _{s \rightarrow 0} \frac{f_{1} \circ\left(c_{2} f_{2}\right) \circ \ldots \circ\left(c_{m} f_{m}\right)(s)}{s}=0
$$

where $c_{j}(j=2, \ldots, m)$ are positive constants.
In fact, since $f_{i}(s)$ are increasing functions, we obtain

$$
\lim _{s \rightarrow 0} \frac{f_{1} \circ\left(c_{2} f_{2}\right) \circ \ldots \circ\left(c_{m} f_{m}\right)(s)}{s} \leqslant \lim _{s \rightarrow 0} \frac{f_{1} \circ\left(c_{* 2} f_{2}\right) \circ \ldots \circ\left(c_{* m} f_{m}\right)(s)}{s}
$$

where $c_{* j} \geqslant \sup \left\{1, c_{j}\right\}$. It follows that

$$
\lim _{s \rightarrow 0} \frac{f_{1} \circ\left(c_{2} f_{2}\right) \circ \ldots \circ\left(c_{m} f_{m}\right)(s)}{s} \leqslant \lim _{s \rightarrow 0} \frac{f_{1} \circ f_{2} \circ \ldots \circ f_{m}\left(c_{* 2} \ldots c_{* m} s\right)}{s}=0
$$

because the functions $f_{m}(s), f_{m-1} \circ f_{m}(s), \ldots, f_{2} \circ \ldots \circ f_{m}(s)$ are convex for small positive values of s with $f_{m}(0)=0, f_{m-1} \circ f_{m}(0)=0, \ldots, f_{2} \circ \ldots \circ f_{m}(0)=$ 0 .

Proof of Theorem 2.2. - For $k \in\{1, \ldots, m\}$, let $\Phi_{k}(x)$ be a solution of the following problem:

$$
\begin{equation*}
L_{k} \Phi_{k}(x)=-1 \quad \text { in } \quad \Omega \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{k}(x)>0 \quad \text { in } \quad \Omega . \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\overline{u_{i}}=a_{i}\left(\Phi_{i}(x)+\delta\right), \tag{2.4}
\end{equation*}
$$

where δ is a positive constant, and $a_{i}(i=1, \ldots, m)$ are positive constants which will be indicated later. Put $K_{i}=\sup _{x \in \Omega}\left\{\Phi_{i}(x)+\delta\right\}$. We have

$$
\begin{equation*}
\frac{\partial \overline{u_{i}}}{\partial t}-L_{i} \overline{u_{i}}-f_{i}\left(\overline{u_{i+1}}\right) f_{* i}\left(\overline{u_{i}}\right) \geqslant a_{i}-f_{i}\left(a_{i+1} K_{i+1}\right) f_{* i}\left(a_{i} K_{i}\right), \tag{2.5}
\end{equation*}
$$

(2.6) $\mu_{i} \frac{\partial \overline{u_{i}}}{\partial N_{i}}+\left(1-\mu_{i}\right) \overline{u_{i}}=$
$a_{i}\left(\mu_{i} \frac{\partial \Phi_{i}(x)}{\partial N_{i}}+\left(1-\mu_{i}\right) \Phi_{i}(x)\right)+a_{i} \delta\left(1-\mu_{i}\right)=a_{i} \delta\left(1-\mu_{i}\right), \quad i=1, \ldots, m$,
where $\overline{u_{m+1}}=\overline{u_{1}}, a_{m+1}=a_{1}, K_{m+1}=K_{1}$. Show that there exist $a_{i}(i=1$, \ldots, m) such that

$$
\begin{gather*}
a_{i} \geqslant f_{i}\left(a_{i+1} K_{i+1}\right) f_{* i}\left(a_{i} K_{i}\right), \quad i=1, \ldots, m-1, \tag{2.7}\\
a_{m} \geqslant f_{m}\left(a_{1} K_{1}\right) f_{* m}\left(a_{m} K_{m}\right) . \tag{2.8}
\end{gather*}
$$

Let $a_{l}(l=2, \ldots, m)$ satisfy the following relations

$$
\begin{equation*}
f_{i}\left(a_{i+1} K_{i+1}\right)=\frac{a_{i}}{f_{* i}\left(a_{i} K_{i}\right)}, \quad i=1, \ldots, m-1 \tag{2.9}
\end{equation*}
$$

(2.9) may be written in the following form

$$
\begin{equation*}
a_{i} K_{i}=c_{a_{i}} f_{i}\left(a_{i+1} K_{i+1}\right), \quad i=1, \ldots, m-1 \tag{2.10}
\end{equation*}
$$

where for $k \in\{1, \ldots, m-1\}, c_{a_{k}}$ is a positive constant which depends on a_{k}. Therefore, we have

$$
\begin{equation*}
a_{2} K_{2}=\left(c_{a_{2}} f_{2}\right) \circ \ldots \circ\left(c_{a_{m-1}} f_{m-1}\right)\left(a_{m} K_{m}\right) . \tag{2.11}
\end{equation*}
$$

Now, show that we can determine a_{1} such that the inequality (2.8) be satisfied. Since $f_{1} \circ\left(c_{a_{2}} f_{2}\right) \circ \ldots \circ\left(c_{a_{m-1}} f_{m-1}\right)$ is an increasing function, multiplying inequality (2.8) by K_{m}, we obtain

$$
\begin{align*}
& f_{1} \circ\left(c_{a_{2}} f_{2}\right) \circ \ldots \circ\left(c_{a_{m-1}} f_{m-1}\right)\left(a_{m} K_{m}\right) \tag{2.12}\\
& \geqslant f_{1} \circ\left(c_{a_{2}} f_{2}\right) \circ \ldots \circ\left(c_{a_{m-1}} f_{m-1}\right)\left[K_{m} f_{m}\left(a_{1} K_{1}\right) f_{* m}\left(a_{m} K_{m}\right)\right] .
\end{align*}
$$

From (2.9), (2.11) and (2.12), it follows that

$$
\begin{align*}
\frac{1}{f_{* 1}\left(K_{1} a_{1}\right)}= & \frac{f_{1}\left(a_{2} K_{2}\right)}{a_{1}}=\frac{f_{1} \circ\left(c_{a_{2}} f_{2}\right) \circ \ldots \circ\left(c_{a_{m-1}} f_{m-1}\right)\left(a_{m} K_{m}\right)}{a_{1}} \geqslant \tag{2.13}\\
& \frac{f_{1} \circ\left(c_{a_{2}} f_{2}\right) \circ \ldots \circ\left(c_{a_{m-1}} f_{m-1}\right)\left[f_{m}\left(a_{1} K_{1}\right) K_{m} f_{* m}\left(a_{m} K_{m}\right)\right]}{a_{1}}
\end{align*}
$$

By hypothesis, the last term of (2.13) tends to zero as a_{1} tends to zero. Then take a_{1} so small that (2.13) holds. This implies that (2.8) is satisfied. Put $K_{i}^{\prime}=$ $\inf _{x \in \Omega}\left\{\Phi_{i}(x)+\delta\right\}$. Since (2.7) and (2.8) are valid, taking $a_{0}=\inf _{l \in\{1, \ldots, m\}} a_{l} K_{l}^{\prime}$ from (2.4)-(2.6), we see that $\left(\overline{u_{1}}, \ldots, \overline{u_{m}}\right)$ is a supersolution of the problem (1.1)(1.3). Therefore $\left(u_{1}, \ldots, u_{m}\right)$ exists globally, which gives the result.

Corollary 2.4. - Let $f_{i}\left(u_{i+1}\right)=u_{i+1}^{p_{i}}, f_{* i}\left(u_{i}\right)=e^{u_{i}}$ or $f_{* i}\left(u_{i}\right)=1$ where p_{i} are positive numbers. If $\prod_{i=1}^{m} p_{i}>1$, then there exists a positive constant a_{0} such that any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.1)-(1.3) with initial data $\left(u_{0}^{(1)}, \ldots, u_{0}^{(m)}\right)$ exists globally for $\sum_{i=1}^{m}\left\|u_{0}^{(i)}(x)\right\|_{L^{\infty}(\Omega)} \leqslant a_{0}$.

Theorem 2.5. - Suppose that $\mu_{i}=0(i=1, \ldots, m)$ and there exists $j \in$ $\{1, \ldots, n\}$ such that $\Omega \subset \Omega_{1} \times(0, l) \times \Omega_{2}$ where $\Omega_{1} \subset \mathbb{R}^{j-1}$ and $\Omega_{2} \subset \mathbb{R}^{n-j}$. Then if l is small enough, there exists a positive constant a_{0} such that any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.1)-(1.3) with initial data $\left(u_{0}^{(1)}, \ldots, u_{0}^{(m)}\right)$ exists globally for $u_{0}^{(i)}(x)<a_{0}$.

Proof. - Put $\bar{u}_{i}=a_{i}\left(\Phi_{i}(x)+\delta\right)$ where a_{i} are positive numbers. As in the proof of Theorem 2.2, it is sufficient to show that

$$
\begin{equation*}
a_{i} \geqslant f_{i}\left(a_{i+1} K_{i+1}\right) f_{* i}\left(a_{i} K_{i}\right), \quad i=1, \ldots, m \tag{2.14}
\end{equation*}
$$

where $a_{m+1}=a_{1}, K_{m+1}=K_{1}$ with $K_{i}=\sup _{x \in \Omega}\left\{\Phi_{i}(x)+\delta\right\}$. Since Ω_{1} and Ω_{2} are two bounded domains, there exist numbers $l_{k}(k=1, \ldots, j-1, j+1, \ldots, n)$ such that $\Omega \subset \prod_{k=1}^{j-1}\left[0, l_{k}\right] \times(0, l) \times \prod_{k=j+1}^{n}\left[0, l_{k}\right]=I$. Let $\psi_{i}\left(x_{1}, x_{j}, x_{2}\right)$ functions defined in I by

$$
\begin{equation*}
\psi_{i}\left(x_{1}, x_{j}, x_{2}\right)=\frac{1}{2 \alpha_{0}^{(i)}} x_{j}\left(l-x_{j}\right), \quad i=1, \ldots, m, \tag{2.15}
\end{equation*}
$$

where $\quad a_{0}^{(i)}=\inf _{x \in \Omega} a_{j j}^{(i)}(x)>0, \quad$ with $\quad x_{j} \in(0, l), \quad x_{1} \in \prod_{k=1}^{j-1}\left[0, l_{k}\right] \quad$ and $\quad x_{2} \in$ $\prod_{k=j+1}^{n}\left[0, l_{k}\right]$. We have

$$
\begin{equation*}
L_{i} \psi_{i}\left(x_{1}, x_{j}, x_{2}\right)+1 \leqslant 0 \quad \text { in } \quad I, \quad \psi_{i}\left(x_{1}, x_{j}, x_{2}\right) \geqslant 0 \quad \text { on } \quad \partial I . \tag{2.16}
\end{equation*}
$$

Since $\psi_{i}\left(x_{1}, x_{j}, x_{2}\right)>0$ in $\bar{\Omega}$, from the maximum principle, $\psi_{i} \geqslant \Phi_{i}$ in Ω, where for $i \in\{1, \ldots, m\}, \Phi_{i}(x)$ is the solution of the following problem

$$
\begin{equation*}
L_{i} \Phi_{i}+1=0 \quad \text { in } \quad \Omega, \quad \Phi_{i}=0 \quad \text { on } \quad \partial \Omega . \tag{2.17}
\end{equation*}
$$

Since $\left\|\psi_{i}\right\|_{L^{\infty}(I)} \leqslant l^{2} / 8 a_{0}^{(i)}$, we also have $w_{i 0}=\left\|\Phi_{i}\right\|_{L^{\infty}(\Omega)} \leqslant l^{2} / 8 a_{0}^{(i)}$. It follows that K_{i} tends to zero as δ and l tend to zero. Since $f_{i}(0)=0$, choose δ and l so small that the inequalities (2.14) hold. Hence the result.

3. - Asymptotic behavior of solutions which tend to zero.

