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Modular invariant theory
and the iterated total power operation.

A. CIAMPELLA (¥)

Sunto. — L’operazione coomologica totale iterata in coomologia ordinaria a coefficienti
m Z/p ha una sua espressione a seconda della base fissata nell’'algebra di Steenrod
A,. Fissato un primo p dispari, vengono qui calcolati i coefficienti dell’'operazione
totale doppia iterata quando si sceglie in C, la base dei monomi ammissibili. St
fornisce inoltre una dimostrazione alternativa di una versione normalizzata di un
teorema di M, ottenuta considerando una particolare successione di funzioni, in
analogia al caso p = 2.

1. - Introduction.

Fix an odd prime p and let H * be the reduced ordinary cohomology theory
over F, the Galois field of order p. The Steenrod algebra €1, is the algebra of
all stable operations in H *. Its generators 3, P, i =0, can be defined through
the ring homomorphism

T:H*(X)—>H*(Z/p) @ H*(X),

where X is a CW complex. As it is well known, the cohomology ring of an ele-
mentary abelian p —group of rank m is

Hv((Z/p)m) :E[xly [EKE ] 90m]®Fp[?/1, [KEE ] ym]5

where E[xy, ..., «,,] is the exterior algebra on m generators x, ..., x,,, each
having degree 1, and F,ly,, ..., ¥,] is a polynomial ring with generators

Y1, ---5 Y In grading 2.
T is known as the total power operation and it has been extensively studied
by Steenrod in [10]:

T(z) = u(q) ;O: 1(—1)€+i9€f2/1(q_2i)h_8®ﬁEPi(Z),
where ze HY(X), h=(p—1)/2, u(q) = (h!)I(—1)"“9~V2_ QOther operations

(*) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.IL.
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are obtained by iterating T'. For each m =1, we have
T,: H*X)—H*((Z/p)") ®H*(X),

which multiplies the degrees by p™. There is a natural action of GL,, =
GL(m, F,) upon H * ((Z/p)™) and the invariant elements rings are closely re-
lated to @,; in fact, from the geometric construction of T,, it follows
that

In(T,,) c (H* (Z/p)™))Sn,

SL,, being the subgroup consisting of those matrices weGL,, such that
(det )" =1. Fixed any linear basis $B in @,, we get an expression of the
form

D

Tm(z) = 2 f(b) & b(Z) ’

beB

with f(b) e H *((Z/p)m)gzm. The coefficients f(b) have been computed when
B = By, the Milnor basis of @, (see [8]). After recalling some basic facts
about the geometric setting of , and the modular invariant theory in Section
1, in Section 2 we consider the basis $B44,, of admissible monomials and show
how the coefficients f(b) appear when m = 2. (The case p = 2 has been treated
in [4]). The last Section is devoted to providing another proof of the normal-
ized version of Mui’s Theorem [3, Th. 2.9]. We proceed in a way analogous to
[6], where the case p =2 has been dealt with. In our case , the corresponding
sequence of maps is 0,,: d; —4,,, where 4,, = @Bn. Here @,, is the localiza-
tion of H* ((Z/p)™) out of its Euler class e,, and B,, is the Borel subgroup of
GL,,.

Part of the content of this paper has been exposed in a communication dur-
ing the XVI Congresso dell’Unione Matematica Italiana. I would like to
thank the UMI Scientific Committee for inviting me and Prof. L. Lomonaco
who has helped me with criticism and useful suggestions.

This work has been supported by the «Progetto Giovani Ricercatori».

2. — Preliminaries.

Let A, be the alternating group on F';’, G an even permutation group con-
taining an elementary abelian p —group of rank m, and X a based CW com-
plex. So we have the Steenrod power map

m

Pg: HI(X)—H""1(EG* NeX®™),
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which sends z to 1®z?" at the cochain level, the diagonal homomor-
phism:
di: H*(EG* Ne X)) >H*(BG)®H*(X),
induced by the G —homomorphism
EG* NeX—EG* NeX®"

via the diagonal X —X®") (H*(EG* N\¢X) = H*(BG)® H *(X) by the Kiin-
neth formula,) and the restriction homomorphism

Res((Z/p)", G) : H*(G)—H*((Z/p)™)

induced by the inclusion (Z/p)” c G. The resulting composition of these three
homomorphisms does not depend on the group G containing (Z/p)™ and con-
tained in A,x; it gives rise to the iterated total power operation 7),. The fact
that Im(T,,) c H* ((Z/p)")*'» @ H*(X) comes from the construction above.
We need to recall some facts about modular invariant theory. Let

