BOLLETTINO UNIONE MATEMATICA ITALIANA

S. DRAGOTTI, G. MAGRO, L. PARLATO

On the groups $\Theta_n^{\mathcal{F}}$ of a sphere

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **3-B** (2000), n.2, p. 337–346.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2000_8_3B_2_337_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2000.

On the Groups $\Theta_n^{\mathcal{F}}$ of a Sphere.

S. DRAGOTTI - G. MAGRO - L. PARLATO (*)

Sunto. – In questo articolo studiamo i gruppi $\Theta_h^{\mathcal{F}}$ di una sfera S^n e proviamo che il gruppo $\Theta_n^{\mathcal{F}}(S^n, x_0)$ è isomorfo all'ennesimo gruppo di omotopia di (S^n, x_0) , nell'ipotesi che \mathcal{F} sia una classe coconnessa di links ammissibili.

Introduction.

This paper is concerned with the properties of a functor $\Theta^{\mathcal{F}}$ associated to a manifold class \mathcal{F} , and its action on standard spaces.

A manifold class is a graded collection $\mathcal{F} = {\mathcal{F}_h}_{h \ge 0}$ of compact polyhedra, defined up to a *PL*-isomorphism, closed under link and join, and such that $S^0 \in \mathcal{F}_0$ ($S^n =$ standard *PL*-sphere).

The collection \mathcal{C} of the geometric cycles without boundary is so, and for each \mathcal{F} such that $\mathcal{F}_0 = \{S^0\}$ we have $\mathcal{F} \subseteq \mathcal{C}$.

The collection \mathscr{PL} of the standard *PL*-spheres is so, and $\mathscr{PL} \subseteq \mathscr{F}$ for each manifold class \mathscr{F} .

A polyhedron $\Sigma \in \mathcal{F}_h$ is called \mathcal{F}_h -sphere, a polyhedron P of the form $\Sigma - st(x, \Sigma)$ is called \mathcal{F}_h -pseudodisc. \mathcal{F}_h -spheres and \mathcal{F}_h -pseudodiscs are allowable links for a theory of generalized manifolds: the \mathcal{F} -manifolds, and a subsequent cobordism theory: the \mathcal{F} -cobordism.

A manifold class \mathcal{F} with some additional property determines geometrically a covariant functor $\Theta^{\mathcal{F}}$ which assigns to every pointed pair of topological spaces (X, A, x_0) a graded group $\Theta^{\mathcal{F}}(X, A, x_0)$, just as $\mathcal{P}L$ determines the classical functor π using \mathcal{F} -spheres and \mathcal{F} -pseudodiscs instead of *P*L-spheres and discs, and just as \mathcal{C} determines the classical homology functor *H* (see [3], [9]).

Every $\Theta^{\mathcal{F}}$ satisfies the first six axioms of E.S. (excision is excluded).

If $\mathcal{F} \subseteq \mathcal{F}$ there exists a canonical homomorphism (forgetful) of graded groups $\psi_{\mathcal{F},\mathcal{F}} : \Theta^{\mathcal{F}}(X, A, x_0) \to \Theta^{\mathcal{F}}(X, A, x_0)$ which allows to factorize the

(*) 1991 Mathematics Subject Classification: 55 P 65, 57 Q 20, 55 P 40.

Research supported by M.U.R.S.T.(40%).

classical Hurewicz homomorphism

(1)
$$\begin{aligned} \pi(X, x_0) & \xrightarrow{\psi_{\mathscr{T}\mathcal{L}}, \mathscr{C}} & H(X, x_0) \\ \psi_{\mathscr{T}\mathcal{L}}, & \mathcal{T} \searrow & \mathcal{T} \psi_{\mathscr{T}, \mathscr{C}} \\ & \Theta^{\mathscr{T}}(X, x_0) \end{aligned}$$