In this section, we suppose that $L_{i}=L_{0}, \mu_{i}=\mu_{0}$. We give some conditions under which the solutions of the problem (1.1)-(1.3) tend to zero as $t \rightarrow \infty$. We also describe the asymptotic behavior of these solutions. We suppose that for positive values of $s, f_{i}(s)(i=1, \ldots, m)$ are functions of class C^{1} such that $f_{i}(0)=f_{i}^{\prime}(0)=0$. Suppose that for any interval $[0, A]$ with $A>0$, there exist a constant C_{*} depending on A and $p>1$ such that

$$
\begin{equation*}
f_{i}(s) \leqslant C_{*} s^{p} \quad \text { for } \quad s \in[0, A] . \tag{3.1}
\end{equation*}
$$

Let $\varphi(x)$ and λ, be respectively, the first eigenfunction and the first eigenval-
ue of the following boundary value problem:

$$
\begin{equation*}
-L_{0} \varphi(x)=\lambda \varphi \quad \text { in } \quad \Omega \tag{P1}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{0} \frac{\partial \varphi(x)}{\partial N_{0}}+\left(1-\mu_{0}\right) \varphi(x)=0 \quad \text { on } \quad \partial \Omega \tag{P2}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)>0 \quad \text { in } \quad \Omega, \quad \int_{\Omega} \varphi(x) d x=1 . \tag{P3}
\end{equation*}
$$

Define for $r_{i}>0(i=1, \ldots, m)$,

$$
U^{*}\left(r_{i}\right)=\inf \left\{s>0 \quad \text { such that } \quad f_{i}(s)=r_{i} s\right\}
$$

and put

$$
\alpha=\alpha\left(r_{1}, \ldots, r_{m}\right)=\sup _{l \in\{1, \ldots, m\}} r_{l} f_{* l}\left(U^{*}\left(r_{l-1}\right)\right),
$$

where $r_{0}=r_{m}$.
Remark 3.1. - We have $U^{*}\left(r_{i}\right)>0$ for $r_{i}>0$.
Theorem 3.2. - Suppose that there are constants C, r_{i} such that:

$$
0<\alpha\left(r_{1}, \ldots, r_{m}\right)<\lambda, \quad u_{i}(x, 0)<C \varphi(x)<U^{*}\left(r_{i-1}\right) \quad \text { in } \quad \Omega .
$$

Then any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.1)-(1.3) exists globally and

$$
\lim _{t \rightarrow \infty} e^{\lambda t} u_{i}(x, t)=C_{i} \varphi(x)
$$

uniformly in Ω, where $C_{i}(i=1, \ldots, m)$ are positive constants.
The proof of Theorem 3.2 is based on the following lemmas
Lemma 3.3. - Under the hypotheses of Theorem 3.2, any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.1)-(1.3) exists globally and

$$
0 \leqslant u_{i}(x, t)<C \varphi(x) e^{\left(-\lambda+\alpha\left(r_{1}, \ldots, r_{m}\right)\right) t} \quad \text { in } \quad \Omega \times(0, \infty), \quad i=1, \ldots, m
$$

where C is a positive constant.
Proof. - Put

$$
\begin{equation*}
v_{i}(x, t)=C \varphi(x) e^{(-\lambda+\alpha) t} \tag{3.2}
\end{equation*}
$$

We obtain
(3.3) $\frac{\partial v_{i}}{\partial t}-L_{0} v_{i}=\alpha v_{i+1} \geqslant r_{i} f_{* i}\left(U^{*}\left(r_{i-1}\right)\right) v_{i+1}$ in $\Omega \times(0, T), \quad i=1, \ldots, m$, where $v_{m+1}=v_{1}$. Since $0 \leqslant u_{i}(x, 0)<U^{*}\left(r_{i-1}\right)$, let t_{1} be the first $t>0$ such that

$$
\begin{equation*}
0 \leqslant u_{i}(x, t)<U^{*}\left(r_{i-1}\right) \quad \text { in } \quad \Omega \times\left(0, t_{1}\right) \tag{3.4}
\end{equation*}
$$

but $u_{j}\left(x_{1}, t_{1}\right)=U^{*}\left(r_{j-1}\right)$ for some $j \in\{1, \ldots, m\}$ and x_{1} in Ω. Therefore by the definition of $U^{*}\left(r_{i}\right)$, we have

$$
\begin{equation*}
f_{i}\left(u_{i+1}\right)<r_{i} u_{i+1} \quad \text { in } \quad \Omega \times\left(0, t_{1}\right) \tag{3.5}
\end{equation*}
$$

We deduce that

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}-L_{0} u_{i}<r_{i} f_{* i}\left(U^{*}\left(r_{i-1}\right)\right) u_{i+1} \quad \text { in } \quad \Omega \times\left(0, t_{1}\right) . \tag{3.6}
\end{equation*}
$$

We also have

$$
\begin{equation*}
u_{i}(x, 0)<C \varphi(x)=v_{i}(x, 0) \quad \text { in } \quad \Omega . \tag{3.7}
\end{equation*}
$$

From the maximum principle for parabolic systems(see for instance [11]), it follows that

$$
u_{i}(x, t)<v_{i}(x, t) \quad \text { in } \quad \Omega \times\left(0, t_{1}\right),
$$

that is

$$
\begin{equation*}
0 \leqslant u_{i}(x, t)<C \varphi(x) e^{(-\lambda+\alpha) t} \quad \text { in } \quad \Omega \times\left(0, t_{1}\right) \tag{3.8}
\end{equation*}
$$

We conclude that $t_{1}=\infty$. In fact suppose that $t_{1}<\infty$. Then we have

$$
u_{j}\left(x_{1}, t_{1}\right) \leqslant C \varphi\left(x_{1}\right) e^{(-\lambda+\alpha) t_{1}}
$$

Therefore, we deduce that

$$
U^{*}\left(r_{j-1}\right)=u_{j}\left(x_{1}, t_{1}\right)<C \varphi\left(x_{1}\right) .
$$

This is a contradiction because by hypothesis $C \varphi\left(x_{1}\right)<U^{*}\left(r_{j-1}\right)$. Then we conclude that $t_{1}=\infty$ and

$$
0 \leqslant u_{i}(x, t) \leqslant C \varphi(x) e^{(-\lambda+\alpha) t} \quad \text { in } \quad \Omega \times(0, \infty)
$$

which gives the result.
Lemma 3.4. - Under the hypotheses of Theorem 3.2, there exists a positive constant $M(r)$ depending on r such that for any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the
problem (1.1)-(1.3), the following estimates hold

$$
\left|u_{i}(x, t)\right| \leqslant M(r) e^{-\lambda t} \quad \text { in } \quad \Omega \times(0, \infty), \quad i=1, \ldots, m
$$

Proof. - Assume at first that $\lambda \neq p^{n}(\lambda-r)$ for any $n \geqslant 1$. Let $\left(S_{*}(t)\right)_{t \geqslant 0}$ the semigroup of contractions of $L^{2}(\Omega)$ generated by $-L_{0}$ with (1.2) as boundary data. Let $(S(t))_{t \geqslant 0}$ the restriction of $\left(S_{*}(t)\right)_{t \geqslant 0}$ to $L^{\infty}(\Omega)$. It is well known that there is a positive constant M such that

$$
\begin{equation*}
|S(t)| \leqslant M e^{-\lambda t} \tag{3.9}
\end{equation*}
$$

for any $t \geqslant 0$. Moreover, u_{i} may be written in the following form

$$
\begin{equation*}
u_{i}(., t)=S(t) u_{i}(., 0)-\int_{0}^{t} S(t-s) f_{i}\left(u_{i+1}(., s)\right) f_{* i}\left(u_{i}(., s)\right) d s \tag{3.10}
\end{equation*}
$$

Since $\left|f_{i}(s)\right| \leqslant C_{*}|s|^{p}$ for $s \in[0, C]$, by Lemma 3.3, there is a positive constant C_{1} such that

$$
\begin{equation*}
\left\|u_{i}(., t)\right\|_{L^{\infty}(\Omega)} \leqslant M e^{-\lambda t}\left\|u_{i}(., 0)\right\|_{L^{\infty}(\Omega)}+M C_{1} \int_{0}^{t} e^{-\lambda(t-s)-p(\lambda-r) s} d s \tag{3.11}
\end{equation*}
$$

Since $\lambda \neq p(\lambda-r)$, there are two positive constants A and B such that

$$
\left\|u_{i}(., t)\right\|_{L^{\infty}(\Omega)} \leqslant A e^{-\lambda t}+B e^{-p(\lambda-r) t} .
$$

Iterating this process we have the result. If there is $n \geqslant 1$ such that $\lambda=$ $p^{n}(\lambda-r)$, there exists $\left.p_{1} \in\right] 1, p[$ such that

$$
p_{1}^{n}(\lambda-r)<\lambda<p_{1}^{n+1}(\lambda-r),
$$

that is to say

$$
p_{1}^{m}(\lambda-r) \neq \lambda,
$$

for any $m \geqslant 1$. Moreover there exists a positive constant K such that $\left|f_{i}(s)\right| \leqslant$ $K|s|^{p_{1}}$ for $|s| \leqslant C$. Applying the above method, we obtain the result.

Proof of Theorem 3.2. - Let $w_{i}(x, t)=e^{\lambda t} u_{i}(x, t)$. We have

$$
\frac{\partial w_{i}}{\partial t}-L_{0} w_{i}=\lambda w_{i}+e^{\lambda t} f_{i}\left(e^{-\lambda t} w_{i+1}\right) f_{* i}\left(e^{-\lambda t} w_{i}\right)
$$

Put $w_{i}(x, t)=C_{i}^{*}(t) \varphi(x)+w_{1 i}(x, t)$, where for $j \in\{1, \ldots, m\}, w_{1 j}$ is the projection of w_{j} on $\left[\operatorname{Ker}\left(L_{0}+\lambda I\right)\right]^{\perp}$. Then there exists a positive constant C_{2} such that

$$
\left|\frac{d C_{i}^{*}(t)}{d t}\right| \leqslant C_{2} e^{-(p-1) \lambda t}
$$

for any $t>0$. Therefore $\left(d C_{i}^{*}(t) / d t\right) \in L^{1}(0, \infty)$ and $\lim _{t \rightarrow \infty} C_{i}^{*}(t)(i=1, \ldots, m)$ exist. Let $S_{2}(t)$ the restriction of $S(t)$ to $\left[\operatorname{Ker}\left(L_{0}+\lambda I\right)\right]^{\perp}$. It is well known that there is a positive constant M_{2} such that

$$
\left\|S_{2}(t)\right\| \leqslant M_{2} e^{-\lambda_{2} t}
$$

where $\lambda_{2}>\lambda$ is the second eigenvalue of the problem (P1)-(P3). Put $u_{1 i}=$ $e^{-\lambda t} w_{1 i}$. It follows that

$$
u_{1 i}(., t)=S_{2}(t) u_{1 i}(., 0)-\int_{0}^{t} S_{2}(t-s) g_{2 i}\left(u_{i+1}(., s)\right) g_{2 * i}\left(u_{i}(., s)\right) d s
$$

where for $j \in\{1, \ldots, m\}, g_{2 j}\left(u_{j+1}\right)$ is the projection of $f_{j}\left(u_{j+1}\right)$ on [Ker $\left.\left(L_{0}+\lambda I\right)\right]^{\perp}$. Since $\left|g_{2 i}\left(u_{i+1}(., s)\right)\right| \leqslant C e^{-p \lambda s}$, we obtain

$$
\left\|u_{1 i}(., t)\right\|_{L^{\infty}(\Omega)} \leqslant M e^{-\lambda_{2} t}+\int_{0}^{t} e^{-\lambda_{2}(t-s)} e^{-p \lambda s} d s
$$

Therefore

$$
\left\|w_{1 i}(., t)\right\|_{L^{\infty}(\Omega)} \leqslant M e^{\left(\lambda-\lambda_{2}\right) t}+M_{2} e^{-(p-1) \lambda t}
$$

Then we have

$$
\lim _{t \rightarrow \infty} e^{\lambda t} u_{i}(x, t)=C_{i} \varphi(x), \quad i=1, \ldots, m
$$

uniformly in Ω, where $C_{i}(i=1, \ldots, m)$ are positive constants, which yields the result.

Corollary 3.4. - Suppose that $f_{i}\left(u_{i+1}\right)=u_{i+1}^{p_{i}}, f_{* i}\left(u_{i}\right)=e^{u_{i}}$, with $p_{i}>1$. Then there exists a positive constant b such that any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.1)-(1.3) exists globally and

$$
\lim _{t \rightarrow \infty} e^{\lambda t} u_{i}(x, t)=C_{i} \varphi(x)
$$

uniformly in Ω for $u_{0}^{(i)}(x) \leqslant b$ where $C_{i}(i=1, \ldots, m)$ are positive constants.

4. - Blow up solutions.

In this section, we give some conditions under which the solutions of the problem (1.1)-(1.3) blow up in a finite time.

