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Bollettino U. M. I.
(8) 3-B (2000), 347-365

Relationship of Certain Rings
of Infinite Matrices over Integers.

MARIO PETRICH (*) - PEDRO V. SILVA (**)

Sunto. – Sia N l’insieme degli interi non negativi e Z l’anello degli interi. Sia A l’anel-
lo delle matrici N3N su Z che hanno solo un numero finito di cifre non nulle in
ogni linea ed in ogni colonna. Sia B il sottoanello generato da X e Y , dove X (rispet-
tivamente Y) è ottenuto dalla matrice identità muovendo gli 1 una posizione a de-
stra (rispettivamente in giù). Sia pure C il sottoanello di A generato da 12X e 12
Y . Infine sia F il sottoanello delle matrici di A che hanno solo un numero finito di
cifre non nulle. Consideriamo estensioni essenziali di anelli e l’immersione usuale
di un anello in un anello unitario (chiamata qui l’immersione di Dorroh). Usando
questi concetti, mostriamo che A è una estensione essenziale massimale di tutti i
suoi ideali che contengono F. Mostriamo inoltre che B è una estensione di Dorroh
di C , che è l’idealizer di C in A e anche che è una estensione essenziale massimale
di tutti i suoi ideali che contengono C.

1. – Introduction and summary.

A ring R with identity 1 is said to be directly finite if for any a , b�R , ab4

1 implies ba41; otherwise R is directly infinite. Let N be the set of nonnega-
tive integers. We are primarily interested in the ring B of N3N matrices
over the ring Z of integers generated by two elements: one obtained by shift-
ing the ones of the identity matrix one position to the right, call it X , and the
other one one position down, call it Y . This ring appears in ([3], p. 263). If in a
unitary ring R we have a pair of elements a , b such that ab41 cba , then as
we have seen in [8] there exists a homomorphism of B onto the ring R(a , b)
generated by a and b whose kernel does not contain the matrix with 1 in the
(0,0)-position and 0 elsewhere. Conversely, every homomorphism of this kind
produces a pair of elements a , b�R such that ab41 cba . Therefore such ho-
momorphisms characterize directly infinite rings.

Another interesting ring is obtained by taking the subring C of B generat-
ed by P412X and Q412Y , with X and Y defined above. This ring plays
the same role as B for directly infinite rings but for the following class of
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rings. A ring R is said to be quasi directly finite if for any a , b�R , a1b4ab
implies that ab4ba; otherwise R is quasi directly infinite. In the case of a uni-
tary ring, the concepts of directly finite and quasi directly finite coincide. This
notion and result are due to Munn [4]. For further characterizations and the
result for quasi directly infinite rings corresponding to the one quoted above
for directly infinite rings, consult [9].

There are two further rings that arise naturally in this study, see [8] and
[9]. The first one is the ring F of all N3N matrices over Z with only a finite
number of nonzero entries. The second one is the ring A of all N3N matrices
over Z with only a finite number of nonzero entries in each row and each col-
umn. In comparison with the rings discussed above, we have the hierarchy

F % C % B % A ,

and, obviously, F is an ideal of A (and thus of both B and C ). Note that addi-
tion of members of A is by components while the multiplication is that of usual
(finite) matrices where the sum of infinitely many zeros is set equal to zero.
We have devoted [10] to the properties of the ring B.

Essential extensions of rings with trivial annihilator are treated in Section
2 in some detail. The usual embedding of a ring into a unitary one, here called
the Dorroh extension, is discussed in Section 3. Section 4 contains a minimum
of notation and terminology needed in the remainder of the paper. These sec-
tions form preparation for the main body of the paper dealing with the rings
mentioned above. The mutual relationship of the rings A and F is investigated
in Section 5 with some statements concerning all nonzero ideals of A. We con-
clude in Section 6 with exploration of the mutual relationship between rings B

and C. In both of the last two sections, the translational hull of a ring plays a
central role.

2. – Essential extensions.

We prove here a general result concerning these extensions. In Sections 5
and 6, we shall deduce the relevant conclusions concerning the rings A, B, C

and F. Partly analogous to the semigroup case (see [5], Chapter III), we state
the following items.

Let R be a ring. A transformation l of R is a left translation of
R if it is an additive homomorphism and l(xy) 4 (lx) y for all x , y�R;
a right translation of R is an additive homomorphism of R with the
property (xy) r4x(yr) for all x , y�R . The set L(R) (respectively, P(R))
of all left (respectively, right) translations of R under composition of
operations on the left (respectively, right) is a unitary ring. For l�L(R)
and r�P(R), the pair (l , r) is a bitranslation of R if x(ly) 4 (xr)y for
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all x , y�R . The set V(R) of all bitranslations is a unitary subring of
L(R)3P(R), the translational hull of R .

