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On the Groups U n
F of a Sphere.

S. DRAGOTTI - G. MAGRO - L. PARLATO (*)

Sunto. – In questo articolo studiamo i gruppi U h
F di una sfera S n e proviamo che il

gruppo U F
n (S n , x0 ) è isomorfo all’ennesimo gruppo di omotopia di (S n , x0 ), nell’i-

potesi che F sia una classe coconnessa di links ammissibili.

Introduction.

This paper is concerned with the properties of a functor U F associated to a
manifold class F, and its action on standard spaces.

A manifold class is a graded collection F 4 ]Fh (hF0 of compact polyhedra,
defined up to a PL-isomorphism, closed under link and join, and such that S 0 �
F0 (S n 4 standard PL-sphere).

The collection C of the geometric cycles without boundary is so, and for
each F such that F0 4 ]S 0 ( we have F ’ C.

The collection P L of the standard PL-spheres is so, and P L ’ F for each
manifold class F.

A polyhedron S� Fh is called Fh-sphere, a polyhedron P of the form S2

st
i

(x , S) is called Fh-pseudodisc. Fh-spheres and Fh-pseudodiscs are allowable
links for a theory of generalized manifolds: the F-manifolds, and a subsequent
cobordism theory: the F-cobordism.

A manifold class F with some additional property determines geometrical-
ly a covariant functor U F which assigns to every pointed pair of topological
spaces (X , A , x0 ) a graded group U F (X , A , x0 ), just as P L determines the
classical functor p using F-spheres and F-pseudodiscs instead of PL-spheres
and discs, and just as C determines the classical homology functor H (see [3],
[9]).

Every U F satisfies the first six axioms of E.S. (excision is excluded).
If F8’ F there exists a canonical homomorphism (forgetful) of graded

groups c F8 , F : U F8 (X , A , x0 ) KU F (X , A , x0 ) which allows to factorize the

(*) 1991 Mathematics Subject Classification: 55 P 65, 57 Q 20, 55 P 40.
Research supported by M.U.R.S.T.(40%).
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classical Hurewicz homomorphism

p (X , x0 ) K
c P L, C

H(X , x0 )

c P L, F 7 6c F, C(1)

U F (X , x0 )

About the groups U F
h associated to a standard PL-sphere S n (nF2) we

know them of dimension smaller than n : they are the null group. This follows,
by some easy expedient, from the (n21)-connectivity of S n . Almost nothing is
known about this groups. It is natural to expect that U F

h (S n , * ) is isomorphic
to Z (as it happens for homotopy and homology). It is rather surprising that
this is not true: in [6] is given a manifold class F such that the forgetful homo-
morphism c F , C : U F

n (S n , * ) KHn (S n , * ) is an epimorphism not injective,
and hence U F

n (S n , * ) cannot be isomorphic to Z .
In this paper we prove that U F

n (S n , * ) CZ in the case which F satisfies the
additional property called coconnection (definition in 2). However this condi-
tion is sufficient but not necessary because the class C of the geometric cycles
is not coconnected (but U C

n (S n , * ) CHn (S n , * ) CZ!).
The metod of doing the result is that to prove that for X4S n and nF1 the

homomorphism c P L, F : p n (S n , * ) KU F
n (S n , * ) of the commutative diagram

(1) is an isomorphism (theorem 3.2). Being in this case c P L, F injective, it suf-
fices to prove only that it is onto. This is achieved by using the surjectivity of
the map s which in the classical homotopy theory is called suspension
homomorphism

U F
n21 (S n21 , x0 ) J

A

¯
U F

n (D n
1 , S n21 , x0 ) K

i
U F

n (S n , D n
2 , x0 ) J

A

j
U F

n (S n , x0 )

s4 j 21
i i i ¯21

where the boundary homomorphism ¯ and j also are isomorphisms by stan-
dard properties of the involved spaces and by the homotopy and exacteness
axioms of U F .

Hence, the probleme is again reduced to state that the homomorphism i is
onto (theorem 3.1).