Let z be the solution of the following problem:

$$
\begin{equation*}
\frac{\partial z}{\partial t}=L_{k} z+\lambda f_{* k}(z) \quad \text { in } \quad \Omega \times(0, T), \tag{Q1}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{k} \frac{\partial z}{\partial N_{k}}+\left(1-\mu_{k}\right) z=0 \quad \text { on } \quad \partial \Omega \times(0, T), \tag{Q2}
\end{equation*}
$$

$$
\begin{equation*}
z(x, 0)=u_{0}^{(k)}(x) \geqslant 0 \quad \text { in } \quad \Omega, \tag{Q3}
\end{equation*}
$$

where $k \in\{1, \ldots, m\}$.
Lemma 4.1. - Let w_{0} be the maximum of the solution for the following boundary value problem

$$
L_{k} w+1=0 \quad \text { in } \quad \Omega, \quad \mu_{k} \frac{\partial w}{\partial N_{k}}+\left(1-\mu_{k}\right) w=0 \quad \text { on } \quad \partial \Omega,
$$

where $\mu_{k}<1$. Suppose that $f_{* k}(s)$ is positive and increasing for positive values of s with $f_{* k}(0)>0$. If

$$
\lambda>\frac{1}{w_{0}} \int_{0}^{\infty} \frac{d s}{f_{* k}(s)},
$$

then the solution z of the problem (Q1)-(Q3) blows up in a finite time.
Proof. - Assume at first that $u_{0}^{(k)}(x)=0$. Let $\left(0, T_{\text {max }}\right)$ be the maximum time interval in which the classical solution z of the problem (Q1)-(Q3) exists. From the maximum principle, $z(x, t) \geqslant 0$ in $\Omega \times\left(0, T_{\max }\right)$. Put

$$
\begin{equation*}
v(x, t)=F(z(x, t))=\int_{0}^{z} \frac{d s}{\lambda f_{¥ k}(s)} . \tag{4.1}
\end{equation*}
$$

We have

$$
\begin{align*}
& \frac{\partial v}{\partial t}-L_{k} v=\frac{1}{\lambda f_{* k}(z)}\left(z_{t}-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}^{(k)}(x) \frac{\partial z}{\partial x_{j}}\right)\right)+ \tag{4.2}\\
& {\left[\sum_{i, j=1}^{n} a_{i j}^{(k)}(x) z_{x_{i}} z_{x_{j}}\right] \frac{f^{\prime}{ }_{* k k}(z)}{\lambda f^{2}{ }_{* k}(z)} . }
\end{align*}
$$

Since $f_{* k}(z)$ is an increasing function, we also have

$$
\begin{equation*}
v(x, t)=\int_{0}^{z} \frac{d s}{\lambda f_{* k}(s)} \geqslant \frac{z}{\lambda f_{* k}(z)} \tag{4.3}
\end{equation*}
$$

From (Q1) and (4.2) we deduce that

$$
\begin{equation*}
\frac{\partial v}{\partial t}-L_{k} v-1 \geqslant 0 \quad \text { in } \quad \Omega \times\left(0, T_{\max }\right) \tag{4.4}
\end{equation*}
$$

From (4.3), we also have
(4.5) $\quad \mu_{k} \frac{\partial v}{\partial N_{k}}=\frac{1}{\lambda f_{* k}(z)} \mu_{k} \frac{\partial z}{\partial N_{k}}=\frac{-\left(1-\mu_{k}\right) z}{\lambda f_{* k}(z)} \geqslant-\left(1-\mu_{k}\right) v$,
that is to say

$$
\begin{equation*}
\mu_{k} \frac{\partial v}{\partial N_{k}}+\left(1-\mu_{k}\right) v \geqslant 0 \quad \text { on } \quad \partial \Omega \times\left(0, T_{\max }\right) . \tag{4.6}
\end{equation*}
$$

Since $w_{0}>\int_{0}^{\infty} \frac{d s}{\lambda f_{* k}(s)}$ and $z<\infty$ in $\Omega \times\left(0, T_{\max }\right)$, we have

$$
\begin{equation*}
\sup _{(x, t) \in \Omega \times\left(0, T_{\max }\right)} v(x, t)<w_{0} . \tag{4.7}
\end{equation*}
$$

Let z be the solution of the following problem:

$$
\begin{equation*}
\frac{\partial z}{\partial t}=L_{k} z+1 \quad \text { in } \quad \Omega \times(0, \infty) \tag{4.8}
\end{equation*}
$$

$$
\begin{gather*}
\mu_{k} \frac{\partial z}{\partial N_{k}}+\left(1-\mu_{k}\right) z=0 \quad \text { on } \quad \partial \Omega \times(0, \infty), \tag{4.9}\\
z(x, 0)=0 \quad \text { in } \quad \Omega . \tag{4.10}
\end{gather*}
$$

From the maximum principle, we obtain

$$
\begin{equation*}
v(x, t) \geqslant z(x, t) \quad \text { in } \quad \Omega \times\left(0, T_{\max }\right) \tag{4.11}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(x, t)=w(x) \tag{4.12}
\end{equation*}
$$

Therefore from (4.7) and (4.12), there exist $x_{0} \in \Omega$ and a finite t_{0} such that

$$
\begin{equation*}
z\left(x_{0}, t_{0}\right)>\sup _{(x, t) \in \Omega \times\left(0, T_{\max }\right)} v(x, t) \tag{4.13}
\end{equation*}
$$

which implies that $t_{0} \geqslant T_{\max }$. In fact, suppose that $t_{0}<T_{\max }$. From (4.11), we
have $v\left(x_{0}, t_{0}\right) \geqslant z\left(x_{0}, t_{0}\right)$ which contradicts (4.13). Consequently, $T_{\max }$ is finite and z blows up in a finite time.

Now, suppose that $u_{0}^{(k)}(x) \geqslant 0$. From the maximum principle

$$
\begin{equation*}
z(x, t) \geqslant u_{1}(x, t) \quad \text { in } \quad \Omega \times\left(0, T_{1}\right) \tag{4.14}
\end{equation*}
$$

where u_{1} is a solution of the problem (Q1)-(Q2) with $u_{1}(x, 0)=0$ and $\left(0, T_{1}\right)$ is the maximum time interval in which the solutions z and u_{1} exist. From the above result, we know that u_{1} blows up in a finite time because

$$
\begin{equation*}
w_{0}>\int_{0}^{b} \frac{d s}{\lambda f_{* k}(s)} . \tag{4.15}
\end{equation*}
$$

Therefore, from (4.14), z blows up in a finite time, which yields the result.

Theorem 4.2. - Suppose that there exists $k \in\{1, \ldots, m\}$ such that $f_{* k}(0)>0, \int_{0}^{\infty}\left(d s / f_{* k}(s)\right)<\infty$ and $\lim _{s \rightarrow \infty} f_{k}(s)=\infty$. Fix $\left(u_{0}^{(1)}, \ldots, u_{0}^{(m)}\right)$. There exists $\gamma_{0}>0$ such that, if $\gamma>\gamma_{0}$ then the solution $\left(u_{1 \gamma}, \ldots, u_{m \gamma}\right)$ of the problem (1.1)-(1.3) with initial data $\left(u_{0}^{(1)}, \ldots, \gamma u_{0}^{(k+1)}, \ldots, u_{0}^{(m)}\right)$ blows up in a finite time.

Proof. - Since $u_{0}^{(k+1)}(x)>0$ in Ω, there exists a ball B such that $\bar{B} \subset \subset \Omega$ and $u_{0}^{(k+1)}(x) \geqslant \varepsilon>0$ in B (this is possible because $u_{0}^{(k+1)}(x)$ is continuous in Ω). Let z be the solution of the following problem

$$
\begin{equation*}
\frac{\partial z}{\partial t}=L_{k} z+\lambda_{0} f_{* k}(z) \quad \text { in } \quad B \times(0, T) \tag{4.16}
\end{equation*}
$$

where λ_{0} is such that z blows up in a finite time T_{0} (this is possible because of Lemma 4.1). Let $w(x, t)$ be the solution of the following problem:

$$
\begin{equation*}
\frac{\partial w}{\partial t}-L_{k+1} w=0 \quad \text { in } \quad \Omega \times\left(0, T_{0}\right) \tag{4.19}
\end{equation*}
$$

$$
\begin{gather*}
w=0 \quad \text { on } \quad \partial \Omega \times\left(0, T_{0}\right), \tag{4.20}\\
w(x, 0)=u_{0}^{(k+1)}(x) \quad \text { in } \Omega . \tag{4.21}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
\alpha=\inf _{x \in \bar{B} \times\left(0, T_{0}\right)} w(x, t)>0 \tag{4.22}
\end{equation*}
$$

because $u_{0}^{(k+1)}(x)>0$ in \bar{B}. From the maximum principle,

$$
\begin{equation*}
u_{(k+1) \gamma}(x, t) \geqslant \gamma w(x, t) \quad \text { in } \quad \Omega \times\left(0, T_{0}\right) \tag{4.23}
\end{equation*}
$$

Therefore we obtain

$$
\begin{equation*}
\inf _{(x, t) \in B \times\left(0, T_{0}\right)} u_{(k+1) \gamma}(x, t) \geqslant \gamma \inf _{(x, t) \in B \times\left(0, T_{0}\right)} w(x, t)=\gamma \alpha . \tag{4.24}
\end{equation*}
$$

Since f_{k} is increasing and $\lim _{t \rightarrow \infty} f_{k}(t)=\infty$, from (4.24), take $\gamma_{0}>0$ such that $f_{k}\left(u_{(k+1) \gamma}\right)>\lambda_{0}$ for $\gamma>\gamma_{0}$. Therefore if $\gamma>\gamma_{0}, u_{k \gamma}$ satisfies the following problem

$$
\begin{equation*}
\frac{\partial u_{k \gamma}}{\partial t}>L_{k} u_{k \gamma}+\lambda_{0} f_{* k}\left(u_{k \gamma}\right) \quad \text { in } \quad B \times\left(0, T_{0}\right), \tag{4.25}
\end{equation*}
$$

$$
\begin{equation*}
u_{k \gamma}>0 \quad \text { on } \quad \partial B \times\left(0, T_{0}\right), \tag{4.26}
\end{equation*}
$$

$$
\begin{equation*}
u_{k \gamma}(x, 0)=u_{0}^{(k)}(x) \geqslant 0 \quad \text { in } \quad B \tag{4.27}
\end{equation*}
$$

From the maximum principle

$$
u_{k \gamma}(x, t) \geqslant z(x, t) \quad \text { in } \quad \Omega \times\left(0, T_{0}\right) \quad \text { for } \quad \gamma>\gamma_{0} .
$$

Therefore if $\gamma>\gamma_{0}$, the solution $\left(u_{1 \gamma}, \ldots, u_{m \gamma}\right)$ blows up in a finite time $T^{\prime} \leqslant T_{0}$.

Corollary 4.3. - Suppose that there exists $k \in\{1, \ldots, m\}$ such that
 $p_{* k}>1$. Fix $\left(u_{0}^{(1)}, \ldots, u_{0}^{(m)}\right)$. There exists $\gamma_{0}>0$ such that, if $\gamma>\gamma_{0}$ then the solution $\left(u_{1 \gamma}, \ldots, u_{m \gamma}\right)$ of the problem (1.1)-(1.3) with initial data $\left(u_{0}^{(1)}, \ldots, \gamma u_{0}^{(k+1)}, \ldots, u_{0}^{(m)}\right)$ blows up in a finite time.

Theorem 4.4. - Let $L_{i}=d_{i} \Delta$ where $d_{i}(i=1, \ldots, m)$ are positive constants and suppose that there exists $k_{1} \in\{1, \ldots, m\}$ such that $f_{* k_{1}}(0)>0$, $\int_{0}^{\infty} \frac{d s}{f_{* k_{1}}(s)}<\infty$ and $\lim _{s \rightarrow \infty} f_{k_{1}}(s)=\infty$. Suppose also that $\liminf _{t \rightarrow \infty}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{s}) / \mathrm{f}_{\mathrm{i}}^{\prime}(\mathrm{s})\right)>0$ $(i=1, \ldots, m)$,

$$
\liminf _{s \rightarrow 0} \frac{f_{* m}(s) f_{m} \circ f_{1} \circ \ldots \circ f_{m-1}(s)}{s}>0
$$

and

$$
\liminf _{s \rightarrow \infty} \frac{f_{* m}(s) f_{m} \circ f_{1} \circ \ldots \circ f_{m-1}(s)}{s}>0 .
$$

Then if Ω contains a large ball, any positive solution of the problem (1.1)(1.3) blows up in a finite time.