About the groups $\Theta_h^{\overline{T}}$ associated to a standard *PL*-sphere $S^n (n \ge 2)$ we know them of dimension smaller than n: they are the null group. This follows, by some easy expedient, from the (n-1)-connectivity of S^n . Almost nothing is known about this groups. It is natural to expect that $\Theta_h^{\overline{T}}(S^n, *)$ is isomorphic to \mathbf{Z} (as it happens for homotopy and homology). It is rather surprising that this is not true: in [6] is given a manifold class $\overline{\overline{T}}$ such that the forgetful homomorphism $\psi_{\overline{T},\mathbb{C}}: \Theta_n^{\overline{T}}(S^n, *) \to H_n(S^n, *)$ is an epimorphism not injective, and hence $\Theta_n^{\overline{T}}(S^n, *)$ cannot be isomorphic to \mathbf{Z} .

In this paper we prove that $\Theta_n^{\mathcal{F}}(S^n, *) \simeq \mathbb{Z}$ in the case which \mathcal{F} satisfies the additional property called coconnection (definition in 2). However this condition is sufficient but not necessary because the class \mathcal{C} of the geometric cycles is not coconnected (but $\Theta_n^{\mathcal{C}}(S^n, *) \simeq H_n(S^n, *) \simeq \mathbb{Z}!$).

The metod of doing the result is that to prove that for $X = S^n$ and $n \ge 1$ the homomorphism $\psi_{\mathscr{PL}, \mathscr{T}}: \pi_n(S^n, *) \to \Theta_n^{\mathscr{T}}(S^n, *)$ of the commutative diagram (1) is an isomorphism (theorem 3.2). Being in this case $\psi_{\mathscr{PL}, \mathscr{T}}$ injective, it suffices to prove only that it is onto. This is achieved by using the surjectivity of the map *s* which in the classical homotopy theory is called suspension homomorphism

$$\Theta_{n-1}^{\mathcal{F}}(S^{n-1}, x_0) \stackrel{\stackrel{?}{\leftarrow}}{\underset{\sim}{\leftarrow}} \Theta_n^{\mathcal{F}}(D_+^n, S^{n-1}, x_0) \stackrel{i}{\to} \Theta_n^{\mathcal{F}}(S^n, D_-^n, x_0) \stackrel{j}{\underset{\sim}{\leftarrow}} \Theta_n^{\mathcal{F}}(S^n, x_0)$$
$$s = j^{-1} \circ i \circ \partial^{-1}$$

where the boundary homomorphism ∂ and j also are isomorphisms by standard properties of the involved spaces and by the homotopy and exacteness axioms of $\Theta^{\mathcal{F}}$.

Hence, the probleme is again reduced to state that the homomorphism i is onto (theorem 3.1).

If we exclude the above discussion and a few others, the tecniques employed are entirely geometric (lemma 2.1 and theorem 3.1 also).

The original construction of the functor Θ^{σ} is developed in [3]. The papers [4], [5], [6] contain more closely investigations about their basic properties, and their behaviour in interesting special cases.

In order to make the current paper self-contained enough that the main results can be understood we include a section that provides the definition of the functors $\Theta^{\mathcal{F}}$.

1. – The functor associated to a manifold class.

A manifold class \mathcal{F} is said to be connected if the polyhedron obtained attaching two \mathcal{T}_h -pseudodiscs, by a PL-homeomorphism between their boundaries (if there exists), is an \mathcal{T}_h -sphere.

Let \mathcal{F} be a connected manifold class such that $\mathcal{F}_0 = \{S^0\}$. The last hypothesis implies that any \mathcal{F} -manifold M is a geometric cycle, so it makes sense to define M to be orientable if M is orientable as geometric cycle. If M denotes an oriented \mathcal{F} -manifold, then -M will denote the same manifold with the opposite orientation.