If we exclude the above discussion and a few others, the tecniques em-
ployed are entirely geometric (lemma 2.1 and theorem 3.1 also).

The original construction of the functor U F is developed in [3]. The papers
[4], [5], [6] contain more closely investigations about their basic properties,
and their behaviour in interesting special cases.

In order to make the current paper self-contained enough that the main
results can be understood we include a section that provides the definition of
the functors U F .
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1. – The functor associated to a manifold class.

A manifold class F is said to be connected if the polyhedron obtained at-
taching two Fh-pseudodiscs, by a PL-homeomorphism between their bound-
aries (if there exists), is an Fh-sphere.

Let F be a connected manifold class such that F0 4 ]S 0 (. The last hypothe-
sis implies that any F-manifold M is a geometric cycle, so it makes sense to de-
fine M to be orientable if M is orientable as geometric cycle. If M denotes an
oriented F-manifold, then 2M will denote the same manifold with the oppo-
site orientation.

An F-cobordism between two oriented Fh-spheres S 1 and S 2 is an oriented
F-manifold W such that:

a) ¯W is the disjoint union of S 1 and 2S 2 ;

b) WNc1 * S 1 Nc2 * S 2 is an Fh11-sphere.

An F-cobordism between two oriented Fh-pseudodiscs P1 and P2 is an ori-
ented F-manifold W such that:

a8 ) ¯W4P1NP2NW0 , where W0 is a cobordism between ¯P1 and ¯P2 ;

b8 ) WNc1 * P1 Nc2 * P2 is an Fh11-pseudodisc.

Let (X , x0 ) be a pointed topological space. A singular F-sphere of (X , x0 ) is
a triple (S , D , f ), where S is an oriented F-sphere, D’S is a top dimensional
simplex and f : (S , D) K (X , x0 ) a continuous map.

Two singular Fh-spheres (S 1 , D 1 , f1 ) and (S 2 , D 2 , f2 ) are said F-cobor-
dant if there exists a triple (W , W 8 , g), called F-cobordism, where W is an F-
cobordism between S 1 and S 2 , W 8’W is a PL-disc such that W 8OS i 4D i ,
i=1,2 , and g : (W , W 8 ) K (X , x0 ) is a continuous map, such that: gOS i 4 fi ,
i=1,2.

The F-cobordism between F-spheres in an equivalence relation.
Let U h

F (X , x0 ) denote the set of the F-cobordism classes of singular Fh-
spheres of (X , x0 ).

As in the case of the homotopy theory we can geometrically define an addi-
tion in U n

F (X , x0 ) (hF1) which give a group structure.
Let (X , A) be a pair of topological spaces and let x0 be a point of A . By rela-

tive Fh-sphere of (X , A , x0 ) we mean a triple (P , D , f ), where P is an oriented
Fh-pseudodisc, D’P is a top-dimensional simplex meeting ¯P in a top-dimen-
sional simplex, and f : (P , D) K (X , x0 ) is a map which carries ¯P to A .

Given a relative Fh-sphere (P , D , f ) of (X , A , x0 ), (¯P , DO¯P , fO) is a
singular Fh21-sphere of (A , x0 ) which will be denoted by ¯(P , D , f ).

Two relative F-spheres (Pi , D i , gi ), i=1,2, of (X , A , x0 ) are called F-
cobordant if there exists a triple (V , V 8 , G) where V is an F-cobordism
between P1 and P2 , V 8’V a P L-cobordism between D 1 and D 2 , and
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G : (V , V 8 ) K (X , x0 ) is a continuous map such that the following conditions
hold:

(1) V 8OPi 4D i , i=1,2;

(2) Let W4¯V2 (P
i

1 NP
i

2 ) (1) and W 84WOV 8 . Then (W , W 8 , GO) is
an F-cobordism between ¯(P1 , D 1 , g1 ) and ¯(P2 , D 2 , g2 ) with G(W) ’A .

The F-cobordism between relative spheres is an equivalence relation.
Let U h

F (X , A , x0 ) denote the set of the F-cobordism classes of relative Fh-
spheres of (X , A , x0 ). As before, we can introduce in U h

F (X , A , x0 ) (nF2) a
group structure.