Proof. - Let $\phi_{1}>0$ be a solution of the following problem

$$
\begin{equation*}
\Delta \phi_{1}(x) \geqslant \alpha>0 \quad \text { if } \quad \phi_{1}(x) \leqslant c_{1}, \quad \phi_{1}=0 \quad \text { on } \quad \partial B_{1} \tag{4.28}
\end{equation*}
$$

where B_{1} is a ball of radius 1 . Put $\phi_{k}(x)=\phi(x / k)$. Then ϕ_{k} satisfies the following relations

$$
\begin{gather*}
\Delta \phi_{k}(x) \geqslant \frac{\alpha}{k^{2}}>0 \quad \text { if } \quad \phi_{k} \leqslant c_{1}, \quad \phi_{k}=0 \quad \text { on } \quad \partial B_{k}, \tag{4.29}\\
\Delta \phi_{k}(x) \geqslant \frac{-L}{k^{2}}>0 \quad\left(-L=\inf _{x \in B_{1}} \Delta \phi_{1}(x)\right),
\end{gather*}
$$

where B_{k} is a ball of radius k. Let $\overline{u_{i}}=a_{i}(t) \phi_{k}(x)$, where $a_{i}(t)(i=1, \ldots, m)$ are increasing functions which will be determined later. Our aim is to show that $\left(\overline{u_{1}}, \ldots, \overline{u_{m}}\right)$ is a subsolution of the problem (1.1)-(1.3). Then, it is sufficient to show that the following inequalities hold

$$
\begin{align*}
& a_{i}^{\prime}(t) \phi_{k}(x) \leqslant a_{i}(t) d_{i} \Delta \phi_{k}(x)+f_{i}\left(a_{i+1}(t) \phi_{k}(x)\right) f_{* i}\left(a_{i}(t) \phi_{k}(x)\right) \tag{4.31}\\
& a_{m}^{\prime}(t) \phi_{k}(x) \leqslant a_{m}(t) d_{m} \Delta \phi_{k}(x)+f_{m}\left(a_{1}(t) \phi_{k}(x)\right) f_{* m}\left(a_{m}(t) \phi_{k}(x)\right), \tag{4.32}
\end{align*}
$$

where ($i=1, \ldots, m-1$). If $\phi_{k} \leqslant c_{1}$, the inequalities (4.31) and (4.32) are valid if

$$
\begin{equation*}
a_{i}^{\prime}(t) c_{1} \leqslant \frac{\alpha}{k^{2}} d_{i} a_{i}(t), \quad i=1, \ldots, m-1 \tag{4.33}
\end{equation*}
$$

$$
\begin{equation*}
a_{m}^{\prime}(t) c_{1} \leqslant \frac{\alpha}{k^{2}} d_{m} a_{m}(0) \tag{4.34}
\end{equation*}
$$

For $\phi_{k} \geqslant c_{1}$, let $c_{2}=\sup \phi_{k}$. Then the inequalities (4.31) and (4.32) are true if

$$
\begin{equation*}
a_{i}^{\prime}(t) c_{2} \leqslant-a_{i}(t) d_{i} \frac{L}{k^{2}}+f_{i}\left(a_{i+1}(t) c_{1}\right) f_{* i}\left(a_{i}(t) c_{1}\right), \quad i=1, \ldots, m-1 \tag{4.35}
\end{equation*}
$$

$$
\begin{equation*}
a_{m}^{\prime}(t) c_{2} \leqslant-a_{m}(t) d_{m} \frac{L}{k^{2}}+f_{m}\left(a_{1}(t) c_{1}\right) f_{* m}\left(a_{m}(t) c_{1}\right) . \tag{4.36}
\end{equation*}
$$

Thus our new aim is to show that we may determine the functions $a_{i}(t)$ ($i=1, \ldots, m$) for that the inequalities (4.33), (4.34), (4.35) and (4.36) be true. Take $a_{m}(t)=\varepsilon t+a_{m}(0), a_{i}(t) c_{1}=f_{i}\left(c_{1} a_{i+1}(t)\right)(i=1, \ldots, m-1)$ and put $\delta_{i}=\inf _{s \geqslant c_{1} a_{i+1}(0)}\left(f_{i}(s) / f_{i}^{\prime}(s)\right)$. Then the inequalities (4.33) and (4.34) hold if

$$
\begin{equation*}
c_{1} \varepsilon \leqslant \frac{\alpha}{c_{1} k^{2}} d_{i} \delta_{i}, \quad i=1, \ldots, m-1 \tag{4.37}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon c_{1} \leqslant \frac{\alpha}{k^{2}} d_{m} a_{m}(0) \tag{4.38}
\end{equation*}
$$

and the inequalities (4.35) and (4.36) are true if

$$
\begin{align*}
& \varepsilon f_{i}^{\prime}\left(c_{1} a_{i+1}(t)\right) \leqslant-\frac{1}{c_{1}} f_{i}\left(c_{1} a_{i+1}(t)\right) d_{i} \frac{L}{k^{2}}+ \tag{4.39}\\
& \quad f_{i}\left(a_{i+1}(t) c_{1}\right) f_{* i}\left(a_{i}(t) c_{1}\right), \quad i=1, \ldots, m-1,
\end{align*}
$$

$$
\begin{equation*}
\varepsilon c_{2} \leqslant-a_{m}(t) d_{m} \frac{L}{k^{2}}+f_{m} \circ f_{1} \circ f_{2} \circ \ldots \circ f_{m-1}\left(c_{1} a_{m}(t)\right) f_{* m}\left(a_{m}(t) c_{1}\right) \tag{4.40}
\end{equation*}
$$

Let k be so large that $\left(L d_{i} / c_{1} k^{2}\right)<(1 / 2) f_{* i}\left(c_{1} a_{i}(0)\right)(i=1, \ldots, m-1)$. The inequalities (4.39) hold if

$$
\begin{equation*}
\varepsilon \leqslant \delta_{i}\left[-\frac{L d_{i}}{c_{1} k^{2}}+f_{* i}\left(c_{1} a_{i}(0)\right)\right], \quad i=1, \ldots, m-1 \tag{4.41}
\end{equation*}
$$

Let k_{*} be such that $f_{* m}(s) \geqslant k_{*} \frac{s}{f_{m} \circ f_{1} \circ \ldots \circ f_{m-1}(s)}$ for $s>a_{m}(0) c_{1}$. Then the inequality (4.40) is true if

$$
\begin{equation*}
\varepsilon c_{2} \leqslant a_{m}(0)\left[-d_{m} \frac{L}{k^{2}}+k_{*}\right] . \tag{4.42}
\end{equation*}
$$

Let k again be such that $d_{m}\left(L / k^{2}\right)<k_{*} / 2$. Thus we may choose ε small enough that the inequalities (4.41) and (4.42) be valid. Take $a_{i}(0)$ be sufficiently small that $\overline{u_{i}}(x, 0)<u_{0}^{(i)}(x)$ in B_{k}. Therefore, there exists a ball B_{k} such that

$$
\begin{aligned}
\frac{\partial \overline{u_{i}}}{\partial t}-d_{i} \Delta \overline{u_{i}} \leqslant f_{i}\left(\overline{u_{i+1}}\right) f_{* i}\left(\overline{u_{i}}\right) \quad \text { in } \quad B_{k} \times(0, T), \\
\overline{u_{i}}=0 \quad \text { on } \quad \partial B_{k} \times(0, T), \\
\overline{u_{i}}(x, 0)<u_{0}^{(i)}(x) \quad \text { in } \quad B_{k}, \quad i=1, \ldots, m
\end{aligned}
$$

where $\overline{u_{m+1}}=\overline{u_{1}}$. Since $\left(u_{1}, \ldots, u_{m}\right)$ is a positive solution of the problem (1.1)(1.3), by Comparison lemma 2.1, we deduce that $u_{i}(x, t) \geqslant \overline{u_{i}}(x, t)$. Therefore we have

$$
\lim _{t \rightarrow \infty} u_{i}(x, t)=\infty
$$

By Theorem 4.2, we obtain the result.
Corollary 4.5. - Let $L_{i}=d_{i} \Delta$ where $d_{i}(i=1, \ldots, m)$ are positive constants and suppose that there exists $k \in\{1, \ldots, m\}$ such that $f_{* k}\left(u_{k}\right)=e^{u_{k}}$ or $f_{* k}\left(u_{k}\right)=u_{k}^{p_{* k}}+\varepsilon$. Suppose also that $\quad f_{i}\left(u_{i+1}\right)=u_{i+1}^{p_{i}} \quad(i=1, \ldots, m)$, $f_{* m}\left(u_{m}\right)=e^{u_{m}}$ or $f_{* m}\left(u_{m}\right)=u_{m^{*}}^{p^{m}}+\varepsilon$ with $\varepsilon>0, p_{i}>0$ and $p_{* m}>1-\prod_{i=1}^{m} p_{i} \geqslant 0$. Then if Ω contains a large ball, any positive solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.1)-(1.3) blows up in a finite time.

5. - Other blow up solutions.

In this section, we give other conditions under which the solutions of the problem (1.1)-(1.3) blow up in a finite time in the case where $m=2, \mu_{i}=1$, $L_{i}=L_{0}, \quad f_{1}=f, \quad f_{1 *}=f_{*}, \quad f_{2}=g \quad$ and $\quad f_{2 *}=g_{*} . \quad$ If $\quad \int^{\infty}\left(d s / f_{*}(s)\right)<\infty \quad$ or $\int^{\infty}\left(d s / g_{*}(s)\right)<\infty$, we easily show that any solution (u, v) of the problem (1.1)(1.3) with initial data (u_{0}, v_{0}) blows up in a finite time. In fact, suppose that $\int_{u}^{\infty}\left(d s / f_{*}(s)\right)<\infty$. From the maximum pri

$$
\begin{gathered}
\frac{\partial u}{\partial t} \geqslant L_{0} u+f(c) f_{*}(u) \quad \text { in } \quad \Omega \times(0, T) \\
\frac{\partial u}{\partial N_{0}}=0 \quad \text { on } \quad \partial \Omega \times(0, T) \\
u(x, 0)=u_{0}(x)>0 \quad \text { in } \quad \Omega
\end{gathered}
$$

It is well known that any solution of the above problem blows up in a finite time (see, for instance [9]). Hence the result. Thus, in this section, we assume that $\int^{\infty}\left(d s / f_{*}(s)\right)=\infty$ and $\int^{\infty}\left(d s / g_{*}(s)\right)=\infty$. Consider the following system:

$$
\begin{equation*}
\alpha_{1}^{\prime}(t)=f_{*}\left(\alpha_{1}(t)\right) f\left(\alpha_{2}(t)\right) \tag{R1}
\end{equation*}
$$

(R2)

$$
\alpha_{2}^{\prime}(t)=g\left(\alpha_{1}(t)\right) g_{*}\left(\alpha_{2}(t)\right)
$$

We have

$$
\frac{d \alpha_{1}}{d \alpha_{2}}=\frac{f_{*}\left(\alpha_{1}(t)\right) f\left(\alpha_{2}(t)\right)}{g\left(\alpha_{1}(t)\right) g_{*}\left(\alpha_{2}(t)\right)}
$$

that is to say

$$
\frac{g\left(\alpha_{1}\right) d \alpha_{1}}{f_{*}\left(\alpha_{1}\right)}=\frac{f\left(\alpha_{2}\right) d \alpha_{2}}{g_{*}\left(\alpha_{2}\right)} .
$$

Let $G(s)$ be a primitive of $g(s) / f_{*}(s)$ and $F(s)$ that of $f(s) / g_{*}(s)$ with $F(0)=$ $G(0)=0$. Then we have $G\left(\alpha_{1}\right)=F\left(\alpha_{2}\right)$, that is to say $\alpha_{2}=F^{-1}\left[G\left(\alpha_{1}\right)\right]=$ $k\left(\alpha_{1}\right)$, where F^{-1} is the inverse function of F. We suppose that $k(z)=$ $F^{-1} \circ G(z)$ is an increasing function for positive values of z.