An \mathcal{F} -cobordism between two oriented \mathcal{F}_h -spheres Σ_1 and Σ_2 is an oriented \mathcal{F} -manifold W such that:

- a) ∂W is the disjoint union of Σ_1 and $-\Sigma_2$;
- b) $W \cup c_1 * \Sigma_1 \cup c_2 * \Sigma_2$ is an \mathcal{T}_{h+1} -sphere.

An \mathcal{F} -cobordism between two oriented \mathcal{F}_h -pseudodiscs P_1 and P_2 is an oriented \mathcal{F} -manifold W such that:

a') $\partial W = P_1 \cup P_2 \cup W_0$, where W_0 is a cobordism between ∂P_1 and ∂P_2 ; b') $W \cup c_1 * P_1 \cup c_2 * P_2$ is an \mathcal{T}_{h+1} -pseudodisc.

Let (X, x_0) be a pointed topological space. A singular \mathcal{F} -sphere of (X, x_0) is a triple (Σ, Δ, f) , where Σ is an oriented \mathcal{F} -sphere, $\Delta \subseteq \Sigma$ is a top dimensional simplex and $f: (\Sigma, \Delta) \to (X, x_0)$ a continuous map.

Two singular \mathcal{F}_h -spheres $(\Sigma_1, \mathcal{A}_1, f_1)$ and $(\Sigma_2, \mathcal{A}_2, f_2)$ are said \mathcal{F} -cobordant if there exists a triple (W, W', g), called \mathcal{F} -cobordism, where W is an \mathcal{F} -cobordism between Σ_1 and $\Sigma_2, W' \subseteq W$ is a PL-disc such that $W' \cap \Sigma_i = \mathcal{A}_i$, i=1,2, and $g:(W, W') \to (X, x_0)$ is a continuous map, such that: $g/\Sigma_i = f_i$, i=1,2.

The *T*-cobordism between *T*-spheres in an equivalence relation.

Let $\mathcal{O}_{h}^{\mathcal{F}}(X, x_{0})$ denote the set of the \mathcal{F} -cobordism classes of singular \mathcal{F}_{h} -spheres of (X, x_{0}) .

As in the case of the homotopy theory we can geometrically define an addition in $\Theta_n^{\mathcal{F}}(X, x_0)$ $(h \ge 1)$ which give a group structure.

Let (X, A) be a pair of topological spaces and let x_0 be a point of A. By relative \mathcal{T}_h -sphere of (X, A, x_0) we mean a triple (P, Δ, f) , where P is an oriented \mathcal{T}_h -pseudodisc, $\Delta \subseteq P$ is a top-dimensional simplex meeting ∂P in a top-dimensional simplex, and $f: (P, \Delta) \to (X, x_0)$ is a map which carries ∂P to A.

Given a relative \mathcal{T}_h -sphere (P, Δ, f) of (X, A, x_0) , $(\partial P, \Delta \cap \partial P, f/)$ is a singular \mathcal{T}_{h-1} -sphere of (A, x_0) which will be denoted by $\partial(P, \Delta, f)$.

Two relative \mathcal{F} -spheres (P_i, Δ_i, g_i) , i=1,2, of (X, A, x_0) are called \mathcal{F} cobordant if there exists a triple (V, V', G) where V is an \mathcal{F} -cobordism
between P_1 and P_2 , $V' \subseteq V$ a \mathcal{PL} -cobordism between Δ_1 and Δ_2 , and

 $G:(V, V') \rightarrow (X, x_0)$ is a continuous map such that the following conditions hold:

(1)
$$V' \cap P_i = \Delta_i$$
, i=1,2;

(2) Let $W = \partial V - (\stackrel{\circ}{P}_1 \cup \stackrel{\circ}{P}_2)^{(1)}$ and $W' = W \cap V'$. Then (W, W', G/) is an \mathcal{F} -cobordism between $\partial(P_1, \varDelta_1, g_1)$ and $\partial(P_2, \varDelta_2, g_2)$ with $G(W) \subseteq A$.