Given a continuous map f : (X , A , x0 ) K (Y , B , y0 ), we can define, for each
hF2, a homomorphism U F ( f ) : U h

F (X , A , x0 ) KU h
F (Y , B , y0 ) by setting

U F ( f ) ([ (P , D , g) ] )4 [ (P , D , f i g) ] .

As proved in [3] the definitions above recalled allow us to build a covariant
functor, from the cathegory of pointed pairs of topological spaces to the cathe-
gory of graded groups, satisfying the first six axioms of Eilenberg and Steen-
rod (excision is excluded).

2. – A geometric lemma.

Our theorem 3.1 depends on a geometric result which allows to engulf (in-
clude into a PL-disc) a finite subset of a compact, connected F-manifold in the
case when F satisfies an additional axiom.

In order to state and prove the lemma involved (and theorem 3.1 again) a
few preliminary results are necessary. We reporte these briefly. For details
and proofs, see [2].

DEFINITION. – A manifold class F is said to be coconnected if for every Fh-
sphere S and Fh-pseudodisc P%S , the polyhedron S2P

i

is an Fh-pseu-
dodisc.

PROPOSITION a. – Let F be a connected, coconnected manifold class. All the
F-spheres and F-pseudodiscs of positive dimension are connected. The only
F0-sphere is S 0.

PROPOSITION b. – Let F be a connected, coconnected manifold class, and let
P 8’P be Fh-pseudodiscs such that ¯PO¯P 84P 9 is an Fh21-pseudodisc,
then the polyhedron P2 (P

i

8NP
i

9 ) is an Fh-pseudodisc.

(1) P
i

stands for P2¯P .
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PROPOSITION c. – Let F be a connected, coconnected manifold class. The
cylinder P3I on an Fh21-pseudodisc P is an Fh-pseudodisc.

PROPOSITION d. – Let F be a connected, coconnected manifold class and let
M 8’M be two Fh-manifolds such that M 8O¯M is the empty set or an Fh21-
manifold of ¯M , then the polyhedron M2 intM 8 is an F-manifold.

Now we prove the announced result

LEMMA 2.1. – Let M be a compact, connected F-manifold, where F is a con-
nected, coconnected manifold class. If x, y are regular (2) points of M , there
exists a regular polygonal path X in M from x to y which meets the boundary
¯M of M at most in x, y.

PROOF. – We use induction on the dimension m of M . By the Proposition a,
it follows that F 0 4 ]S 0 (, F 1 4 ]S 1 ( and hence an F-manifold of dimension 1
or 2 is a PL-manifold, then the assertion is true for m=1,2.

Assume the result for mGh21 and let M be a compact, connected F-man-
ifold of dimension h and x, y regular points of M . Being M a connected polyhe-
dron, there exists a triangulation L of M and a simplicial path of L , Y , joining
x and y. Let x4v0 , R , vr 4y be the vertices of Y . If Y satisfies the required
properties, we take this. If not, we can modify Y as follows. The 1-simplex
vi21 vi certainly lies in the boundary of some top-dimensional simplex s i of L ,
then we can replace vi21 vi by the polygonal path vi21 bi vi where bi is the
barycentre of s i .

We repeat that for all the line segments of Y . So, we obtain a polygonal
path

Z4v0 b1 v1 b2 v2 R vr

(2) A point x�M is said to be regular if link (x , M) is PL-homeomorphic to a stan-
dard PL-sphere or PL-disc. A subset X is said to be regular if all their points are regular
points.
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joining again x and y and such that all the points of Z different from the ver-
tices vi are regular points and lies in interior M

i

of M .
If necessary, we modifie Z as follows: let vj be a «bad» vertex of Z and let Lj

its link in the first barycentric subdivision L 8 of L . By Proposition a, Lj is a
connected Fh21-manifold (sphere or pseudodisc) for which our induction hy-
pothesis holds. So, there exists a regular polygonal path Xj ’ L

i

j joining bj and
bj11 .