For every r�R , define the mappings l r and r r by l r x4rx and xr r 4xr
for all x�R , respectively. Then p r 4 (l r , r r ) is the inner bitranslation of R
induced by r . The set P(R) of all inner bitranslations of R is an ideal of
V(R).

Let R be an ideal of a ring E . Regarding E as an extension of R , we shall
need the following. For every a�E , let

l a 4l aNR , r a 4r a NR , t a 4 (l a , r a ) .

Then the mapping

t(E : R) : EKV(R) , a O t a (E : R) 4t a

is the canonical homomorphism of E into V(R). Its image is denoted by
T(E : R) and called the type of the extension E of R . The kernel of t(R : R),
namely the set

Q (R) 4 ]r�RNrx4xr40 for all x�R(

is the annihilator of R . If Q (R) 4 (0), then R has trivial annihilator. The
ideal R of E is large in E if R has nonzero intersection with every nonzero ideal
of E . In such a case, E is an essential extension of R . If in addition R has no
essential extension strictly containing E , then E is a maximal essential exten-
sion of R . If E 8 is another extension of R , then the extensions E and E 8 are
equivalent if there exists an isomorphism W : EKE 8 which leaves all ele-
ments of R fixed.

The semigroup version of the following theorem is known (see, e.g., [5],
Chapter III) but a ring theoretical version does not seem to have a convenient
reference, see ([7], Proposition 5) and the relevant discussion.

THEOREM 2.1. – Let R be an ideal of a ring E and assume that
Q (R) 4 (0).

(i) The ring E is an essential extension of R if and only if t(E : R) is
injective.

(ii) Let E 8 be another extension of R . If E and E 8 are equivalent exten-
sions of R , then T(E : R) 4T(E 8 : R). The converse holds if both E and E 8 are
essential extensions of R .

(iii) The ring E is a maximal essential extension of R if and only if
t(E : R) is an isomorphism of E onto V(R).

(iv) The ring R has a maximal essential extension. Any two maximal es-
sential extensions are equivalent.
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PROOF. – (i) Necessity. Let t4t(E : R) and I4 ker t . If a�IOR , then for
any r�R , we have ar4l a r4l a NR r40 and similarly ra40 so that a�
Q (R) 4 (0). Hence IOR4 (0) and the hypothesis implies that I4 (0). There-
fore t is injective.

Sufficiency. Let J be an ideal of E for which ROJ4 (0). Then RJ4JR4

(0) and thus, for any a�J , ar4ra40 for all r�R which yields t a (E : R) 40
and the hypothesis gives that a40. Therefore J4 (0), that is R is large in E ,
and E is an essential extension of R .

(ii) Let W : EKE 8 be an isomorphism which fixes all elements of R and let
a�E . Then for (l a , r a ) �P(E) and (l 8aW , r 8aW ) �P(E 8 ), we have

t a (E : R) 4 (l a NR , r a NR ) , t aW (E 8 : R) 4 (l 8aW NR , r 8aW NR ) .

It follows that for any r�R , we have

ar4 (ar) W4 (aW)(rW) 4 (aW) r

which proves that l a NR 4l 8aW NR ; similarly we get r a NR 4r 8aW NR . Hence
t a (E : R) 4t aW (E 8 : R) whence follows the assertion.

Conversely, assume that both E and E 8 are essential extensions of R and
that T(E : R) 4T(E 8 : R). Then by part (i),

t4t(E : R) (t(E 8 : R) )21

is an isomorphism of E onto E 8 such that for any r�R , we have

rt4t r (E : R) (t rW (E 8 : R) )21 4r .

Therefore E and E 8 are equivalent extensions of R .
(iii) Necessity. By part (i), the mapping t(E : R) is an isomorphism of R

onto a subring Y of V(R) containing P(R). Assume that TcV(R). We can
then let E 84EN (V(R)0T) and define the ring structure on E 8 in a standard
way. It follows by direct verification that E 8 is an essential extension of R with
the property that E%E 8 . This contradicts the maximality of E . Therefore
T4V(R).

Sufficiency. By hypothesis T(E : R) 4V(R) and by part (i), E is an essen-
tial extension of R . Let E 8 be an essential extension of R such that E’E 8 .
Then clearly T(E : R) ’T(E 8 : R) whence T(E 8 : R) 4V(R). Also by part (i),
t(E 8 : R) is injective which then yields that E4E 8 . Consequently E is a maxi-
mal essential extension of R .

(iv) This follows directly from parts (ii) and (iii). r

There are further useful statements we can make about rings with trivial
annihilator.
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PROPOSITION 2.2. – Let R be a ring with Q (R) 4 (0).

(i) The types of extensions of R coincide with subrings of V(R) contain-
ing P(R).

(ii) Classes of equivalent essential extensions of R are in one-to-one
correspondence with subrings of V(R) containing P(R) and thus also with
subrings of V(R)OP(R).