The \mathcal{T} -cobordism between relative spheres is an equivalence relation.

Let $\mathcal{O}_{h}^{\mathcal{F}}(X, A, x_{0})$ denote the set of the \mathcal{F} -cobordism classes of relative \mathcal{F}_{h} -spheres of (X, A, x_{0}) . As before, we can introduce in $\mathcal{O}_{h}^{\mathcal{F}}(X, A, x_{0})$ $(n \ge 2)$ a group structure.

Given a continuous map $f:(X, A, x_0) \to (Y, B, y_0)$, we can define, for each $h \ge 2$, a homomorphism $\Theta^{\mathcal{F}}(f): \Theta_h^{\mathcal{F}}(X, A, x_0) \to \Theta_h^{\mathcal{F}}(Y, B, y_0)$ by setting

$$\Theta^{\mathcal{F}}(f)([(P, \Delta, g)]) = [(P, \Delta, f \circ g)].$$

As proved in [3] the definitions above recalled allow us to build a covariant functor, from the cathegory of pointed pairs of topological spaces to the cathegory of graded groups, satisfying the first six axioms of Eilenberg and Steenrod (excision is excluded).

2. – A geometric lemma.

Our theorem 3.1 depends on a geometric result which allows to engulf (include into a PL-disc) a finite subset of a compact, connected \mathcal{F} -manifold in the case when \mathcal{F} satisfies an additional axiom.

In order to state and prove the lemma involved (and theorem 3.1 again) a few preliminary results are necessary. We report these briefly. For details and proofs, see [2].

DEFINITION. – A manifold class \mathcal{F} is said to be coconnected if for every \mathcal{F}_h -sphere Σ and \mathcal{F}_h -pseudodisc $P \subset \Sigma$, the polyhedron $\Sigma - \overset{\circ}{P}$ is an \mathcal{F}_h -pseudodisc.

PROPOSITION a. – Let \mathcal{F} be a connected, coconnected manifold class. All the \mathcal{F} -spheres and \mathcal{F} -pseudodiscs of positive dimension are connected. The only \mathcal{F}_0 -sphere is S^0 .

PROPOSITION b. – Let \mathcal{F} be a connected, coconnected manifold class, and let $P' \subseteq P$ be \mathcal{F}_h -pseudodiscs such that $\partial P \cap \partial P' = P''$ is an \mathcal{F}_{h-1} -pseudodisc, then the polyhedron $P - (\stackrel{\circ}{P'} \cup \stackrel{\circ}{P''})$ is an \mathcal{F}_h -pseudodisc.

⁽¹⁾ $\stackrel{\circ}{P}$ stands for $P - \partial P$.

PROPOSITION c. – Let \mathcal{F} be a connected, coconnected manifold class. The cylinder $P \times I$ on an \mathcal{F}_{h-1} -pseudodisc P is an \mathcal{F}_{h} -pseudodisc.

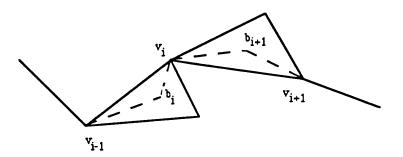
PROPOSITION d. – Let \mathcal{F} be a connected, coconnected manifold class and let $M' \subseteq M$ be two \mathcal{T}_h -manifolds such that $M' \cap \partial M$ is the empty set or an \mathcal{T}_{h-1} -manifold of ∂M , then the polyhedron M – intM' is an \mathcal{F} -manifold.

Now we prove the announced result

LEMMA 2.1. – Let M be a compact, connected \mathcal{F} -manifold, where \mathcal{F} is a connected, coconnected manifold class. If x, y are regular⁽²⁾ points of M, there exists a regular polygonal path X in M from x to y which meets the boundary ∂M of M at most in x, y.