Theorem 5.1. - Suppose that $k(0)=f(0)=g(0)=0$ and

$$
\int^{+\infty} \frac{d z}{f_{*}(z) f(k(z))}<\infty \quad \text { or } \quad \int^{+\infty} \frac{d z}{g\left(k^{-1}(z)\right) g_{*}(z)}<\infty
$$

Then any solution (u, v) of the problem (1.1)-(1.3) initial data $\left(u_{0}, v_{0}\right)$ blows up in a finite time.

$$
\begin{gathered}
\text { Proof. - Put } c_{0}=\inf _{x \in \Omega} u_{0}(x)>0, d_{0}=\inf _{x \in \Omega} v_{0}(x)>0 . \text { Let } \\
\bar{u}=\alpha_{1}(\tau), \quad \bar{v}=\alpha_{2}(\tau)
\end{gathered}
$$

with $\tau=\varepsilon t-\varepsilon w(x)+\varepsilon c, \quad \alpha_{1}(0)=c_{0} / 2^{*}$, where 2^{*} is big enough that $k\left(2\left(c_{0} / 2^{*}\right)\right)<d_{0} / 2$ and $w(x)$ satisfies the following problem:

$$
\begin{equation*}
L_{0} w(x)=d \quad \text { in } \quad \Omega, \quad \frac{\partial w}{\partial N_{0}}=1 \quad \text { on } \quad \partial \Omega \tag{5.1}
\end{equation*}
$$

with $d=|\partial \Omega| /|\Omega|, c$ is such that $c-w(x)>0$. Since $\alpha_{1}^{\prime}(t) \geqslant 0$ and $\alpha_{1}(0)>0$, there is t_{1} such that $\alpha_{1}\left(t_{1}\right)=2\left(c_{0} / 2^{*}\right)$. Take $\varepsilon>0$ so small that

$$
-\varepsilon w(x)+\varepsilon c \leqslant t_{1}, \quad \varepsilon+\varepsilon d<1
$$

Therefore, we obtain

$$
\begin{equation*}
\bar{u}(x, 0) \leqslant \alpha_{1}\left(t_{1}\right)<u(x, 0) \quad \text { in } \quad \Omega \tag{5.2}
\end{equation*}
$$

Similarly since $k(z)$ is an increasing function, we get

$$
\begin{equation*}
\bar{v}(x, 0) \leqslant \alpha_{2}\left(t_{1}\right)=k\left(2 \frac{c_{0}}{2^{*}}\right)<v(x, 0) \quad \text { in } \quad \Omega . \tag{5.3}
\end{equation*}
$$

We also have

$$
\begin{align*}
& \frac{\partial \bar{u}}{\partial t}-L_{0} \bar{u}=\alpha_{1}^{\prime}(\tau)\left(\varepsilon+\varepsilon L_{0} w\right)-\varepsilon^{2} \alpha_{1}^{\prime \prime}(\tau) \sum_{i, j=1}^{n} a_{i j}^{(0)}(x) \frac{\partial w}{\partial x_{i}} \frac{\partial w}{\partial x_{j}} \tag{5.4}\\
& \frac{\partial \bar{v}}{\partial t}-L_{0} \bar{v}=\alpha_{2}^{\prime}(\tau)\left(\varepsilon+\varepsilon L_{0} w\right)-\varepsilon^{2} \alpha_{2}^{\prime \prime}(\tau) \sum_{i, j=1}^{n} \alpha_{i j}^{(0)}(x) \frac{\partial w}{\partial x_{i}} \frac{\partial w}{\partial x_{j}}
\end{align*}
$$

Since $f(s), f_{*}(s), g(s), g_{*}(s)$ are nonnegative and increasing for positive values of s, we have $\alpha_{1}^{\prime \prime}(\tau) \geqslant 0, \alpha_{2}^{\prime \prime}(\tau) \geqslant 0$. From (5.4) and (5.5) it follows that

$$
\begin{align*}
& \frac{\partial \bar{u}}{\partial t}-L_{0} \bar{u}<f(\bar{v}) f_{*}(\bar{u}) \quad \text { in } \quad \Omega \times(0, T), \tag{5.6}\\
& \frac{\partial \bar{v}}{\partial t}-L_{0} \bar{v}<g(\bar{u}) g_{*}(\bar{v}) \quad \text { in } \quad \Omega \times(0, T) \tag{5.7}
\end{align*}
$$

We also have

$$
\begin{array}{ll}
\frac{\partial \bar{u}}{\partial N_{0}}=-\varepsilon \frac{\partial w}{\partial N_{0}} \alpha_{1}^{\prime}(\tau)<0 & \text { on }
\end{array} \quad \partial \Omega \times(0, T), ~ \begin{array}{ll}
\frac{\partial \bar{v}}{\partial N_{0}}=-\varepsilon \frac{\partial w}{\partial N_{0}} \alpha_{2}^{\prime}(\tau)<0 & \text { on }
\end{array} \quad \partial \Omega \times(0, T) .
$$

Applying Comparison lemma 2.1, we deduce that

$$
\begin{align*}
& u(x, t) \geqslant \bar{u}(x, t) \quad \text { in } \quad \Omega \times(0, T) \tag{5.10}\\
& v(x, t) \geqslant \bar{v}(x, t) \quad \text { in } \quad \Omega \times(0, T) \tag{5.11}
\end{align*}
$$

On the other hand, $\alpha_{1}(t)$ and $\alpha_{2}(t)$ satisfy the following relations:

$$
\int_{c_{0} / 2^{*}}^{\alpha_{1}(t)} \frac{d z}{f_{*}(z) f(k(z))}=t \quad \text { and } \quad \int_{k\left(c_{0} / 2^{*}\right)}^{\alpha_{2}(t)} \frac{d z}{g\left(k^{-1}(z)\right) g_{*}(z)}=t
$$

This implies that (\bar{u}, \bar{v}) blows up in a finite time because

$$
\int^{+\infty} \frac{d z}{f_{*}(z) f(k(z))}<\infty \quad \text { or } \quad \int^{+\infty} \frac{d z}{g\left(k^{-1}(z)\right) g_{*}(z)}<\infty
$$

which leads to the result.
REMARK 5.2. - Let $f(s)=s^{p_{1}}, f_{*}(s)=s^{p_{2}}, g(s)=s^{q_{1}}, g_{*}(s)=s^{q_{2}}$. We have

$$
\begin{gathered}
k(s)=\left\{\frac{p_{1}-q_{2}+1}{q_{1}-p_{2}+1}\right\}^{1 /\left(p_{1}-q_{2}+1\right)} s^{\left(q_{1}-p_{2}+1\right) /\left(p_{1}-q_{2}+1\right)}, \\
f_{*}(s) f(k(s))=\left\{\frac{p_{1}-q_{2}+1}{q_{1}-p_{2}+1}\right\}^{p_{1} /\left(p_{1}-q_{2}+1\right)} s^{\left(p_{1} q_{1}-p_{2} q_{2}+p_{1}+p_{2}\right) /\left(p_{1}-q_{2}+1\right)} \\
g_{*}(s) g\left(k^{-1}(s)\right)=\left\{\frac{q_{1}-p_{2}+1}{p_{1}-q_{2}+1}\right\}^{q_{1} /\left(p_{1}-q_{2}+1\right)} s^{\left(p_{1} q_{1}-p_{2} q_{2}+q_{1}+q_{2}\right) /\left(q_{1}-p_{2}+1\right)}
\end{gathered}
$$

If $p_{2}>1$ or $q_{2}>1$, then any solution of the problem (1.1)-(1.3) with initial data (u_{0}, v_{0}) blows up in a finite time.

If $p_{2} \leqslant 1, q_{2} \leqslant 1$ and $p_{1} q_{1}-p_{2} q_{2}+p_{2}+q_{2}>1$, then any solution (u, v) of the problem (1.1)-(1.3) with initial data $\left(u_{0}, v_{0}\right)$ blows up in a finite time.

6. - Asymptotic behavior of global solutions.

In this section, we suppose that the functions $\alpha_{1}(t)$ and $\alpha_{2}(t)$ of the system (R1)-(R2) are replaced by $\alpha(t)$ and $\beta(t)$ respectively. We also suppose that $f_{*}(s)=g_{*}(s)=1$. Under the conditions in below, we obtain the asymptotic behavior of any solution for the problem (1.1)-(1.3). Thus we have the following theorem:

Theorem 6.1. - Suppose that for positive values of s, the functions $f(s)$ and $g(s)$ are concave with $f(0)=g(0)=0$,

$$
\begin{gathered}
\int^{\infty} \frac{d s}{f[k(s)]}=\int^{\infty} \frac{d s}{g\left[k^{-1}(s)\right]}=\infty, \\
\lim _{t \rightarrow \infty} \frac{f^{\prime}[k(t)] g(t)}{f(k(t))}=\lim _{t \rightarrow \infty} \frac{g^{\prime}(t) f[k(t)]}{g(t)}=0 .
\end{gathered}
$$

Then if (u, v) is a solution of the problem (1.1)-(1.3) with initial data $\left(u_{0}, v_{0}\right)$ we have:
(i) (u, v) exists globally and

$$
\lim _{t \rightarrow \infty} u(x, t)=\lim _{t \rightarrow \infty} v(x, t)=\infty
$$

uniformly in $x \in \Omega$.
(ii) Moreover if

$$
\lim _{s \rightarrow \infty} \frac{s f[k(H(s))]}{H(s)} \leqslant c_{2} \quad \text { or } \quad \lim _{s \rightarrow \infty} \frac{s g\left[k^{-1}(K(s))\right]}{K(s)} \leqslant c_{3}
$$

where c_{2} and c_{3} are two positive constants, we also have

$$
u(x, t)=\alpha(t)(1+o(1)) \quad \text { as } \quad t \rightarrow \infty
$$

or

$$
v(x, t)=\beta(t)(1+o(1)) \quad \text { as } \quad t \rightarrow \infty
$$

where $H(s)$ and $K(s)$ are the inverse functions of

$$
G(s)=\int_{1}^{s} \frac{d \sigma}{f[k(\sigma)]} \quad \text { and } \quad M(s)=\int_{1}^{s} \frac{d \sigma}{g\left[k^{-1}(\sigma)\right]}
$$

respectively, $\alpha^{\prime}(t)=f(\beta(t)), \beta^{\prime}(t)=g(\alpha(t))$ with $\alpha(0)=1, \beta(0)=k(1)$.
Proof. - (i) Put

$$
w(x, t)=\alpha(t)+\psi(x) f(\beta(t)), \quad z(x, t)=\beta(t)+\psi(x) g(\alpha(t)),
$$

with

$$
\begin{gathered}
\alpha^{\prime}(t)=\lambda f(\beta(t)), \quad \alpha(0)=1 \\
\beta^{\prime}(t)=\lambda g(\alpha(t)), \quad \beta(0)=k(1),
\end{gathered}
$$

where ψ and λ will be determined later. Since

$$
\int^{\infty} \frac{d s}{f[k(s)]}=\int^{\infty} \frac{d s}{g\left[k^{-1}(s)\right]}=\infty
$$

we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \alpha(t)=\lim _{t \rightarrow \infty} \beta(t)=\infty . \tag{6.1}
\end{equation*}
$$

We also have

$$
\begin{aligned}
& \frac{\partial w}{\partial t}-L_{0} w-f(z)= \\
& \quad f(\beta(t))\left(\lambda-L_{0} \psi\right)+\beta^{\prime}(t) f^{\prime}(\beta(t)) \psi(x)-f(\beta(t))-\psi(x) g(\alpha(t)) f^{\prime}(y),
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial z}{\partial t}-L_{0} z-g(w)= \\
& \quad g(\alpha(t))\left(\lambda-L_{0} \psi\right)+\alpha^{\prime}(t) g^{\prime}(\alpha(t)) \psi(x)-g(\alpha(t))-\psi(x) f(\beta(t)) g^{\prime}(z)
\end{aligned}
$$

with $y \in[\beta(t)+\psi(x) g(\alpha(t))]$ and $z \in[\alpha(t), \alpha(t)+\psi(x) f(\beta(t))]$. Let ψ be a positive solution of the following problem

$$
\lambda-L_{0} \psi=1-\delta, \quad \frac{\partial \psi}{\partial N_{0}}=-\delta .
$$

Take $\lambda \leqslant 1 / 2$ and $\delta=|\Omega| /(|\Omega|+|\partial \Omega|)-|\Omega| /(|\Omega|+|\partial \Omega|) \lambda$. Therefore the function ψ exists. Then, we obtain

$$
\begin{aligned}
\frac{\partial w}{\partial t}-L_{0} w-f(z) & =-\delta f(\beta(t))+\beta^{\prime}(t) f^{\prime}(\beta(t)) \psi(x)-\psi(x) g(\alpha(t)) f^{\prime}(y) \\
\frac{\partial z}{\partial t}-L_{0} z-g(w) & =-\delta g(\alpha(t))+\alpha^{\prime}(t) g^{\prime}(\alpha(t)) \psi(x)-\psi(x) f(\beta(t)) g^{\prime}(z) \\
\frac{\partial w}{\partial N_{0}} & =-\delta f(\beta(t)), \quad \frac{\partial z}{\partial N_{0}}=-\delta g(\alpha(t))
\end{aligned}
$$

Since $\lim _{t \rightarrow \infty} \frac{f^{\prime}[k(t)] g(t)}{f(k(t))}=\lim _{t \rightarrow \infty} \frac{g^{\prime}(t) f\left[k^{-1}(t)\right]}{g(t)}=0$, there exists $t_{1} \geqslant 0$ such
that

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}-L_{0} w-f(z)<0 & \text { in } \quad \Omega \times\left(t_{1}, \infty\right) \\
\frac{\partial z}{\partial t}-L_{0} z-g(w)<0 & \text { in } \quad \Omega \times\left(t_{1}, \infty\right)
\end{array}
$$

Since f and g are concave, there exists l so small that

$$
\begin{gathered}
\frac{\partial l w}{\partial t}-L_{0} l w-f(l z)<0 \\
\frac{\partial l z}{\partial t}-L_{0} l z-g(l w)<0 \quad \text { in } \quad \Omega \times\left(t_{1}, \infty\right) \\
u(x, 0)>l w\left(x, t_{1}\right), \quad v(x, 0)>l z\left(x, t_{1}\right)
\end{gathered}
$$