(iii) If R is unitary ring, then V(R) 4P(R) and R has no proper essen-
tial extensions.

PROOF. – (i) First note that a type of extension is a subring of V(R) contain-
ing P(R). Conversely, let K be a subring of V(R) containing P(R). We can de-
fine the structure of a ring on the set E4RN (K0P(R) ) in a standard way.
Direct checking will show that T(E : R)4K so that K is a type of extension of R .

(ii) This follows directly from part (i) and Theorem 2.1(ii).

(iii) Let (l , r) �V(R) and r�R . Then

lr4l(1r) 4 (l1)r4l l1 r

so that l4l l1 ; analogously r4r 1r . Further,

l1 41(l1) 4 (1r) 1 41r

and thus (l , r) 4p l1 �P(R). The assertion now follows from part
(ii). r

LEMMA 2.3. – Let R be a ring in which every element has a left and a right
identity. Let E be a maximal essential extension of R and I be an ideal of E
containing R . Then E is a maximal essential extension of I .

PROOF We know by Theorem 2.1(iv) that Q (R) 4 (0) implies that E exists.
Since R is large in E so is I . Hence E is an essential extension of I . Also note
that Q (R) 4 (0) implies that Q (I) 4 (0). We must show that t(E : I) is surjec-
tive. Let v4 (l , r) �V(I). For any a�R , let l be a left identity and r be a
right identity of a . Then

la4l(ar) 4 (la) r�R , ar4 (la) r4 l(ar) �R

since R is an ideal of I . Hence l and r map R onto R so that (lNR , rNR ) �V(R).
Let l 84lNR , r 84rNR and v 84 (l 8 , r 8 ).

Since E is a maximal essential extension of R , there exists e�E such that
t e (E : R) 4v 8 . This means that

l 8 x4ex , xr 84xe (x�R) ,
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so by the definition of l 8 and r 8 , we have

lx4ex , xr4xe (x�R) .

Now let a�I . For any x�R , we obtain

(la) x4l(ax) 4e(ax) 4 (ea) x

x(la) 4 (xr) a4 (xe) a4x(ea)

and thus la2ea� Q (R) 4 (0) whence la4ea . Analogously ar4ae which
shows that v4t e (E : I). Therefore t(E : I) is surjective and E is a maximal
essential extension of I . r

Lemma 2.3 directly implies ([6], Theorems I.7.10 and I.7.13). The first of
these references is valid for dense extensions of semigroups but Lemma 2.3
has an obvious analogue in that case.

The following converse of Theorem 2.1(iv) was proved by Shevrin [12].

LEMMA 2.4. – If a ring R has nontrivial annihilator, then R has no maximal
essential extension.

Combining this with Theorem 2.1(iv), we obtain that a ring R has a maximal
essential extension if and only if Q (R) 4 (0).

3. – The Dorroh extension.

That every ring can be embedded into a unitary ring was first proved by
Dorroh [1]. This embedding is now standard which we formalize as follows.
Given a ring R , let D (R) 4R3Z with coordinatewise addition and multiplica-
tion defined by

(a , m)(b , n) 4 (ab1mb1na , mn) .

We call D (R) the Dorroh extension of R and refer to the mapping

d(R) : RKD (R) , r O (r , 0 )

as the canonical embedding of R into D (R).
Note that (0 , 1 ) is the identity of D (R). We may identify R with its image

under d(R). We do this in the following modification of the definition of equiv-
alence of extensions. Let R be an ideal of a (unitary) ring U . Then U is equiva-
lent to D (R) if there exists an isomorphism W : UKD (R) such that WNR 4

d(R).
With these concepts, we have the following characterization of the Dorroh

extension.
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PROPOSITION 3.1. – Let E be a ring with identity 1, R an ideal of E , U the
subring of E generated by the set RN ]1( and G the additive group generat-
ed by 1. Then

U4 ]r1n1Nr�R , n�Z( .

Moreover, U is equivalent to D (R) if and only if G is torsion free and
GOR4 (0).

PROOF. – The first assertion as well as the necessity part of the second re-
quire straightforward verification. Assume that G is torsion free and GOR4

(0). First let a , b�R and m , n�Z be such that a1m1 4b1n1. It follows
from the hypothesis that

(m2n) 1 4b2a�GOR4 (0)

so that (m2n) 1 40 and a4b . The hypothesis further implies that m2n40
and thus m4n .

Hence we may define a function

W : UKD (R) , r1m1 O (r , m) .

We get

(a1m1) W(b1n1) W4 (a , m)(b , n) 4 (ab1mb1na , mn)

4 (ab1mb1na1 (mn) 1) W4 ((a1m1)(b1n1)) W

and similarly for addition. Hence W is a homomorphism. Clearly, W is both in-
jective and surjective, and WNR 4d(R). Therefore U and D (R) are equiva-
lent. r

We now prove the main result of this section.