Vi= 11 Gy + oo+ A W—1 + i),

LieF,

_ T h _ -1 ] .
Lm_Vl-“vav Lm_Lmy Qm,s_Qm—l,vaag +Q7¢L—1,s—1’

conventionally, @, ;=1 for each s=0 and Q,, ;=0 if either s <0 or s>m.
The Q,,, s, called Dickson’s invariants, arise when we consider the polynomial
part of H*((Z/p)™). Concerning with the exterior part, we set

- 3

xl ... '%"”Z
1 ¥y o L
[k;ek+15-”’em]=_det ’
k! plh+1 plh+1
yl o ym
em em
Lyl Y
where ¢, 1, ..., €, are non negative integers, 0 Sk<m, and M,,. =
[k;0,1,...,58, ..., 8, ..., m — 1]. As usual, s; means that s; is omitted. We

have

2 —0N - (1 \ek—-1)2 k-1
Mm;sl_O; Mm;sl"'Mm ( 1) Mm;sl,...,skLm ’

3 Sk
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where 0 <s; <...<s,<m—1. We set

=M Lp-2

m; S, ..., SpAm

1 _ h—1
(1) Mm;sl,“.,s _Mm;sl,<.4,skL7n ’ R

13 m; 81, -y Sk

and

em=11A1y; +... +A,,y,) (the Euler class),

where the product runs over all nontrivial m-tuples of elements of F,. We ob-
serve that

Qm, 0= L£471 = E?n = ( - l)mem'
We invert the Euler class in H*((Z/p)”) and get the ring
@, =H*((Z/p)")e,*

upon which the action of GL,, on H*((Z/p)") extends. As it is well
known:

sz gD'VGVLLm ZE[RWL;O’ AR Rm;m—1]®Fp[Qn:_:10’ Qm,lv LR Qm,m—1]9

i_‘m: @%"”ZE[MW;O, --me;nzfl]@Fp[E;zl? Qm,b ceey Qm, mfl]-

In @,,, we have defined particular elements which can be assumed as genera-
tors of @5, We set:

v=V, Vi1=Vii1/Qr, k=0
® { 1 1 b+ 1 k+1/%k, 0

k-2 k-3
ukIth_l/(vl” Q)zp ...vk_lvk), k?l,

the gradings of v, and u; are 2 and —1 respectively.
The following relations hold:

— (-1 pF 2 (p—1)pk~3 (p—1)
{Vk—vlp Pr TP TP P

k-1 k-2 1
Ly=v v} . vfliv.
Further, let w, be vP 1.
PROPOSITION 1. — @0 = Eluy, ..., u, ]®F,[w", ..., w,'].

ProOOF. — From [5, Prop. 7.5], we know that

@B =E[N,, ..., Nm]®Fp[Wf1, oy W,
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where Ny, =LF " 'M,.,_, and W, = VP!, Easy calculations lead to

Wi =w,
Wi=Wy... We_ )Pty
Nk:uka.

From [9, Lemma 5.4], we know that

m
Mm;s= E Mr’;?‘—IVr+1"'VmQr—1,s~

r=s+1

Combining this relation with the second of (1) and the (2), we get:

& M,
_ L > rir-
(3) Rm; s Mm; ﬁLal;L - Qm, 0 1 p’"’l p,.,z » Qr—l, s
rEstlol vy 0P,

m m

|% _
:Qm,O 2 luv U_TQ’rfl,s:Qm,O 2 1%&"Q7711,0Q?71,5'
r r r

3. — On the double power operation.

From [8], we know the coefficients f(b) when B = By;;. Mui’s Theorem
reads as follows:

THEOREM 2. — ([8, 1.3]) Let ze HY(X), s = (81, ..., Sp), L S8; < ... < s, =m,
R=(r, ..., 7,). Then

T, (2) =u(q)”’L7%SER( 1S BR, R, QM. QI @SS E(2),

where ro=—k—(r+...+71,), »(S,R)=k+s;+...+s,+r+2r+..+
mr,, and St5Fe By (see below).

In [2] the coefficients f(b) in the double iterated total power operation are
computed when we choose in ¢, the classical basis $B44,,. We adopt the abbre-
viated notation P’ = g1 P ... % P" for a typical monomial in @,, where I =
(€1, ty, ..., &, t;.) is a multi-index whose entries ¢; are 0 or 1 and ¢; are positive
integers (possibly ¢, = 0 if £, = 1). The length of P’ is k if t, = 0; it is k — 1 if
tx =0 and &, = 1. A monomial P’ belongs to By, if ¢; = pt; | + ;. for each
1<j<k-1. Then an admissible monomial of lenght 2 is of the form
perpritetage ptiywhere a,t=0 and €1, €2 =0, 1. Leading to the admissi-
ble basis, the Adem relations play an important role in determining the f(b),
together with comparisons of coefficients in suitable power series.
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THEOREM 3. — ([2]) For each ze HY(X), X a CW complex, ¢ =0, we
have:

T5(2) :ﬂ(Q)ZZEtZA(—1)’”77Q2”f0’t*°"lQépri—i—l.