From the maximum principle we deduce that

$$
\lim _{t \rightarrow \infty} u(x, t)=\lim _{t \rightarrow \infty} v(x, t)=\infty
$$

uniformly in $x \in \Omega$.
(ii) Put

$$
w_{1}(x, t)=\alpha_{1}(t)+\psi_{1}(x) f\left(\beta_{1}(t)\right), \quad z_{1}(x, t)=\beta_{1}(t)+\psi_{1}(x) g\left(\alpha_{1}(t)\right)
$$

with

$$
\alpha_{1}^{\prime}(t)=\left(1-\frac{\varepsilon}{2}\right) f\left(\beta_{1}(t)\right), \quad \alpha_{1}(0)=1
$$

and

$$
\beta_{1}^{\prime}(t)=\left(1-\frac{\varepsilon}{2}\right) g\left(\alpha_{1}(t)\right), \quad \beta_{1}(0)=k(1)
$$

We have

$$
\begin{gathered}
\frac{\partial w_{1}}{\partial t}-L_{0} w_{1}-f\left(z_{1}\right)=f\left(\beta_{1}(t)\right)\left(1-\frac{\varepsilon}{2}-L_{0} \psi_{1}\right)+ \\
\left(1-\frac{\varepsilon}{2}\right) \psi_{1}(x) f^{\prime}\left(\beta_{1}(t)\right) g\left(\alpha_{1}(t)\right)-f\left(\beta_{1}(t)\right)-\psi_{1}(x) f^{\prime}\left(y_{1}\right) g\left(\alpha_{1}(t)\right) \\
\frac{\partial z_{1}}{\partial t}-L_{0} z_{1}-g\left(w_{1}\right)=g\left(\alpha_{1}(t)\right)\left(1-\frac{\varepsilon}{2}-L_{0} \psi_{1}\right)+ \\
\left(1-\frac{\varepsilon}{2}\right) \psi_{1}(x) g^{\prime}\left(\alpha_{1}(t)\right) f\left(\beta_{1}(t)\right)-g\left(\alpha_{1}(t)\right)-\psi_{1}(x) g^{\prime}\left(z_{1}\right) f\left(\beta_{1}(t)\right) \\
\frac{\partial w_{1}}{\partial N_{0}}=f\left(\beta_{1}(t)\right) \frac{\partial \psi_{1}}{\partial N_{0}}, \quad \frac{\partial z_{1}}{\partial N_{0}}=g\left(\alpha_{1}(t)\right) \frac{\partial \psi_{1}}{\partial N_{0}}
\end{gathered}
$$

with
$y_{1} \in\left[\beta_{1}(t), \beta_{1}(t)+\psi_{1}(x) g\left(\alpha_{1}(t)\right)\right]$
and

$$
z_{1} \in\left[\alpha_{1}(t), \alpha_{1}(t)+\psi_{1}(x) f\left(\beta_{1}(t)\right)\right] .
$$

Let ψ_{1} be a positive solution of the following problem:

$$
-\frac{\varepsilon}{2}-L_{0} \psi_{1}=-\delta, \quad \frac{\partial \psi_{1}}{\partial N_{0}}=-\delta .
$$

ψ_{1} exists if and only if $\delta=|\Omega| /(|\Omega|+|\partial \Omega|)(\varepsilon / 2)$. If $\varepsilon=0$ then $\delta=0$. Put $\delta(r)=|\Omega| /(|\Omega|+|\partial \Omega|) r$. We have $\delta^{\prime}(0)>0$. Then for any $\varepsilon>0$ small
enough, it follows that $\delta(\varepsilon / 2)>0$. Therefore, we obtain

$$
\begin{gathered}
\frac{\partial w_{1}}{\partial t}-L_{0} w_{1}-f\left(z_{1}\right)=-\delta f\left(\beta_{1}(t)\right)+ \\
\left(1-\frac{\varepsilon}{2}\right) \psi_{1}(x) f^{\prime}\left(\beta_{1}(t)\right) g\left(\alpha_{1}(t)\right)-\psi_{1}(x) f^{\prime}\left(y_{1}\right) g\left(\alpha_{1}(t)\right) \\
\frac{\partial z_{1}}{\partial t}-L_{0} z_{1}-g\left(w_{1}\right)=-\delta g\left(\alpha_{1}(t)\right)+ \\
\left(1-\frac{\varepsilon}{2}\right) \psi_{1}(x) g^{\prime}\left(\alpha_{1}(t)\right) f\left(\beta_{1}(t)\right)-\psi_{1}(x) g^{\prime}\left(z_{1}\right) f\left(\beta_{1}(t)\right) \\
\frac{\partial w_{1}}{\partial N_{0}}=-\delta f\left(\beta_{1}(t)\right), \quad \frac{\partial z_{1}}{\partial N_{0}}=-\delta g\left(\alpha_{1}(t)\right)
\end{gathered}
$$

Then there exists $T_{1}>0$ such that

$$
\begin{gathered}
\frac{\partial w_{1}}{\partial t}-L_{0} w_{1}-f\left(z_{1}\right)<0 \quad \text { in } \quad \Omega \times\left(T_{1}, \infty\right) \\
\frac{\partial z_{1}}{\partial t}-L_{0} z_{1}-g\left(w_{1}\right)<0 \quad \text { in } \quad \Omega \times\left(T_{1}, \infty\right) \\
\frac{\partial w_{1}}{\partial N_{0}}<0 \quad \text { on } \quad \partial \Omega \times\left(T_{1}, \infty\right) \\
\frac{\partial z_{1}}{\partial N_{0}}<0 \quad \text { on } \quad \partial \Omega \times\left(T_{1}, \infty\right)
\end{gathered}
$$

Since $\lim _{t \rightarrow \infty} u(x, t)=\lim _{t \rightarrow \infty} v(x, t)=\infty$ uniformly in $x \in \Omega$, there exists $\tau>0$ such that

$$
u(x, \tau)>w_{1}\left(x, T_{1}\right), \quad v(x, \tau)>z_{1}\left(x, T_{1}\right)
$$

From the maximum principle, we get

$$
\begin{gather*}
u(x, t+\tau) \geqslant w_{1}\left(x, t+T_{1}\right)=\alpha_{1}\left(t+T_{1}\right)+\psi_{1}(x) f\left(\beta_{1}\left(t+T_{1}\right)\right) \tag{6.2}\\
v(x, t+\tau) \geqslant z_{1}\left(x, t+T_{1}\right)=\beta_{1}\left(t+T_{1}\right)+\psi_{1}(x) g\left(\alpha_{1}\left(t+T_{1}\right)\right) \tag{6.3}
\end{gather*}
$$

Put $w_{2}(x, t)=\alpha_{2}(t)+\psi_{2}(x) f\left(\beta_{2}(t)\right), z_{2}(x, t)=\beta_{2}(t)+\psi_{2}(x) g\left(\alpha_{2}(t)\right)$ with $\alpha_{2}^{\prime}(t)=(1+\varepsilon / 2) f\left(\beta_{1}(t)\right), \alpha_{2}(0)=1$ and $\beta_{2}^{\prime}(t)=(1+\varepsilon / 2) g\left(\alpha_{1}(t)\right), \beta_{2}(0)=$
$k(1)$. We have

$$
\begin{gathered}
\frac{\partial w_{2}}{\partial t}-L_{0} w_{2}-f\left(z_{2}\right)=f\left(\beta_{1}(t)\right)\left(1+\frac{\varepsilon}{2}-L_{0} \psi_{2}\right)+ \\
\left(1+\frac{\varepsilon}{2}\right) \psi_{2}(x) f^{\prime}\left(\beta_{2}(t)\right) g\left(\alpha_{2}(t)\right)-f\left(\beta_{2}(t)\right)-\psi_{2}(x) f^{\prime}\left(y_{2}\right) g\left(\alpha_{2}(t)\right) \\
\frac{\partial z_{2}}{\partial t}-L_{0} z_{2}-g\left(w_{2}\right)=g\left(\alpha_{2}(t)\right)\left(1+\frac{\varepsilon}{2}-L_{0} \psi_{2}\right)+ \\
\left(1+\frac{\varepsilon}{2}\right) \psi_{2}(x) g^{\prime}\left(\alpha_{1}(t)\right) f\left(\beta_{2}(t)\right)-g\left(\alpha_{2}(t)\right)-\psi(x) g^{\prime}\left(z_{2}\right) f\left(\beta_{2}(t)\right) \\
\frac{\partial w_{2}}{\partial N_{0}}=f\left(\alpha_{1}(t)\right) \frac{\partial \psi_{2}}{\partial N_{0}}, \quad \frac{\partial z_{2}}{\partial N_{0}}=g\left(\alpha_{1}(t)\right) \frac{\partial \psi_{2}}{\partial N_{0}}
\end{gathered}
$$

with

$$
y_{2} \in\left[\beta_{2}(t), \beta_{2}(t)+\psi_{2}(x) g\left(\alpha_{2}(t)\right)\right]
$$

and

$$
z_{2} \in\left[\alpha_{2}(t), \alpha_{2}(t)+\psi_{2}(x) f\left(\beta_{2}(t)\right)\right]
$$

Let ψ_{2} be a positive solution of the following problem:

$$
\frac{\varepsilon}{2}-L_{0} \psi_{2}=-\mu, \quad \frac{\partial \psi_{2}}{\partial N_{0}}=-\mu
$$

ψ_{2} exists if and only if $\mu=-(\varepsilon / 2)|\Omega| /(|\Omega|+|\partial \Omega|)$. If $\varepsilon=0$ then $\delta=0$. Put $\mu(r)=-r(|\Omega| /(|\Omega|+|\partial \Omega|))$. Since $\mu(\varepsilon / 2)=\delta(-\varepsilon / 2)$ and $\delta^{\prime}(0)>0$, it follows that $\mu(\varepsilon / 2)<0$. Therefore, we obtain

$$
\begin{gathered}
\frac{\partial w_{2}}{\partial t}-L_{0} w_{2}-f\left(z_{2}\right)=-\mu f\left(\beta_{2}(t)\right)+ \\
\left(1+\frac{\varepsilon}{2}\right) \psi_{2}(x) f^{\prime}\left(\beta_{2}(t)\right) g\left(\alpha_{2}(t)\right)-\psi_{2}(x) f^{\prime}\left(y_{2}\right) g\left(\alpha_{2}(t)\right) \\
\frac{\partial z_{2}}{\partial t}-L_{0} z_{2}-g\left(w_{2}\right)=-\mu g\left(\alpha_{2}(t)\right)+ \\
\left(1+\frac{\varepsilon}{2}\right) \psi(x) g^{\prime}\left(\alpha_{2}(t)\right) f\left(\beta_{2}(t)\right)-\psi(x) g^{\prime}\left(z_{2}\right) f\left(\beta_{2}(t)\right) \\
\frac{\partial w_{2}}{\partial N_{0}}=-\mu f\left(\beta_{2}(t)\right), \quad \frac{\partial z_{2}}{\partial N_{0}}=-\mu g\left(\alpha_{2}(t)\right)
\end{gathered}
$$

Since $\lim _{t \rightarrow \infty} w_{2}(x, t)=\lim _{t \rightarrow \infty} z_{2}(x, t)=\infty$ uniformly in $x \in \Omega$, there exists $T_{2}>0$
such that

$$
u(x, \tau)<w_{2}\left(x, T_{2}\right), \quad v(x, \tau)<z_{2}\left(x, T_{2}\right)
$$

From the maximum principle, we get

$$
\begin{align*}
& u(x, t+\tau) \leqslant w_{2}\left(x, t+T_{2}\right)=\alpha_{2}\left(t+T_{2}\right)+\psi_{2}(x) f\left(\beta_{2}\left(t+T_{2}\right)\right) \tag{6.4}\\
& v(x, t+\tau) \leqslant z_{2}\left(x, t+T_{2}\right)=\beta_{2}\left(t+T_{2}\right)+\psi_{2}(x) g\left(\alpha_{2}\left(t+T_{2}\right)\right) \tag{6.5}
\end{align*}
$$

Therefore (u, v) exists globally. For any $\gamma>0$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\alpha(t-\gamma)}{\alpha(t)}=1 \tag{6.6}
\end{equation*}
$$

In fact, since $\alpha(t)$ is increasing and convex, we obtain

$$
\alpha(t)-\gamma f(k(\alpha(t))) \leqslant \alpha(t-\gamma) \leqslant \alpha(t)
$$

Moreover since by hypothesis we have $0 \leqslant \lim _{t \rightarrow \infty} f[k(\alpha(t))] / \alpha(t) \leqslant c_{2} \lim _{t \rightarrow \infty} 1 / t=0$, we deduce that $\lim _{t \rightarrow \infty} \alpha(\gamma-t) / \alpha(t)=1$. On ${ }^{t} \overrightarrow{\mathrm{th}}^{\infty}$ other hand, show that for all $\varepsilon>0$ small enough, we have

$$
\begin{equation*}
1-\frac{c_{2} \varepsilon}{2} \leqslant \liminf _{t \rightarrow \infty} \frac{\alpha_{1}(t)}{\alpha(t)} \leqslant \limsup _{t \rightarrow \infty} \frac{\alpha_{1}(t)}{\alpha(t)} \leqslant 1 \tag{6.7}
\end{equation*}
$$