THEOREM 3.2. – Let D4D (R) be the Dorroh extension of a ring R . For
n�N , let

In 4 ](r , nk)Nr�R , k�Z( .

(i) ]In Nn�N( is the set of all proper ideals of D containing I0 .

(ii) If D is a maximal essential extension of I0 , then it is also a maximal
essential extension of In for all nD0.

PROOF. – (i) The function

W : DKZ , (r , n) O n

is essentially the natural homomorphism of D onto DOI0 . It is easy to verify
that for any n�N we have (nZ) W21 4In . By the correspondence of ideals of
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D containing I0 and ideals of DOI0 and the knowledge of ideals of Z , we con-
clude the correctness of the assertion of that part of the theorem.

(ii) Suppose that D is a maximal essential extension of I0 . By Lemma 2.4,
we have Q (I0 ) 4 (0) and by the isomorphism d(R), also Q (R) 4 (0).

Let n�N . By hypothesis I0 is large in D and hence so is In and thus D is an
essential extension of In . Also Q (I0 ) 4 (0) implies that Q (In ) 4 (0). Let t4

t(D : In ). By Theorem 2.1(i), t is injective. To prove the claim it remains to
show that t is also surjective.

Let (l , r) �V(In ). For any (a , 0 ), (b , m) �In we obtain

(a , 0 ) (l(b , m) )4 (c , 0 ) , ((a , 0 ) r)(b , m) 4 (d , n)(b , m)

for some c , d�R and n�Z . The equality of these two expressions implies that
nm40. Since we may take mc0, it follows that n40. Thus (a , 0 )r4 (d , 0 )
for some d�R . One similarly obtains that l(a , 0 ) 4 (e , 0 ) for some e�R . It
follows that l and r map I0 into itself and thus (lNI0

, rNI0
) �V(I0 ).

By hypothesis, D is a maximal essential extension of I0 which by Theorem
2.1(iii) yields that there exists an element (a , k) �D such that

t (a , k) (D : I0 ) 4 (lNI0
, rNI0

) .

This means that for any r�R , we have

l(r , 0 ) 4 (a , k)(r , 0 ) , (r , 0 ) r4 (r , 0 )(a , k) .

Now let (b , m) �In . Then for any r�R , we obtain

(l(b , m) )(r , 0 )(r , 0 ) (l(b , m) )4

4l((b , m)(r , 0 ) )4 (a , k) ((b , m)(r , 0 ) )4 ((a , k)(b , m) )(r , 0 ) ,

((r , 0 )r)(b , m) 4 ((r , 0 )(a , k) )(b , m) 4 (r , 0 ) ((a , k)(b , m) )

and thus l(b , m)2 (a , k)(b , m) � Q (I0 ). We have remarked above that
Q (I0 ) 4 (0) and hence l(b , m) 4 (a , k)(b , m). One shows similarly that
(b , m) r4 (b , m)(a , k). Therefore t (a , k) 4 (l , r) and t is surjective.

We have proved that t is an isomorphism of D onto V(In ) and have seen
also that Q (In ) 4 (0). Theorem 2.1(iii) now yields that D is a maximal essential
extension of In . r

We conclude this section with the following simple statement.

LEMMA 3.3. – Let R be a ring and I a proper ideal of D (R) containing I0 .

(i) E(I) 4E(I0 ).

(ii) Every ideal of I0 is also an ideal of I .
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PROOF. – (i) Let (r , n) �E(D (R) ) . Then

(r , n)2 4 (r 2 12nr , n 2 ) 4 (r , n)

if and only if n40 and r 2 4r or n41 and r 2 1r40. In the first case (r , 0 ) �
I0 and in the second case (r , 1 ) �I since I is proper. The assertion fol-
lows.

(ii) Let J be an ideal of I0 , (a , 0 ) �J and (x , n) �I . Then

(a , 0 )(x , n) 4 (ax1na , 0 ) 4 (a , 0 )(x , 0 )1n(a , 0 ) �J

and so JI’J . Similarly, IJ’J and J is an ideal of I . r

4. – Terminology and notation.

For symbolism and concepts in rings, we follow [2]. In addition, we shall
need the following.

Given a ring R , we denote by E(R) the set of its idempotents. Let N4

]0, 1 , 2 , R(. For n�N , we write n 4 ]0, R , n(. The letter Z stands for the
ring of integers; Mn (Z) for the ring of n3n matrices over Z; In for the identi-
ty of Mn (Z); A for the ring of all N3N matrices over Z with only a finite num-
ber of nonzero entries in each row and each column; am , nb for the matrix in A

with 1 in the (m1 t , n1 t)-position for t40, 1 , 2 , R and 0 elsewhere. In par-
ticular, a0, 0 b 41. If A4 (aij ) is any matrix over Z and k�Z , we define kA4

(kaij ) as usual. A ray matrix is a matrix of the form kam , nb with k�Z0]0(.
We also write [m , n] for the matrix in A with 1 in the (m , n)-position and 0
elsewhere. Note that

[m , n] 4 am , nb2 am11, n11 b .