PROOF. – We use induction on the dimension m of M. By the Proposition a, it follows that $\mathcal{F}^0 = \{S^0\}$, $\mathcal{F}^1 = \{S^1\}$ and hence an \mathcal{F} -manifold of dimension 1 or 2 is a PL-manifold, then the assertion is true for m=1,2.

Assume the result for $m \leq h - 1$ and let M be a compact, connected \mathcal{F} -manifold of dimension h and x, y regular points of M. Being M a connected polyhedron, there exists a triangulation L of M and a simplicial path of L, Y, joining x and y. Let $x = v_0, \ldots, v_r = y$ be the vertices of Y. If Y satisfies the required properties, we take this. If not, we can modify Y as follows. The 1-simplex $v_{i-1}v_i$ certainly lies in the boundary of some top-dimensional simplex σ_i of L, then we can replace $v_{i-1}v_i$ by the polygonal path $v_{i-1}b_iv_i$ where b_i is the barycentre of σ_i .



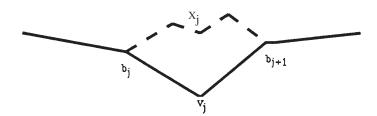
We repeat that for all the line segments of Y. So, we obtain a polygonal path

$$Z = v_0 b_1 v_1 b_2 v_2 \dots v_r$$

⁽²⁾ A point $x \in M$ is said to be regular if link (x, M) is PL-homeomorphic to a standard PL-sphere or PL-disc. A subset X is said to be regular if all their points are regular points.

joining again x and y and such that all the points of Z different from the vertices v_i are regular points and lies in interior $\stackrel{\circ}{M}$ of M.

If necessary, we modifie Z as follows: let v_j be a «bad» vertex of Z and let L_j its link in the first barycentric subdivision L' of L. By Proposition a, L_j is a connected \mathcal{F}_{h-1} -manifold (sphere or pseudodisc) for which our induction hypothesis holds. So, there exists a regular polygonal path $X_j \subseteq \overset{\circ}{L}_j$ joining b_j and b_{j+1} .



The points of X_j are regular also in M, because L_j is bicollared in M. Moreover the points of X_j are interior to L_j and hence to M, because $L_j \cap \partial M = \partial L_j$.

Then we replace the polygonal path $b_j v_j b_{j+1}$ by the polygonal path X_j . We repeat that for all vertices of Z for which it is necessary, and finally we obtain a polygonal path X which satisfies our requests. So the inductive step is established.

REMARK. – The polygonal path X of the above lemma can be arranged, merely by cutting loops, so that it is collapsible.

On the other hand, being the points of X all regular, a regular neighbourhood N of X in M is a PL-manifold. Hence, if X is collapsible, N is a PL-disc.

3. – The main theorem.

Let D_{+}^{n} and D_{-}^{n} be the northern and the southern hemispheres of S^{n} $(n \ge 2)$, $p_{1} \in D_{+}^{n}$ the north pole, $p_{2} \in D_{-}^{n}$ the south pole, and let x_{0} be a fixed point of $S^{n-1} = \dot{D}_{+}^{n} = \dot{D}_{-}^{n}$.

Consider the pointed pairs (D_+^n, S^{n-1}, x_0) , $(S^n - p_2, S^n - (p_1 \cup p_2), x_0)$ and for each $h \ge 2$ the diagram

$$\begin{array}{ccc} \Theta_{h}^{\mathcal{F}}(D_{+}^{n}, S^{n-1}, x_{0}) & \stackrel{\partial_{1}}{\longrightarrow} & \Theta_{h-1}^{\mathcal{F}}(S^{n-1}, x_{0}) \\ & & \downarrow^{i_{1}} & & \downarrow^{j_{1}} \\ \Theta_{h}^{\mathcal{F}}(S^{n}-p_{2}, S^{n}-(p_{1}\cup p_{2}), x_{0}) & \stackrel{\partial_{2}}{\longrightarrow} & \Theta_{h-1}^{\mathcal{F}}(S^{n}, -(p_{1}\cup p_{2}), x_{0})) \end{array}$$

where the vertical maps are induced by inclusion maps. Because D_+^n and $S^n - p_2$ are contractible, the homotopy and the exactness axioms of the functor $\Theta^{\mathcal{F}}$ assure that the connecting homomorphisms ∂_1 , ∂_2 are isomorphisms. Moreover S^{n-1} is a strong deformation retract of $S^n - (p_1 \cup p_2)$, and hence j_1 is an isomorphism. From the trivial commutativity of the above diagram it follows that i_1 is an isomorphism.