, U,

a—pi
[( 'p )[Q2'°Q2’1®Pm+a_R2;0,1Q2,1®ﬁPp““”ﬁ+
1

Ry 1@y 1 QP 18— Ry Qo 1 ®BPP ] +
a—pi—1
(7 )Rz;le,o®ﬁP7’”“}P”(2)-
1

As we can see, the combinatories involved is complicated since the double iter-
ation. Consider (1, as graded by the length of monomials. In grading 2, it suffi-
cies to apply once the Adem relations in order to get the admissible expression
of any monomial. A similar procedure does not apply to upper length monomi-
als, since there are not explicit non- recursive formulas, neither to obtain an
admissible expression of any monomial of length k£ > 2, nor to convert a Milnor
basis element to the basis B4, (see [7]).

4. — An alternative proof of the normalized total power operation.

We start from the ring homomorphism
S, H*(X) = ®5r Q@ H*(X).
For each ze H*(X), S,,(z) is:
Sy (2) = ;,]ugw"’® 0% (z),
where &=(ey, ..., &,), &=0,1, ul=ufr...ulm, J=1, .., jm)y 1=
Loym, w ™ =w . i, @& =pgapi  genpin, Up to a sign, S,, is

the homomorphism defined in [1]. S,,(z) has the same dimension as z. Follow-
ing the idea in [6] for p =2, we construct a sequence of maps:

. % — B,
5m- ap _)Am - ¢mm )

where @ denotes the F,, —dual of ,, and we will use them to give an alterna-
tive proof of a normalized version of a result of Mui (it is quoted here for the
A,-module H*(X)).
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THEOREM 4. — ([3, Th. 2.9])

Sm(z)z 2(_I)T(S’R)Rm;sl"'Rm;sk 7?79,0"' 7273;711—1®StS’R(Z),
S, R
where ry=—k—ri—...—7,, (S, R)=k+s+...+s,+r +21r+...+mr,.
We recall that A} is isomorphic to:
E[TO, T1y eoey Th, ]®Fp[§1, ceey gk’ ].

Here &, and 7, are dual to P?" 'P?" .. P! and P?" 'P?" *... P! respect-
ively, with respect to the basis of admissible monomials. For sequences S =
(81y vy Sp), 0 5y< 8 <...<s, k=0and R=(ry, ..., 1), =0, 1=0, let

StSE = (1 ER)* = (v, ... 7, EN ... E})*

with respect to the basis {rg&®}g  of A; . These elements form the so called
Milnor basis of d,. We are going to show that

) S,.(2) = RES Ot ERYRStS B(2).

Then we prove that J,,(75&®) is just equal to
S, R —k— "m. 5 T — .
(_1)7( )Rm;sl---Rm;stm,O (it ot )Qv?nl,l'--Q;z,mlfl’

hence S,, is the normalized iterated total power operation. We first introduce a
map which is formally identical to S,,:

S,:A,—4,8a,

O Jutw'e%).0.
& dJ

DEFINITION 5. — 0 ,,: A —4,, has the following definition: for t5& Re a,
we set

0u(tsE®) 1= (=1 B (([d®@T5ER) 0 8,,)(1),

that is 0,(ts&R) is the image of 1e A, under the following composi-
tion:

S id®rg "
ap_)A m ®ap — A4 m®Fp =4,,.
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As S, (1) = D ulw ’®6%7 (an infinite sum!), we have that:
67

6m(TS§R) = (_1)V(S’R)(id®‘b’ng)(Eugw7J®@(g’J))
8 J
= 2(—1)y SRyt Nz EE 0E D),
&7

where (13 &%, @@ 7)) is the value of 74 £ on @@ 7). It is easy to check that §,,
is a ring homomorphism.

LEMMA 6. — Let a <pb and a+b=p"+p" 1. Then

1

(i) the coefficient of PP"PP"" " in

) ((p— Db -1 -1

Pan: E (_1)a+t )Pa+btPt
t=0

a—pt

1S zero;

(ii) the coefficient of PP =pPr' PO iy (5) is zero.