In fact

$$
1 \geqslant \frac{\alpha_{1}(t)}{\alpha(t)}=\frac{H(t-(\varepsilon / 2) t)}{H(t)} \geqslant \frac{H(t)-(\varepsilon / 2) t f[k(H(t))]}{H(t)}
$$

Since $\lim _{s \rightarrow \infty} s f(k(H(s))) / H(s) \leqslant c_{2}$, we have the result. We also have

$$
\begin{equation*}
1 \leqslant \liminf _{t \rightarrow \infty} \frac{\alpha_{2}(t)}{\alpha(t)} \leqslant \limsup _{t \rightarrow \infty} \frac{\alpha_{2}(t)}{\alpha(t)} \leqslant 1+\frac{3 c_{2} \varepsilon}{2} \tag{6.8}
\end{equation*}
$$

In fact

$$
1 \leqslant \liminf _{t \rightarrow \infty} \frac{\alpha_{2}(t)}{\alpha(t)} \leqslant \limsup _{t \rightarrow \infty} \frac{\alpha_{2}(t)}{\alpha(t)} \leqslant \frac{1}{1-\left(c_{2} \varepsilon / 2(1-\varepsilon / 2)\right)} \leqslant 1+\frac{3 c_{2} \varepsilon}{2} .
$$

From (6.2)-(6.8), we deduce that for any $\varepsilon>0$ small enough, we get

$$
\begin{equation*}
1-k_{1} \varepsilon \leqslant \liminf _{t \rightarrow \infty} \frac{u(x, t)}{\alpha(t)} \leqslant \limsup _{t \rightarrow \infty} \frac{u(x, t)}{\alpha(t)} \leqslant 1+k_{2} \varepsilon \tag{6.9}
\end{equation*}
$$

where k_{1} and k_{2} are two positive constants. Then we deduce that

$$
u(x, t)=\alpha(t)(1+o(1)) \quad \text { as } \quad t \rightarrow \infty
$$

Making the same reasoning for v, we obtain

$$
v(x, t)=\beta(t)(1+o(1)) \quad \text { as } \quad t \rightarrow \infty
$$

which yields the result.
REmark 6.2. - Let $f(s)=s^{p_{1}}, g(s)=s^{q_{1}}$ with $p_{1} \leqslant 1, q_{1} \leqslant 1 . p_{1} q_{1}<1$. We have

$$
\begin{gathered}
k(s)=\left\{\frac{p_{1}+1}{q_{1}+1}\right\}^{1 /\left(p_{1}+1\right)} s^{\left(q_{1}+1\right) /\left(p_{1}+1\right)}, \\
f(k(s))=\left\{\frac{p_{1}+1}{q_{1}+1}\right\}^{p_{1} /\left(p_{1}+1\right)} s^{\left(p_{1} q_{1}+p_{1}\right) /\left(p_{1}+1\right)}, \\
g\left(k^{-1}(s)\right)=\left\{\frac{q_{1}+1}{p_{1}+1}\right\}^{q_{1} /\left(p_{1}+1\right)} s^{\left(p_{1} q_{1}+q_{1}\right) /\left(q_{1}+1\right)} .
\end{gathered}
$$

Moreover any solution (u, v) of the problem (1.1)-(1.3) initial data $\left(u_{0}, v_{0}\right)$ exists globally and

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{u(x, t)}{t^{\left(p_{1}+1\right) /\left(1-p_{1} q_{1}\right)}}=\left[\left(\frac{p_{1}+1}{q_{1}+1}\right)^{p_{1} /\left(p_{1}+1\right)}\left(\frac{1-p_{1} q_{1}}{1+p_{1}}\right)\right]^{\left(1+p_{1}\right) /\left(1-p_{1} q_{1}\right)}, \\
& \lim _{t \rightarrow \infty} \frac{v(x, t)}{t^{\left(q_{1}+1\right) /\left(1-p_{1} q_{1}\right)}}=\left[\left(\frac{q_{1}+1}{p_{1}+1}\right)^{q_{1} /\left(p_{1}+1\right)}\left(\frac{1-p_{1} q_{1}}{1+q_{1}}\right)\right]^{\left(1+q_{1}\right) /\left(1-p_{1} q_{1}\right)}
\end{aligned}
$$

7. - Blow up set.

In this section, we suppose that for positive values of s, the functions $g_{i}(s)$ are positive, increasing and convex with $g_{i}(0)=0$. Under our hypotheses, local existence and uniqueness of a classical solution for the problem (1.4)-(1.6) up to some time T_{0} can be found in [1]. Here, we are interested in the blow up and blow up set of the solutions for the problem (1.4)-(1.6). We give some conditions under which the solutions of the problem (1.4)-(1.6) blow up in a finite time and describe their blow up set.

Definition 7.1. - A function $g(s)$ is called the convex minimal function of the functions $g_{i}(s)$ if $g(s)$ is positive, continuous, and piecewise convex with $g_{i}(s) \geqslant g(s)$ in $(0, \infty)$ and $g^{\prime}(s)$ is positive and continuous in $(0, \infty)$. We write $g(s)=c m\left(g_{1}(s), \ldots, g_{m}(s)\right)$.

In an interval (α, β) with $\alpha<\beta, \alpha \in[0, \infty[$ and $\beta \in] 0, \infty], g(s)$ may be constructed in the following manner:

If $g_{i}(s) \geqslant g_{i_{0}}(s)$ in $(\alpha, \beta), i=1, \ldots, m$ for a certain $i_{0} \in\{1, \ldots, m\}$ then $g(s)=g_{i_{0}}(s)$.

If $m=2$ and $g_{1}(s)<g_{2}(s)$ in $] \alpha, s_{0}\left[, g_{1}\left(s_{0}\right)=g_{2}\left(s_{0}\right), g_{1}(s)>g_{2}(s)\right.$ in $] s_{0}, \beta[$, then a line $z=a s-b$ with positive a, b may be taken to be tangent to $g_{1}(s)$ at $s_{1} \in\left(\alpha, s_{0}\right)$ and to $g_{2}(s)$ at $s_{2} \in\left(s_{0}, \beta\right)$ for some s_{1}, s_{2}. Then $g(s)$ is given by:

$$
\begin{array}{ccc}
g(s)=g_{1}(s) & \text { in } \quad\left(\alpha, s_{1}\right), \\
g(s)=a s-b & \text { in } \quad\left(s_{1}, s_{2}\right), \\
g(s)=g_{2}(s) & \text { in } \quad\left(s_{2}, \beta\right) .
\end{array}
$$

If $g_{1}(s)=g_{2}(s)$ has more than one solution in (α, β), then $\operatorname{cm}\left(g_{1}, g_{2}\right)$ may be constructed by repeated use of the above construction. If $m \geqslant 2$, we construct at first $g_{12}=c m\left(g_{1}, g_{2}\right)$. After, we construct $g_{123}=\operatorname{cm}\left(g_{12}, g_{3}\right)$ by the method described above and by iteration, we obtain $g_{12 \ldots m}=\operatorname{cm}\left(g_{12 \ldots m-1}, g_{m}\right)$. Therefore we take $g=g_{12 \ldots m}$.

Let $m=2, g_{1}(s)=s^{p}, g_{2}(s)=s^{q}$. If $p>q$, then

$$
\begin{gathered}
c m\left(s^{p}, s^{q}\right)=s^{p} \quad \text { for } \quad 0 \leqslant s<s_{1}, \\
c m\left(s^{p}, s^{q}\right)=b s-c \quad \text { for } \\
c m\left(s_{1}^{p}, s^{q}\right)=s^{q} \quad \text { for } \quad s_{2}, \\
s_{2} \leqslant s
\end{gathered}
$$

where

$$
\begin{gathered}
s_{1}=\left(\frac{q}{p}\right)^{q /(p-q)}\left(\frac{p-1}{q-1}\right)^{(q-1) /(p-q)}, \\
s_{2}=\left(\frac{q}{p}\right)^{q /(p-q)}\left(\frac{p-1}{q-1}\right)^{(p-1) /(p-q)}, \\
b=\frac{q^{(q(p-1) /(p-q))}}{p^{(p(q-1) /(p-q))}}\left(\frac{p-1}{q-1}\right)^{((q-1)(p-1) /(p-q))}, \\
c=\left(\frac{q}{p}\right)^{q p /(p-q)} \frac{(p-1)^{(q(p-1) /(p-q))}}{(q-1)^{(p(q-1) /(p-q))}}, \\
c<b<c+1 .
\end{gathered}
$$

If $p=q$, then $c m\left(s^{p}, s^{q}\right)=s^{p}$.

Theorem 7.2. - Suppose that $L_{0} u_{0}^{(i)}(x)-a(x) u_{0}^{(i)}(x)>0$ and

$$
\int^{\infty} \frac{d s}{c m\left(g_{1}(s), \ldots, g_{m}(s)\right)}<\infty
$$

Then, any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.4)-(1.6) blows up in a finite time T and there exists a positive constant δ such that

$$
\sum_{i=1}^{m} \frac{1}{m} \sup _{x \in \Omega} u_{i}(x, t) \leqslant G_{p}(\delta(T-t))
$$

where G_{p} is the inverse function of $G_{*}(s)=\int_{s}^{\infty} \frac{d \sigma}{c m\left(g_{1}(\sigma), \ldots, g_{m}(\sigma)\right)}$.
Proof. - Let $w_{i}=u_{i t}$. Since $L_{0} u_{0}^{(i)}(x)-a(x) u_{0}^{(i)}(x)>0$, we have $w_{i}(x, 0)>0$. Therefore $w_{i}(i=1, \ldots, m)$ satisfy the following relations

$$
\begin{equation*}
w_{i t}-L_{0} w_{i}=-a(x) w_{i} \quad \text { in } \quad \Omega \times(0, T) \tag{7.1}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial w_{i}}{\partial N_{0}}+b(x) w_{i}=g_{i}^{\prime}\left(u_{i+1}\right) w_{i+1} \quad \text { on } \quad \partial \Omega \times(0, T) \tag{7.2}\\
w_{i}(x, 0)>0 \quad \text { in } \quad \Omega \tag{7.3}
\end{gather*}
$$

From the maximum principle, there exists a number c such that

$$
\begin{equation*}
u_{i t}(x, t) \geqslant c>0 \quad \text { in } \quad \Omega \times\left(\varepsilon_{0}, T\right) \tag{7.4}
\end{equation*}
$$

for $\varepsilon_{0}>0$. Put

$$
\begin{equation*}
J_{i}(x, t)=u_{i t}-\delta g_{i}\left(u_{i+1}\right) . \tag{7.5}
\end{equation*}
$$

We have

$$
\begin{align*}
& J_{i t}-L_{0} J_{i}=\left(u_{i t}-L_{0} u_{i}\right)_{t}-\delta g_{i}^{\prime}\left(u_{i+1}\right)\left(u_{(i+1) t}-L_{0} u_{i+1}\right)+ \tag{7.6}\\
& \delta g_{i}^{\prime \prime}\left(u_{i+1}\right) \sum_{k, j=1}^{n} a_{k j}^{(0)}(x) \frac{\partial u_{i+1}}{\partial x_{k}} \frac{\partial u_{i+1}}{\partial x_{j}}=-\alpha(x) J_{i}+ \\
& a(x) \delta\left[g_{i}^{\prime}\left(u_{i+1}\right) u_{i+1}-g_{i}\left(u_{i+1}\right)\right]+\delta g_{i}^{\prime \prime}\left(u_{i+1}\right) \sum_{k, j=1}^{n} a_{k j}^{(0)}(x) \frac{\partial u_{i+1}}{\partial x_{k}} \frac{\partial u_{i+1}}{\partial x_{j}},
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial J_{i}}{\partial N_{0}}+b(x) J_{i}= \tag{7.7}\\
& g_{i}^{\prime}\left(u_{i+1}\right) J_{i+1}+\delta b(x)\left[g_{i}^{\prime}\left(u_{i+1}\right) u_{i+1}-g_{i}\left(u_{i+1}\right)\right] \quad \text { on } \quad \partial \Omega \times(0, T)
\end{align*}
$$

Since for positive values of s, the functions $g_{i}(s)$ are convex with $g_{i}(0)=0$,
from (7.6) and (7.7), we obtain

$$
\begin{equation*}
J_{i t}-L_{0} J_{i}+a(x) J_{i} \geqslant 0 \quad \text { in } \quad \Omega \times(0, T), \tag{7.8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial J_{i}}{\partial N_{0}}+b(x) J_{i} \geqslant g_{i}^{\prime}\left(u_{i+1}\right) J_{i+1} \quad \text { on } \quad \partial \Omega \times(0, T) \tag{7.9}
\end{equation*}
$$