The points of Xj are regular also in M , because Lj is bicollared in M . More-
over the points of Xj are interior to Lj and hence to M, because Lj O¯M4

¯Lj .
Then we replace the polygonal path bj vj bj11 by the polygonal path Xj . We

repeat that for all vertices of Z for which it is necessary, and finally we obtain
a polygonal path X which satisfies our requests. So the inductive step is
established. r

REMARK. – The polygonal path X of the above lemma can be arranged,
merely by cutting loops, so that it is collapsible.

On the other hand, being the points of X all regular, a regular neighbour-
hood N of X in M is a PL-manifold. Hence, if X is collapsible, N is a
PL-disc.

3. – The main theorem.

Let D n
1 and D n

2 be the northern and the southern hemispheres of S n (nF

2), p1 � D
i

n
1 the north pole, p2 � D

i
n
2 the south pole, and let x0 be a fixed point of

S n21 4 D
.

n
14 D

.
n
2 .

Consider the pointed pairs (D n
1 , S n21 , x0 ), (S n 2p2 , S n 2 (p1 Np2 ), x0 )

and for each hF2 the diagram

U F
h (D n

1 , S n21 , x0 ) K
¯1

U F
h21 (S n21 , x0 )

i1I Ij1

U F
h (S n 2p2 , S n 2 (p1 Np2 ), x0 ) K

¯2
U F

h21 (S n , 2(p1 Np2 ), x0 ) )
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where the vertical maps are induced by inclusion maps. Because D n
1 and S n 2

p2 are contractible, the homotopy and the exactness axioms of the functor U F

assure that the connecting homomorphisms ¯1 , ¯2 are isomorphisms. More-
over S n21 is a strong deformation retract of S n 2 (p1 Np2 ), and hence j1 is an
isomorphism. From the trivial commutativity of the above diagram it follows
that i1 is an isomorphsm.

A similar argument for the pointed pairs (S n , D n
2 , x0 ), (S n , S n 2p1 , x0 )

shows that for each hF2 also the homomorphism

i2 : U F
h (S n , D n

2 , x0 ) KU F
h (S n , S n 2p1 , x0 )

is an isomorphism.
These two results provide a convenient approach to prove the follow-

ing

THEOREM 3.1. – Let F be a connected, coconnected manifold class. For each
nF2 the homomorphism i : U F

n (D n
1 , S n21 , x0 ) KU F

n (S n , D n
2 , x0 ) induced

by inclusion is onto.

PROOF. – For each hF2 we can consider the commutative diagram

U F
h (D n

1 , S n21 , x0 ) K
i1

U F
h (S n 2p2 , S n 2 (p1 Np2 ), x0 )

iI Ij

U F
h (S n , D n

2 , x0 ) K
i2

U F
h (S n , S n 2p1 , x0 4

where j is induced by inclusion. Being i1 and i2 isomorphisms, to prove that i is
onto it is equivalent to prove that j is onto.

Then, we now show that if h4n the homomorphism

j : U F
n (S n 2p2 , S n 2 (p1 Np2 ), x0 )KU F

n (S n , S n 2p1 , x0 )

is onto.
Let a be any element of U F

n (S n , S n 2p1 , x0 ) and let (P , D , f ) be a repre-
sentative triple of a , that is f : PKS n , f (¯P) ’S n 2p1 , f (D) 4x0 . Up to a ho-
motopy we can suppose that f is a simplicial map, p1 is the barycentre of an n-
simplex t of S n , and also p2 is the barycentre of an n-simplex s .

We need a representative element (P 8 , D 8 , f 8 ) of a such that f 8 (P 8 ) ’
S n 2p2 , f 8 (¯P 8 ) ’S n 2 (p1 Np2 ), f 8 (D 8 ) 4x0 .

If f 21 (p2 ) 4¯ , we take P 84P , D 84D , f 84 f .
If not, being f a simplicial map, f 21 (p2 ) consists of a finite number of regu-

lar points b1 , R , br : the barycentres of the top dimensional simplexes
s 1 , R , s r of the triangulation of P such that f (s 1 ) 4R4 f (s r ) 4s .