Two ray matrices without a nonzero entry in the same position are said to be
disjoint. A usual m3n matrix A over Z is a finite matrix; we denote by A 0

the matrix in A in which A takes up the upper left corner and the rest is filled
with zeros. Let

F 4 ]A 0NA is a finite matrix over Z(

and B be the subring of A generated by the matrices a0, 1 b and a1, 0 b.
We start with two lemmas from ([8], Section 3).

LEMMA 4.1. – For any m , n , p , q�N , we have

am , nbap , qb 4 am1p2r , n1q2rb ,
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where r4 min ]n , p(. In particular,

B4 ]am , nbNm , n�N(

is a bicyclic semigroup.

LEMMA 4.2. – The ring B consists precisely of the elements of the
form

A 0 1 !
i41

p

ki ami , ni b

where A is a finite matrix over Z , ki �Z , mi , ni �N , i41, R , p and pF0.
Moreover, the rays ami , ni b may be assumed pairwise disjoint.

Let C be the subring of B generated by the elements

P412 a0, 1 b , Q412 a1, 0 b .

In ([9], Proposition 3.1(ii)) we have determined the form of elements of C.

LEMMA 4.3. – The ring C consists precisely of the elements

A 0 1 !
i41

p

ki ami , ni b

where A is a finite matrix over Z , ki �Z , mi , ni �N , i41, R , p , pF0 and

!
i41

p

ki 40. Moreover, the rays ami , ni b may be assumed pairwise disjoint.

We shall use these lemmas without explicit reference.

5. – The rings A and F.

After some general statements about all (nonzero) ideals of A, we prove
here that A is a maximal essential extension of F.

PROPOSITION 5.1. – Let I be an ideal of A and U the subring of A generated
by the set IN ]1(. As an extension of I , U is equivalent to D (I) if and only if
n1 �I implies that n40 for any n�Z .

PROOF. – Note that the additive group generated by 1 is torsion free in this
case. Now apply Proposition 3.1. r

LEMMA 5.2. – Let 0 cX� A and kF1. Then there exists Y� Fk such that
XYc0.

PROOF. – Let xc0 be the (m , n)-entry of X . Then for Y4k[n , m], the
(m , m)-entry of XY is kxc0 and Y� Fk . r
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COROLLARY 5.3. – Every subring of A which contains Fk for some kF1 has
trivial annihilator.

We are now able to establish some properties of all nonzero ideals of A.

PROPOSITION 5.4. – Let I be a nonzero ideal of A. Then Fk ’I for some kF1,
Q (I) 4 (0) and I is large in A.

PROOF. – By Lemma 5.2, Fk is large in A for every kF1. Since F 4 F1 , we
obtain that also F is large in A. Hence IO F c (0) which in view of ([8], Lem-
ma 4.2) implies that IO F 4 Fk for some kF1. Now Corollary 5.3 yields that
Q (I) 4 (0). Since Fk ’I and Fk is large in A, so is I . r

We now prove the principal result of this section.

THEOREM 5.5. – The canonical homomorphism t(A : F ) is an isomorphism of
A onto V(F ).

PROOF. – Let A� A, say A4 (aij ), and assume that amn c0. Then the prod-
uct A[n , m] has amn in the (m , m)-position so that A[n , m] c0. It follows
that

ker t(A : F ) 4 (0)

and thus t(A : F ) is injective.
Next let (l , r) �V(F ). For n�N , we have

l[n , n] 4 (aij ) , [n , n] r4 (bij )

for some aij , bij �Z; denote by Ai the i-th column of (aij ) and by Bi the i-th row
of (bij ). Then

l[n , n] 4l[n , n]2 4 (l[n , n] )[n , n] 4 [0 R 0An 0 R]

that is aij 40 for all jcn , and

[n , n] r4 [n , n]2 r4 [n , n]( [n , 1 , n] r) 4y
0

QQ
Q

0

Bn

0

QQ
Q

z



MARIO PETRICH - PEDRO V. SILVA358

that is bij 40 for all icn . Let

A4 [A0 A1 A2 R], B4yB0

B1

B2

QQ
Q

z
so that A is a column finite and B is a row finite matrix. For any m , nF0, we
obtain

[m , m](l[n , n] ) 4amn [m , n] , ( [m , m] r)[n , n] ) 4bmn [m , n]

and thus amn 4bmn whence A4B . But then A is both row and column finite,
that is A� F. On the one hand,

l[m , n] 4l( [m , m][m , n] ) 4 (l[m , m] )[m , n] 4 [0 R 0Am 0R]

where the Am column vector is now in the n-th column, and on the other
hand,

A[m , n] 4 [A0 A1 A2 R][m , n] 4 [0 R 0Am 0R]

where the Am column vector is again in the n-th column. Therefore l[m , n] 4

A[m , n]. Since l is an additive homomorphism, we conclude that lX4AX for
all X� F. Analogously we obtain that Xr4XA for all X� F. Therefore
t A (A : F ) 4 (l , r) and t(A : F ) is also surjective. r

COROLLARY 5.6. – The ring A is a maximal essential extension of every ideal
of A which contains F.