A similar argument for the pointed pairs (S^n, D_-^n, x_0) , $(S^n, S^n - p_1, x_0)$ shows that for each $h \ge 2$ also the homomorphism

$$i_2: \mathcal{O}_h^{\mathcal{F}}(S^n, D_-^n, x_0) \rightarrow \mathcal{O}_h^{\mathcal{F}}(S^n, S^n - p_1, x_0)$$

is an isomorphism.

These two results provide a convenient approach to prove the following

THEOREM 3.1. – Let \mathcal{F} be a connected, coconnected manifold class. For each $n \ge 2$ the homomorphism $i: \Theta_n^{\mathcal{F}}(D_+^n, S^{n-1}, x_0) \to \Theta_n^{\mathcal{F}}(S^n, D_-^n, x_0)$ induced by inclusion is onto.

PROOF. – For each $h \ge 2$ we can consider the commutative diagram

$$\begin{array}{cccc} \Theta_{h}^{\mathcal{F}}(D_{+}^{n},\,S^{n-1},\,x_{0}) & \stackrel{\iota_{1}}{\longrightarrow} & \Theta_{h}^{\mathcal{F}}(S^{n}-p_{2},\,S^{n}-(p_{1}\cup p_{2}),\,x_{0}) \\ & i \downarrow & & \downarrow^{j} \\ \Theta_{h}^{\mathcal{F}}(S^{n},\,D_{-}^{n},\,x_{0}) & \stackrel{\iota_{2}}{\longrightarrow} & \Theta_{h}^{\mathcal{F}}(S^{n},\,S^{n}-p_{1},\,x_{0}= \end{array}$$

where j is induced by inclusion. Being i_1 and i_2 isomorphisms, to prove that i is onto it is equivalent to prove that j is onto.

Then, we now show that if h = n the homomorphism

$$j: \Theta_n^{\mathcal{F}}(S^n - p_2, S^n - (p_1 \cup p_2), x_0) \to \Theta_n^{\mathcal{F}}(S^n, S^n - p_1, x_0)$$

is onto.

Let α be any element of $\Theta_n^{\mathcal{F}}(S^n, S^n - p_1, x_0)$ and let (P, Δ, f) be a representative triple of α , that is $f: P \to S^n$, $f(\partial P) \subseteq S^n - p_1$, $f(\Delta) = x_0$. Up to a homotopy we can suppose that f is a simplicial map, p_1 is the barycentre of an *n*-simplex τ of S^n , and also p_2 is the barycentre of an *n*-simplex σ .

We need a representative element (P', Δ', f') of α such that $f'(P') \subseteq S^n - p_2$, $f'(\partial P') \subseteq S^n - (p_1 \cup p_2)$, $f'(\Delta') = x_0$.

If $f^{-1}(p_2) = \emptyset$, we take P' = P, $\Delta' = \Delta$, f' = f.

If not, being f a simplicial map, $f^{-1}(p_2)$ consists of a finite number of regular points b_1, \ldots, b_r : the barycentres of the top dimensional simplexes $\sigma_1, \ldots, \sigma_r$ of the triangulation of P such that $f(\sigma_1) = \ldots = f(\sigma_r) = \sigma$.

Similary $f^{-1}(p_1)$ consists at most of a finite number of regular points: the barycentres of the *n*-simplexes τ_1, \ldots, τ_s such that $f(\tau_1) = \ldots = f(\tau_s) = \tau$.