Similary f 21 (p1 ) consists at most of a finite number of regular points: the
barycentres of the n-simplexes t 1 , R , t s such that f (t 1 ) 4R4 f (t s ) 4t .
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Let M4P2 0
l41, R , s

t
i

l8 (D
i

N(DO¯P
i

) ) , where t l8’ t
i

l . Since P is a connected

polyhedron (see Prop. a), and also t
.

l8 is connected (because nF2), the polyhe-
dron M is a connected F-manifold (Prop. d).

Let b a regular point of ¯P2D . Since f (b) cp1 , then b�MO¯P’
¯M .

By lemma 2.1 and relative remark, there exists a regular and collapsible
polygonal path X joining the points b1 , R , br , b such that X2b’M2¯M ,
and hence f (X) ’S n 2p1 .

Standard arguments of PL-topology assure that an e-neighbourhood of X
is a PL-disc D , and there exists eD0 sufficiently small so that such a disc
satisfies

f (D) ’S n 2p1 .

Obviously f (¯D) ’S n 2 (p1 Np2 ).
DO¯M4DO¯P is a PL-disc D 8 , the star of b in ¯P , then (Prop. b) the

polyhedron P2 (D
i

ND
i

8 ) is an F-pseudodisc P 8 ,

and we have f (P 8 ) ’S n 2p2 (because D*X* f 21 (p2 ) ) .

f (¯P 8 ) 4 f (¯PN¯D2D
i

8) ’S n 2 (p1 Np2 ) .

Finally, being D%P 8 , the triple (P 8 , D , f/P 8 ) determines an element b of
U F

n (S n 2p2 , S n 2 (p1 Np2 ), x0 ) .
In order to prove that j(b) 4a it remains to construct an F-cobordism

(V , V 8 , G) between (P , D , f ) and (P 8 , D , f/P 8 ).
Let V4P3I , V 84D3I and G4 f3 id . Being g(¯V2 (PNP 8 ) ’S n 2
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P1 , by Prop. c it is straightforward to verify that the triple (P3I , D3I , f3

id) satisfies the required conditions. r

Now we are able to prove the following

THEOREM 3.2. – Let F be a connected, coconnected manifold class. The for-
getful homomorphism c P L, F : p n (S n , x0 ) KU F

n (S n , x0 ) is an isomorphism
for each nF1. Hence U F

n (S n , x0 ) is isomorphic to Z.

PROOF. – Consider the commutative diagram (see introduction)

p n (S n , x0 ) K
c P L, C

Hn (S n , x0 )

c P L, F 7 6c F, C

U n
F (S n , x0 )

In this case the Hurewicz homomorphism c P L, C is an isomorphism for each
nF1, and hence c P L, F is injective.

Then, in order to state the assert, we only need to show that c P L, F is onto.
That is: for any element a�U F

n (S n , x0 ) there exists a representative triple of
the form (S n , D , f ).

This is trivial if n41, because by Prop. a it follows F 1 4 ]S 1 (.
Now we suppose nF2. The theorem 3.1 assures that the suspension

homomorphism

s4 j 21
i i i ¯21 : U F

n21 (S n21 , x0 ) KU F
n (S n , x0 )

is onto (j , ¯ are isomorphisms).
On the other hand we can observe that s may be geometrically regarded as

follows

s( [S , D , f ] ) 4 [sS , D 8 , f 8 ]

(sS stands for suspension of S), where f 8 is the map (homotopic to sf ) which
coincides with f3 id on a bicollar C of S in sS and with sf elsewhere, and D 8 is a
top dimensional simplex of C contained in D3I .

Then the assert follows by induction. r

Our approach to problem has the incidental avantage of proving the
following

COROLLARY 3.3. – The suspension homomorphism s : U F
n21 (S n21 , x0 ) K

U F
n (S n , x0 ) is an isomorphism.
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PROOF. – A homomorphism of Z onto itself is necessary an isomor-
phism. r
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