PROOF. – This follows directly from Theorem 2.1, Lemma 2.3 and Theorem
5.5. r

6. – The rings B and C.

We give here a threefold description of the relationship between the rings
B and C: by means of the Dorroh extension, in terms of idealizers and in the
language of maximal essential extensions. We start with the first of these
which is the simplest.

PROPOSITION 6.1. – As an extension of C, the ring B is equivalent to
D (C).

PROOF. – This follows directly from ([9], Corollary 3.5). r
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COROLLARY 6.2. – Let I be a proper ideal of B which contains C. Then
E(I) 4E(F ).

PROOF. – By ([9], Proposition 3.6), E(C) 4E(F ), and the result follows from
Lemma 3.3(i) and Proposition 6.1. r

Let S be a subring of a ring R . We denote by iR (S) the idealizer of S in R ,
that is the greatest subring of R having S as an ideal. It is easily verified
that

iR (S) 4 ]r�RNrs , sr�S for all s�S( .

Note that iA (B) 4 B since B contains the identity of A, and iA (F ) 4 A

since F is an ideal of A. We consider next iB (C). As a preparation for it, we
make explicit in the next lemma the effect of pre- and postmultiplying by P4

12 a0, 1 b and Q412 a1, 0 b, namely

LEMMA 6.3. – Let X� B. Then

(i) PX is the matrix obtained from X by subtracting from each row the
next row.

(ii) QX is the matrix obtained from X by keeping the first row and sub-
tracting from each other row the preceding one.

(iii) XP is the matrix obtained from X by keeping the first column and
subtracting from each other column the preceding one.

(iv) XQ is the matrix obtained from X by subtracting from each column
the next column.

PROOF. – (i) Let PX4 (yij ). For all i , jF0, we have

yij [i , j]4[i , i] PX[ j , j]4[i , i] X[ j , j]2[i , i]a0, 1 b X[ j , j]

4xij [i , j]2[i , i11] X[ j , j]4xij [i , j]2xi11, j [i , j]4(xij2xi11, j )[i , j]

and so yij 4xij 2xi11, j .
The remaining assertions are proved similarly. r

The next lemma characterizes elements of B within A. Given X4 (xij ) � A

and n�Z , the n-th diagonal of X is the sequence

.
/
´

(x0n , x1, n11 , x2, n12 R)

(x2n , 0 , x2n11, 1 , x2n12, 2 R)

if nF0

if nE0 .

A diagonal of X is quasi constant if all but a finite number of its terms are
equal.
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LEMMA 6.4. – Let X� A. Then X� B if and only if the following conditions
hold:

(i) All nonzero entries of X lie in finitely many diagonals of X .
(ii) All diagonals of X are quasi constant.

PROOF. – Straightforward. r

We are now ready for the second characterization.

THEOREM 6.5. – The ring B is the idealizer in A of every ideal of B contain-
ing C.

PROOF. – We show first that B 4 iA (C).
Since C is an ideal of B, we have B ’ iA (C). Therefore we need to show that

the implication

X C, C X’ C ¨ X� B

holds for every X� A. Since C is generated by P412 a0, 1 b and Q412

a1, 0 b, the condition X C, C X’ C is equivalent to

PX , QX , XP , XQ� C .(1)

Let X4 (xij ) � A 0 B. We must show that (1) is not satisfied. By Lemma 6.4, ei-
ther there exist infinitely many diagonals of X with nonzero entries or some
diagonal of X is not quasi constant.

Consider first the case where X possesses infinitely many diagonals with
nonzero entries. Then there exist infinitely many such diagonals labelled by
positive integers or there exist infinitely many such diagonals labelled by
negative integers. We shall assume the first possibility, the other case being
similar.

Since X� A, only finitely many nonzero entries can arise in each row (or
column). Therefore we can define a sequence (rk ) by:

rk 4 max (]nDkNxkn c0(N ]0() .

Since X possesses infinitely many positive diagonals with nonzero entries,
there exists a subsequence (ri1

, ri2
, R , ) of (rk ) such that rik

2 ik Erik11
2 ik11

for every kF1. Let XQ4 (yij ). By definition of (rk ), we have xik , rik11
40 and so

yik , rik11
4xik , rik11

c0 for every kF1. Since ]rik
2 ik NkF1( is infinite, it fol-

lows that XQ possesses infinitely many diagonals with nonzero entries and so
XQ� B by Lemma 6.4.