Let $M = P - \bigcup_{l=1,...,s} \mathring{\tau}'_l (\stackrel{\circ}{\varDelta} \cup (\varDelta \stackrel{\circ}{\cap} \partial P))$, where $\tau'_l \subseteq \mathring{\tau}_l$. Since *P* is a connected polyhedron (see Prop. a), and also $\dot{\tau}'_l$ is connected (because $n \ge 2$), the polyhedron *M* is a connected \mathcal{F} -manifold (Prop. d).

Let b a regular point of $\partial P - \Delta$. Since $f(b) \neq p_1$, then $b \in M \cap \partial P \subseteq \partial M$.

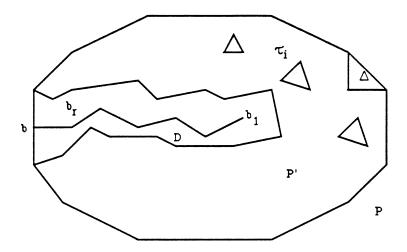
By lemma 2.1 and relative remark, there exists a regular and collapsible polygonal path X joining the points b_1, \ldots, b_r , b such that $X - b \subseteq M - \partial M$, and hence $f(X) \subseteq S^n - p_1$.

Standard arguments of *PL*-topology assure that an ε -neighbourhood of *X* is a *PL*-disc *D*, and there exists $\varepsilon > 0$ sufficiently small so that such a disc satisfies

$$f(D) \subseteq S^n - p_1.$$

Obviously $f(\partial D) \subseteq S^n - (p_1 \cup p_2)$.

 $D \cap \partial M = D \cap \partial P$ is a *PL*-disc *D'*, the star of *b* in ∂P , then (Prop. b) the polyhedron $P - (\stackrel{\circ}{D} \cup \stackrel{\circ}{D'})$ is an \mathcal{F} -pseudodisc *P'*,



and we have $f(P') \subseteq S^n - p_2$ (because $D \supseteq X \supseteq f^{-1}(p_2)$).

$$f(\partial P') = f(\partial P \cup \partial D - \overset{\circ}{D'}) \subseteq S^n - (p_1 \cup p_2).$$

Finally, being $\Delta \subset P'$, the triple $(P', \Delta, f_{/P'})$ determines an element β of $\mathcal{O}_n^{\mathcal{F}}(S^n - p_2, S^n - (p_1 \cup p_2), x_0)$.

In order to prove that $j(\beta) = \alpha$ it remains to construct an \mathcal{F} -cobordism (V, V', G) between (P, Δ, f) and $(P', \Delta, f_{P'})$.

Let $V = P \times I$, $V' = \Delta \times I$ and $G = f \times id$. Being $g(\partial V - (P \cup P') \subseteq S^n - P \otimes I)$

 P_1 , by Prop. c it is straightforward to verify that the triple $(P \times I, \Delta \times I, f \times id)$ satisfies the required conditions.

Now we are able to prove the following

THEOREM 3.2. – Let \mathcal{F} be a connected, coconnected manifold class. The forgetful homomorphism $\psi_{\mathcal{P}\mathcal{L},\mathcal{F}}: \pi_n(S^n, x_0) \to \Theta_n^{\mathcal{F}}(S^n, x_0)$ is an isomorphism for each $n \ge 1$. Hence $\Theta_n^{\mathcal{F}}(S^n, x_0)$ is isomorphic to \mathbb{Z} .

PROOF. - Consider the commutative diagram (see introduction)

$$\begin{aligned} \pi_n(S^n, x_0) & \xrightarrow{\psi_{\mathcal{F}, \mathcal{C}}} & H_n(S^n, x_0) \\ \psi_{\mathcal{F}, \mathcal{C}, \mathcal{F}} \searrow & \swarrow \psi_{\mathcal{F}, \mathcal{C}} \\ & \Theta_n^{\mathcal{F}}(S^n, x_0) \end{aligned}$$

In this case the Hurewicz homomorphism $\psi_{\mathcal{PL},\mathcal{C}}$ is an isomorphism for each $n \ge 1$, and hence $\psi_{\mathcal{PL},\mathcal{F}}$ is injective.