COROLLARY 7. — Let a;+ ... +a,,=p" ' +p" *+ .. 1=p"—1 (m=n).
Then the coefficient of PP Pl in the admissible expression of

pPupe P gs zero.

The same argument works to show that P?" 'P?"*.. P! does not ap-
pear in the admissible expression of any nonadmissible monomial
Pupe. . pug.

COROLLARY 8.

() (£, PH...P"y=1 if and only if n=k and (i, ...,1,) =
(" 1, pF % 1y
Gi) (ty, P1...P"BY=1 if and only if n=k and (i, ...,1,) =

(pkil, pk727 M 1)'

PROPOSITION 9. — 8,,(,) = (=1 > w7, where J is a multi-index of the
T
form (0, ...,0,p* 1, ...,0,...,p,0,...1,0...) with n — k zeros inserted.

PROOF. — £, = (P?"""... PP P')*. From Cor. 3(i), (£, @®”) = 1 if and only
it @7 =pr""  PrPl The corresponding coefficient is >, w 7, where J is
as above. ® 4
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PROPOSITION 10. — &,,(7;) = (=11 X ww " for all k=0, ...,n—1,
t=k+1
where the sequence J; is of the following type:
Jt= (jl’jZ’ ""jt—l) = (07 [ERS) Ppk715 05 '“’PlJ’ 0, ---Pl, 07 0)7

with t —1 — k zeros inserted.

PROOF. — ), = (P?" 'P?"* . PPP!B)*. Applying Cor. 3 (i), we have
(ty, @&y =1if and only if @@ = P ' Pr**___ P? P! and the correspond-
ing summands are those indicated in the statement. m

PROPOSITION 11. — 6,(&;) = (—1)"Q, 4Q,. re,c 4, for each k=1.

PrOOF. — The relation above holds for n =k since @, , =1 and @, (Q,., =

Qrg}]Qn,k :/wlipn_l/’/02710”_2 "wwjl' Ifk > n, then 67@(§k) = O = an%)Qn,k as, by

convention, @, , =0 in this case. So let » >k and suppose that 6, _1(§;) =
Q.11 0Q, 1, The following relations hold:

— - 0
Qn,s_erLj—ll,OQn—l,swn_l— Qf—l,s—lwn

n—1 n—2
Qno=QF 1 ow,=w{ wd ..w,

VP = QP gw,.
Hence,
Qu-1,0Qu 1= (Qu 21 0w, NQPZ1 0Qu_1 kW, + QF_1 r—1w))
=Qu1,0Qu-1,1+ Q1 0Qu-1,k-1)"w, .
By the induction hypothesis, we know that
an—lL 0Qu-1,1k= > wj;pki

where the sum runs over all integers j; such that 1<j,<...<j,<sn-—1.
Thus:

Qn_fll,Oanl,k + (Qn_fll,()anl,lcfl)pu)n_1 =

1 nk—2
—p -1
wj, cwy

_ k-1 _nk-2 1 _nk-2 _ k-3 1 -1 _
Cw;? wy D+ Qw T wy T wy ) w, =

cw P =2w T+ 2w
J T

where the symbol J denote sequences of length » with the last element zero

and others n — 1 — k zeros are inserted among places from 1 to » — 1, and the

symbols J ' denote sequences of length »n with the last element equal to 1 and
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others n —k zeros are inserted among places from 1 to » —1. Then we get

2

(D Qub@u = (“D! T Ty = 0,60,
the sum being over (j;, ..., ji), where 1 <j; <...<j,<n. =

PROPOSITION 12. — 6,(t;) = (=1 " 'R, Q, § for each 0 sk <mn—1.
PrOOF. — From 3), R, Q. b= > u.Q " ¢Q, 1 ;. We want to prove
that: Tk
n

1 k-1 _ k-2 1
Rn;an,O_ Z luTw.hp wfzp < Wy
7 +

with 1 <j; <... <j, <7 — 1. But this directly follows from the previous Propo-
sition, since we have shown that
k

1 _ _phml_pk-2 1
Qrfl,OQ’r'fl,k_ . 2 wjl wjz "'wjk ‘ u
1sji<..<jpsr-—-1

COROLLARY 13. — For S=(sy, ..., Sp), 1 <s;<...<spand R=(r, ..., 1),
’I"iZO, l?l,

Ry _ (S, R
6n(rS§ )_(_1)1( )Rn;sl-"Rn;st;(,)Oer}l"' gl,lv

where ro= —k— (ry+ ... + 7).
We have proved the following

THEOREM 14. — S,(2)= 2 (-1)SPR, . R, Q... Q1 Q St5(z).
S,R
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