We consider now the case where X possesses only finitely many diagonals
with nonzero entries, but some of the diagonals are not quasi constant. Let m
be the minimum n�Z such that the n-th diagonal of X is not quasi constant.
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By minimality of m , the (m21)-th diagonal of X is quasi constant, hence
there exist k , u�Z such that

xk , k1m21 4xk11, k1m 4xk12, k1m11 4R4u ,

with k , k1m21 F0. Let PX4 (zij ). For every iF0, Lemma 6.3 yields
that

zk1 i , k1m1 i 4xk1 i , k1m1 i 2xk1 i11, k1m1 i 4xk1 i , k1m1 i 2u

and so the m-th diagonal of PX is not quasi constant either. Thus by Lemma
6.4, PX� B and iA (C) ’ B. Therefore iA (C) 4 B.

Now let I be an ideal of B containing C. The claim for I4 C has just been
established and for I4 B the assertion is trivial since B has an identity ele-
ment. Hence it remains to consider the case C cIc B. Since I is an ideal of B,
we have B ’ iA (I).

In view of Proposition 6.1, we may replace the ring B by the Dorroh exten-
sion of C. Now Theorem 3.2(i) implies that we may set I4In for some positive
integer n . Let X� iA (I) and Y� C. With this identification, we may write Y4

(a , 0 ) for some a� C. Since Y�I , we have XY , YX�I and in the other notation
X(a , 0 ), (a , 0 ) X�In . Then (a , 0 ) X4 (b , kn) for some b� C and k�Z . In
particular,

((a , 0 ) X)(0 , n) 4 (b , kn)(0 , n) 4 (nb , kn 2 ) ,

with X(0 , n) �In so that ((a , 0 ) X)(0 , n) is of the form (c , 0 ) for some c� C.
But then kn 2 40 whence k40. It follows that (a , 0 ) X4 (b , 0 ) and similarly
X(a , 0 ) 4 (d , 0 ) for some d� C. This means that X� iA (C) and hence X� B as
proved above. Therefore iA (I) ’ B and equality prevails. r

We now establish the third characterization.

THEOREM 6.6. – The canonical homomorphism t(B : C) is an isomorphism of
B onto V(C).

PROOF. – Let t4t(B : C) and X4 (xij ) � ker t . Suppose that Xc0. Then
there exist i , j�N such that xij c0 and xi , j11 40. By Lemma 6.3, the (i , j)-th
entry of XQ is xij 2xi , j11 c0, and so l X Q4XQc0, contradicting tX40.
Hence X40 and t is injective.

It remains to prove surjectivity. Let (l , r) �V(C). Since C is generated by
P and Q , the translations l and r are determined by the images of P and Q .
Moreover, P1Q4PQ yields

lP1lQ4 (lP) Q , Pr1Qr4P(Qr)
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and so

lQ4 (lP)(Q21) , Pr4 (P21)(Qr) .

Hence l is determined by lP4 (aij ) and r is determined by Qr4 (bij ). Our aim
is then to show that there exists X4 (xij ) � B such that

lP4XP , Qr4QX .

Indeed, this implies that (l , r) 4 (l X , r X ) 4Xt , proving the theorem.
Since (l , r) �V(C), we have Q(lP) 4 (Qr) P4Y for some Y4 (yij ) � C.

Fix j�N . By Lemma 6.3, a0 j 4y0 j and aij 2ai21, j 4yij for every iF1. It fol-
lows that

aij 4 !
k40

i

ykj(2)

for all i , j�N . Since Y� C, Y has only finitely many nonzero entries in each
column. If the sum of all nonzero entries of Y in a given column is mc0, (2)
implies that lP has infinitely many entries m in the same column, a contradic-
tion. Thus

!
kF0

ykj 40(3)

for every j�N . Similarly, we show that

bij 4 !
t40

j

yit(4)

and

!
tF0

yit 40(5)

for all i , j�N . Let X4 (xij ) be the N3N matrix over Z defined by

xij 4 !
t40

j

!
k40

i

ykt .