From (7.4) and (7.5), take δ small enough that

$$
\begin{equation*}
J_{i}\left(x, \varepsilon_{0}\right)>0 \quad \text { in } \quad \Omega \tag{7.10}
\end{equation*}
$$

From the maximum principle, we have

$$
\begin{equation*}
u_{i t} \geqslant \delta g_{i}\left(u_{i+1}\right) \quad \text { in } \quad \Omega \times\left(\varepsilon_{0}, T\right) \tag{7.11}
\end{equation*}
$$

Put $w(x, t)=\frac{1}{m} \sum_{i=1}^{m} u_{i}$ and $g(s)=c m\left(g_{1}(s), \ldots, g_{m}(s)\right)$. From (7.11) and by the
definition of $g(s)$, we get

$$
\begin{equation*}
w_{t} \geqslant \delta \sum_{i=1}^{m} \frac{1}{m} g\left(u_{i+1}\right) \geqslant \delta g(w) \tag{7.12}
\end{equation*}
$$

The inequality (7.12) implies that

$$
\begin{equation*}
-\left(G_{*}(w)\right)_{t}=\frac{w_{t}}{g(w)} \geqslant \delta \tag{7.13}
\end{equation*}
$$

Integrating (7.13) over (ε_{0}, T), it follows that

$$
\begin{equation*}
\infty>G_{*}\left(w\left(x, \varepsilon_{0}\right)\right) \geqslant G_{*}\left(w\left(x, \varepsilon_{0}\right)\right)-G_{*}(w(x, T)) \geqslant \delta\left(T-\varepsilon_{0}\right) \tag{7.14}
\end{equation*}
$$

This implies that T is finite and w blows up in a finite time T. On the other hand, integrating (7.13) over (t, T), we see that

$$
\begin{equation*}
G_{*}(w(x, t)) \geqslant G_{*}(w(x, t))-G_{*}(w(x, T)) \geqslant \delta(T-t) . \tag{7.15}
\end{equation*}
$$

Since G_{*} is decreasing, then its inverse function G_{p} is also decreasing and from (7.15), we obtain

$$
w(x, t) \leqslant G_{p}[\delta(T-t)]
$$

which gives the result.
Theorem 7.3. - Under the hypotheses of Theorem 7.2, suppose that there exists a positive constant C_{0} such that

$$
s g^{\prime}\left(G_{p}(s)\right) \leqslant C_{0} \quad \text { for } \quad s>0
$$

where $g(s)=\operatorname{cm}\left(g_{1}(s), \ldots, g_{m}(s)\right)$. Then any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the
problem (1.4)-(1.6) blows up in a finite time T and $E_{B} \subset \partial \Omega$, where E_{B} is the blow up set of the solution $\left(u_{1}, \ldots, u_{m}\right)$.

Proof. - By Theorem 7.2, we know that $\left(u_{1}, \ldots, u_{m}\right)$ blows up in a finite time T. Thus our aim in this proof is to show that $E_{B} \subset \partial \Omega$. Let $d(x)=$ $\operatorname{dist}(x, \partial \Omega)$ and $v(x)=d^{2}(x)$ for $x \in N_{\varepsilon}(\partial \Omega)$ where

$$
N_{\varepsilon}(\partial \Omega)=\{x \in \Omega \text { such that } d(x)<\varepsilon\} .
$$

Since $\partial \Omega$ is of class C^{2}, then the function $v(x) \in C^{2}\left(\overline{N_{\varepsilon}(\partial \Omega)}\right)$ if ε is sufficiently small. On $\partial \Omega$, we have

$$
\begin{aligned}
& L_{0} v-\frac{C_{0}}{v} \sum_{i, j=1}^{n} a_{i j}^{(0)}(x) v_{x_{i}} v_{x_{j}}= \\
& \sum_{i=1}^{n} a_{i i}^{(0)}(x) v_{x_{i} x_{i}}+\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial a_{i j}^{(0)}(x)}{\partial x_{j}}\right) v_{x_{i}}-\frac{C_{0}}{v} \sum_{i, j=1}^{n} a_{i j}^{(0)} v_{x_{i}} v_{x_{j}}= \\
& 2 \sum_{i=1}^{n} a_{i i}^{(0)}(x)+2 d \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial a_{i j}^{(0)}(x)}{\partial x_{j}}\right) d_{x_{i}}-4 C_{0} \sum_{i, j=1}^{n} a_{i j}^{(0)}(x) d_{x_{i}} d_{x_{j}} \geqslant \\
& -2 \sum_{i=1}^{n}\left|a_{i i}^{(0)}(x)\right|-2 d^{\prime} \sum_{i=1}^{n}\left|\sum_{j=1}^{n} \frac{\partial a_{i j}^{(0)}(x)}{\partial x_{j}}\right||\nabla d|-4 C_{0} \lambda_{2}^{(0)}|\nabla d|^{2}
\end{aligned}
$$

where $d^{\prime}=\sup _{\bar{\Omega}}\|x-y\|$. Therefore, there exists a positive constant C_{1} such that

$$
\begin{equation*}
L_{0} v-\frac{C_{0}}{v} \sum_{i, j=1}^{n} a_{i j}^{(0)} v_{x_{i}} v_{x_{j}} \geqslant-C_{1} \quad \text { on } \quad \partial \Omega \tag{7.16}
\end{equation*}
$$

Since $v \in C^{2}\left(\overline{N_{\varepsilon}(\partial \Omega)}\right)$ for ε sufficiently small, let ε_{0} be so small that

$$
\begin{equation*}
L_{0} v-\frac{C_{0}}{v} \sum_{i, j=1}^{n} a_{i j}^{(0)} v_{x_{i}} v_{x_{j}} \geqslant-2 C_{1} \quad \text { in } \quad \overline{N_{\varepsilon_{0}}(\partial \Omega)} . \tag{7.17}
\end{equation*}
$$

We extend v to a function of class $C^{2}(\bar{\Omega})$ such that $v \geqslant C_{0}^{*}>0$ in $\overline{\Omega-N_{\varepsilon_{0}}(\partial \Omega)}$. Therefore, we deduce that

$$
\begin{equation*}
L_{0} v-\frac{C_{0}}{v} \sum_{i, j=1}^{n} a_{i j}^{(0)}(x) v_{x_{i}} v_{x_{j}} \geqslant-C^{*} \quad \text { in } \quad \bar{\Omega} \tag{7.18}
\end{equation*}
$$

for some $C^{*}>0$. Multiplying (7.18) by ε small enough, we may assume without loss of generality that $C^{*}<1$. Put $w_{*}(x, t)=C_{1} G_{p}(\tau)$ where $\tau=\delta(v(x)+$
$\left.C^{*}(T-t)\right)$ and $C_{1}>1$ is a constant which will be indicated later. We get

$$
\begin{equation*}
w_{* t}-L_{0} w_{*}=-\delta C_{1} G_{p}^{\prime}(\tau)\left[C^{*}+L_{0} v+\delta \frac{G_{p}^{\prime \prime}(\tau)}{G_{p}^{\prime}(\tau)} \sum_{i, j=1}^{n} a_{i j}^{(0)}(x) v_{x_{i}} v_{x_{j}}\right] \tag{7.19}
\end{equation*}
$$

Since $G_{p}(s)$ is the inverse function of $G(s)$, we have $G_{p}^{\prime}(s)=-g\left(G_{p}(s)\right)$ and $G_{p}^{\prime \prime}(s)=-G_{p}^{\prime}(s) g^{\prime}\left(G_{p}(s)\right)$. Consequently

$$
\begin{equation*}
w_{* t}-L_{0} w_{*}=\delta C_{1} g\left(G_{p}(s)\right)\left[C^{*}+L_{0} v-\delta g^{\prime}\left(G_{p}(\tau)\right) \sum_{i, j=1}^{n} a_{i j}^{(0)}(x) v_{x_{i}} v_{x_{j}}\right] \tag{7.20}
\end{equation*}
$$

Since $s g^{\prime}\left(G_{p}(s)\right) \leqslant C_{0}$ for $s>0$, using the fact that $g^{\prime}\left(G_{p}(s)\right)$ is a decreasing function (g^{\prime} is increasing and G_{p} is decreasing), we have
(7.21) $w_{* t}-L_{0} w_{*} \geqslant \delta C_{1} g\left(G_{p}(\tau)\right)\left[C^{*}+L_{0} v-\frac{C_{0}}{v} \sum_{i, j=1}^{n} a_{i j}^{(0)}(x) v_{x_{i}} v_{x_{j}}\right]$.

Therefore from (7.18), we deduce that

$$
\begin{equation*}
w_{* t}-L_{0} w_{*}+a(x) w_{*} \geqslant 0 \quad \text { in } \quad \Omega \times\left(\varepsilon_{0}, T\right) . \tag{7.22}
\end{equation*}
$$

On $\partial \Omega$, we have $w_{*}(x, t)=C_{1} G_{p}\left(\delta C^{*}(T-t)\right)>G_{p}(\delta(T-t))$ because $C_{1}>1$ and $C^{*}<1$. Then by Theorem 7.2, we obtain

$$
\begin{equation*}
w_{*}(x, t)>\sum_{i=1}^{m} \frac{1}{m} u_{i}(x, t) \quad \text { on } \quad \partial \Omega \times\left(\varepsilon_{0}, T\right) \tag{7.23}
\end{equation*}
$$

Choose C_{1} large enough that

$$
\begin{equation*}
w_{*}\left(x, \varepsilon_{0}\right)=C_{1} G_{p}\left(\delta\left(v(x)+C^{*}\left(T-\varepsilon_{0}\right)\right)\right)>\sum_{i=1}^{m} \frac{1}{m} u_{i}\left(x, \varepsilon_{0}\right) \tag{7.24}
\end{equation*}
$$

Consequently, from the maximum principle we deduce that

$$
\sum_{i=1}^{m} \frac{1}{m} u_{i}(x, t)<w_{*}(x, t) \quad \text { in } \quad \Omega \times\left(\varepsilon_{0}, T\right) .
$$

Then if Ω^{\prime} сс Ω we have

$$
\sum_{i=1}^{m} \frac{1}{m} u_{i}(x, t) \leqslant C_{1} G_{p}\left(\delta\left(v(x)+C^{*}(T-t)\right)\right) \leqslant C_{1} G_{p}(\delta v(x)) .
$$

It follows that

$$
\sum_{i=1}^{m} \frac{1}{m} \sup _{x \in \Omega^{\prime}, t \in\left[\varepsilon_{0}, T\right)} u_{i}(x, t) \leqslant \sup _{x \in \Omega^{\prime}} C_{1} G_{p}(\delta v(x))<\infty,
$$

which yields the result.

Corollary 7.4. - Let $g_{i}(s)=s^{p_{i}}$, where $p_{i}>1$. Suppose that $L_{0} u_{0}^{(i)}(x)-$ $a(x) u_{0}^{(i)}(x)>0$. Then any solution $\left(u_{1}, \ldots, u_{m}\right)$ of the problem (1.4)-(1.6) blows up in a finite time and we have $E_{B} \subset \partial \Omega$ where E_{B} is the blow up set of the solution $\left(u_{1}, \ldots, u_{m}\right)$.

REFERENCES

[1] H. Amann, Dynamic theory of quasilinear parabolic systems III global existence, Math. Z., 202, 2 (1989), 219-254.
[2] T. K. Boni, Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre, C. R. Acad. Paris, t. 326, Série I (1998), 317-322.
[3] K. Deng, Global existence and blow up for a system of heat equations with a nonlinear boundary conditions, Math. Meth. in the Appl. Sci., 18 (1995), 307-315.
[4] M. Escobedo - M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. pura applicata, (IV), Vol. CLXV (1993), 315-336.
[5] M. Escobedo - H. A. Levine, Critical blow up and global existence for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal., 129 (1995), 47-100.
[6] J. Escher, Global existence and nonexistance for parabolic systems with nonlinear boundary conditions, Math. Ann., 284 (1989), 285-305.
[7] L. Gang - B. D. Sleeman, Non-existence of global solutions to systems of semi-linear parabolic equations, Jour. of Diff. Equat., 104 (1993), 147-168.
[8] C. J. Holland, Limiting behavior of a class of nonlinear reaction diffusion equations, Quaterly of Applied Mathematics, 3, Vol. XL (1982), 293-296.
[9] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer (1981).
[10] H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, Jour. of Diff. Equat., 16 (1974), 319-334.
[11] M. H. Protter - H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ (1967).
[12] J. Rossi - N. Wolanski, Blow-up vs. global existence for a semilinear reactiondiffusion system in a bounded domain, Commun. in PDE., 20 (11 and 12), (1995), 1991-2004.
[13] W. Walter, Differential- und integral-ungleichungen, Springer, Berlin (1964).
Université Paul Sabatier, UFR-MIG, MIP, 118 route de Narbonne, 31062 Toulouse, France

[^0]
[^0]: Pervenuta in Redazione
 il 29 luglio 1998