Then, in order to state the assert, we only need to show that $\psi_{\mathcal{PL},\mathcal{F}}$ is onto. That is: for any element $a \in \Theta_n^{\mathcal{F}}(S^n, x_0)$ there exists a representative triple of the form (S^n, \mathcal{A}, f) .

This is trivial if n = 1, because by Prop. a it follows $\mathcal{F}^1 = \{S^1\}$.

Now we suppose $n \ge 2$. The theorem 3.1 assures that the suspension homomorphism

$$s = j^{-1} \circ i \circ \partial^{-1} \colon \mathcal{O}_{n-1}^{\mathcal{F}}(S^{n-1}, x_0) \to \mathcal{O}_n^{\mathcal{F}}(S^n, x_0)$$

is onto $(j, \partial$ are isomorphisms).

On the other hand we can observe that s may be geometrically regarded as follows

$$s([\Sigma, \varDelta, f]) = [s\Sigma, \varDelta', f']$$

 $(s\Sigma \text{ stands for suspension of } \Sigma)$, where f' is the map (homotopic to sf) which coincides with $f \times id$ on a bicollar C of Σ in $s\Sigma$ and with sf elsewhere, and Δ' is a top dimensional simplex of C contained in $\Delta \times I$.

Then the assert follows by induction.

Our approach to problem has the incidental avantage of proving the following

COROLLARY 3.3. – The suspension homomorphism $s: \Theta_{n-1}^{\mathcal{F}}(S^{n-1}, x_0) \rightarrow \Theta_n^{\mathcal{F}}(S^n, x_0)$ is an isomorphism.

PROOF. – A homomorphism of Z onto itself is necessary an isomorphism.

REFERENCES

- G. A. ANDERSON, Resolutions of generalized polyhedral manifolds, Tôhoku Mat. Journ., 31 (1979), 495-517.
- [2] S. DRAGOTTI R. ESPOSITO G. MAGRO, *F-varietà e funzioni dual cellulari*, Ric. Mat., 33 (1990), 21-33.
- [3] S. DRAGOTTI R. ESPOSITO G. MAGRO, Construction of functors connecting homology and homotopy theories, Proc. of Amer. Math. Soc., 120 (1994), pp. 635-646.
- [4] S. DRAGOTTI R. ESPOSITO G. MAGRO L. PARLATO, Geometric representation of homology functor, Ricerche di Matematica, 45 (1996), 3-12.
- [5] S. DRAGOTTI G. MAGRO, A representation of homotopy theory by homotopy spheres, Ricerche di Matematica, 46 (1997), 13-22.
- [6] R. ESPOSITO L. PARLATO, I teoremi di Hurewicz e Whitehead per funtori omotopici associati a manifold classes, Ricerche di Matematica, 44 (1995), 359-368.
- [7] C. R. F. MAUNDER, Algebraic topology, Van Nostrand, London, 1970.
- [8] C. P. ROURKE B. J. SANDERSON, Introduction to PL topology, Ergeb. Mat. Band. 69, Springer-Verlag, Berlin and New York, 1972.
- [9] S. BUONCRISTIANO C. P. ROURKE B. J. SANDERSON, A geometric approach to homology theory, Cambridge University Press - London - New York, 1976.
- [10] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.
- [11] J. H. C. WHITEHEAD, Note on suspension, Quart. J. Math. Oxford (2), 1 (1950), 9-22.

Dipartimento di Matematica e Applicazioni Renato Caccioppoli Via Cintia, 80126 Napoli, Italia

Pervenuta in Redazione il 13 novembre 1997