Since Y� C, there exist m , n�Z with mGn such that all nonzero entries of Y
lie between its m-th and n-th diagonals. If the entry (i , j) lies below the diago-
nal m , then xij is the sum of all nonzero entries of Y in columns 0 , 1 , R , j . By
(3), it follows that xij 40. If (i , j) lies above the diagonal n , then xij is the sum
of all nonzero entries of Y in rows 0 , 1 , R , i . By (5), we also obtain xij 40.
Hence all nonzero entries of X lie between its m-th and n-th diagonals. In par-
ticular, X� A and in order to show that X� B, by Lemma 6.4 we only have to
prove that all diagonals of X are quasi constant. Since Y� C, there exists a
nonnegative integer MD2m such that all diagonals of Y are constant below
row M .
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Let iDM and jDM1n be such that mG j2 iGn . We claim that
xi11, j11 4xij . Let

a4 !
t40

j

!
k40

j2n21

ykt , b4 !
t40

j

!
k4 j2n

i

ykt , g4 !
t40

j11

!
k40

j2n

ykt , d4 !
t40

j11

!
k4 j2n11

i

ykt .

It follows from the definition of X that xij 4a1b and xi11, j11 4g1d . First,
we claim that a is the sum of all nonzero entries of Y in rows 0 , 1 , R , j2n2

1. Indeed, if 0 GkG j2n21 and tD j , then

t2kD j2 ( j2n21) 4n11 ,

hence the entry ykt lies above the n-th diagonal and so ykt 40. Thus a40 by
(5). Replacing j by j11, the same argument yields that g40. It remains to
prove that b4d . We have j2nDM . Thus the diagonals of Y are constant in
the submatrices Y1 and Y2 of Y considered in b and d , respectively. Since
MD2m , there are no nonzero entries in the first column of both Y1 and Y2

and so the nonzero positions of Y1 can be mapped onto the nonzero positions of
Y2 by shifting one column to the right and one row downwards. Thus b4d and
xi11, j11 4xij . Therefore the diagonals of X are quasi constant and X� B.

It remains to check that lP4XP and Qr4QX . By Lemma 6, the (i , j)-th
entry of XP is xij if j40 and xij 2xi , j21 otherwise. In either case, we
obtain

!
t40

j

!
k40

i

ykt 2 !
t40

j21

!
k40

i

ykt 4 !
k40

i

ykj

which is the (i , j)-th entry of lP by (2). Hence lP4XP . Similarly, the (i , j)-th
entry of QX is xij if i40 and xij 2xi21, j otherwise. In either case, we
obtain

!
t40

j

!
k40

i

ykt 2 !
t40

j

!
k40

i21

ykt 4 !
t40

j

yit

which is the (i , j)-th entry of Qr by (4). Hence Qr4QX . Thus (l , r) 4Xt and
so t is also surjective. r

We can not apply Lemma 2.3 to C since C does not satisfy the hypotheses of
that lemma. Indeed, let X� C 0 F, and suppose that YX4X for some Y� C. By
([8], Lemma 6.1), B 0 F is a multiplicative semigroup, therefore (12Y)X40
implies that 12Y� F. Hence 1 4A1Y for some A� F and 1 � C, a contradic-
tion. Thus X has no left identity in C. However, we have Theorem 3.2 at our
disposal.

COROLLARY 6.7. – The ring B is a maximal essential extension of every ideal
of B which contains C.
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PROOF. – By Theorems 2.1(iii) and 6.6, B is a maximal essential extension of
C. The assertion now follows from Proposition 6.1 and Theorem 3.2. r

We may summarize the results of this section as follows. The ring B is:

(i) equivalent to the Dorroh extension D (C),

(ii) the idealizer of C in A,

(iii) a maximal essential extension of C.

In particular, from Corollaries 5.6 and 6.7, we deduce that th rings A, B, C

and F are essentially embedded in A in the sense that their idealizers in A are
their maximal essential extensions.

We conclude with a simple statement that involves A, B, C and F. Recall
that an ideal I of a ring R is completely prime if for any a , b�R , ab�I implies
that a�I or b�I .

PROPOSITION 6.8. – The ring F is the least completely prime ideal of B and
C but is not a completely prime ideal of A.

PROOF. – By ([8], Lemma 6.1), B 0 F is a multiplicative subsemigroup of B,
hence F is a completely prime ideal of B and C.

Let I be a completely prime ideal of B. By ([8], Lemma 4.2), IO F 4 Fk for
some kF1. If kD1, then [0 , 0 ], [1 , 1 ] � Fk and so [0 , 0 ], [1 , 1 ] �I; however,
[0 , 0 ][1 , 1 ] 40 �I , contradicting I being completely prime. Thus k41 and
F ’I .

Now let I be a completely prime ideal of C. By Lemma 3.3(ii) and Proposi-
tion 6.1, we have that I is an ideal of B and so IO F 4 Fk for some kF1. We
can now apply the above argument to deduce that F ’I .

Finally, we show that F is not a completely prime ideal of A. Define X4

(xij ), Y4 (yij ) � A by

xij 4
.
/
´

1

0

if i4 j�2Z

otherwise ,
yij 4

.
/
´

1

0

if i4 j�2Z

otherwise ,

respectively. Clearly, X , Y� F and XY40 � F. Thus F is not a completely
prime ideal of A. r
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