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Unirational Quartic Hypersurfaces.

MARINA ROSANNA MARCHISIO (*)

Sunto. – Dopo aver ricordato i principali risultati concernenti l’unirazionalità dell’i-
persuperficie quartica generale X4 di P n (definita su un corpo K qualsiasi) si illu-
stra la costruzione geometrica che permette di provare l’esistenza di una superficie
razionale in ogni X4 di P n , con nF4, e di trovare altri esempi di ipersuperficie
quartiche lisce che sono unirazionali oltre a quello dato da B. Segre nel 1960. Si
mostra poi come l’analisi delle superficie quartiche monoidali (cioè contenenti un
punto triplo come unica singolarità) ad asintotiche separabili sia utile per la de-
terminazione di famiglie di ipersuperficie quartiche lisce unirazionali in P 4 e P 5 .
Vengono infine segnalati alcuni possibili sviluppi e problemi ancora aperti in que-
sto tipo di questioni.

Introduction.

The study of the rationality of the algebraic varieties is one of the most fas-
cinating and in the same time one of the most difficult problem of the bira-
tional geometry. From the end of the last century a lot of algebraic geometers
studied this kind of questions starting from the hypersurfaces Xd of degree d
in Pn and their intersections which are the simplest varieties that one can con-
sider. First of all we give a quick survey of the main known results on the uni-
rationality of the quartic hypersurfaces X4 in Pn defined over any feld K . Then
we explain the geometric construction which allows us to prove the existence
of a rational surface in every X4 in Pn, nF4, and to find other examples of
quartic smooth hypersurfaces which are unirational further the one given by
B. Segre in 1960. In the third part we will show how the quartic monoidal sur-
faces (i.e. containing a triple point as unique singularity) with separable
asymptotics can be useful to determine families of quartic unirational smooth
hypersurfaces in P 4 and P 5 . Finally we give a list of conjectures and open
problems.

(*) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.I.



MARINA ROSANNA MARCHISIO302

1. – Main known results on the unirationality of the quartic hypersur-
faces X4 in Pn.

Let X4 be a smooth quartic hypersurface defined over a field K .

DEFINITION 1.1. – i) X4 ’Pn is called unirational if there exists a rational
generically surjective (i.e. dominant) map

W : Pn21 m X4 ,

ii) X4 ’Pn is called rational if there exists a birational map

W : Pn21 mA X4 .

If n42 X4 is a smooth plane quartic of genus 3 hence it is not rational. By
Lüroth Theorem X4 ’P 2 is not unirational.

If n43 X4 is a smooth quartic surface in P 3 . X4 is not rational and if K is an
algebrically closed field and K(P 2 ) /K(X4 ) is a separable extension then X4 , by
the rationality criterion of Castelnuovo, is not unirational. The two hypotesis
on K are essential infact there exist several counterexamples for istance the
one given by Shioda in [29] of X4 ’P 3 (K ), where K is an algebraic closed field
of characteristic pc0 and pf3 (mod 4), which is a K3 (hence not rational)
unirational surface.

For nF4 the two notions of unirationality and rationality don’t coincide,
moreover there are no criterions of unirationality or rationality. For these rea-
sons the answer to the problem «Is X4 in Pn unirational?» is not so
obvious.

If nF7 U. Morin in the 1936 in [14] proved the following

THEOREM 1.1. – The generic quartic hypersurface defined over any field K
in Pn with nF7 is unirational.

Always Morin in 1940 in [15] proved the following

THEOREM 1.2. – Given a hypersurface Xd ’Pn, there exists a constant c(d)
such that the generic Xd ’Pn is unirational if n21 Dc(d).

J. P. Murre in 1979 in [17] discussed and wrote in modern language the
proof of the previous result. In 1980 in [4] C. Ciliberto, for K algebraic closed
field of characteristic zero, gave a new proof of the previous theorem finding
as particular case the Theorem 1.1.

Always the Theorem 1.2 was extended to the complete intersecions by
A. Predonzan in [20] in 1949 and this extension was discussed and generalized
in modern language by L. Ramero in [25] and by K. Paranjape and V. Srinivas



UNIRATIONAL QUARTIC HYPERSURFACES 303

in [18].
For n46 U. Morin in 1952 proved in [16] the following

THEOREM 1.3. – The generic quartic hypersurface in P 6 defined over any
field K is unirational.

In 1998 A. Conte and J. P. Murre in [6] gave a new and much simpler proof
of the unirationality of the quartic fivefold using in an essential way a theorem
of B. Segre of the 1954 not available to Morin.

For n44 and n45 the problem of the unirationality of the generic quartic
hypersurface is still open, i.e. it is still unknown if the generic X4 of dimension
3 and 4 is unirational or not. This is considered one of the most interesting and
difficult open problem in this kind of questions.

Nevertheless B. Segre in 1960 in [28] gave an example of a particular
smooth quartic hypersurface which is unirational. It has equation

x0
4 1x0 x4

3 1x1
4 26x1

2 x2
2 1x2

4 1x3
4 1x3

3 x4 40 ,

where (x0 : x1 : x2 : x3 : x4 ) are the homogeneous coordinates in P 4 .
In 1971 V. A. Iskovskikh and Yu. I. Manin in [10] proved the follow-

ing

THEOREM 1.4. – The quartic hypersurface X4 in P 4 is not rational.

They showed that the group of the birational automorphisms, which is a bi-
rational invariant, of the X4 is finite. Since Bir (P 3 ) is the Cremona group and
it is infinite it follows the non-rationality of the quartic threefold.

By the previous example given by B. Segre V. A. Iskovskikh and Yu. I.
Manin gave a negative answer in dimension three to the Lüroth problem for-
mulated by Lüroth in 1861 and which asks «Is an unirational variety neces-
sarly rational?».

In 1972 other counterexamples to the Lüroth problem in dimension three
were given by H. Clemens and Ph. A. Griffiths in [5] proving the non-rationali-
ty of the cubic hypersurface in P 4 and by M. Artin and D. Mumford in [2]
building unirational varieties with torsion in H3 (Z) different from zero hence
not rational.

In 1996 J. Harris, B. Mazur and R. Pandharipande in [8] proved the
following

THEOREM 1.5. – Every hypersurface Xd of degree d in Pn is unirational if
the codimension of the singular locus Sing Xd is sufficiently big with respect
to d and n .

Recently some progresses were made. First of all in 1997 A. V. Pukhlikov,
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in [24], extending the tecniques of proof of Iskovskikh and Manin, proved that
the generic Fano hypersurface XM in PM with MF4 is not rational.

In 1998 in [9] J. Harris and Yu. Tschinkel studied the rational points over
the quartics and in particular proved the following

THEOREM 1.6. – Let X4 ’Pn be a quartic smooth hypersurface defined over
K . If nF4, then for any finite extension K 8 of K the set X4 (K 8 ) of the K 8-ra-
tional points of X4 is dense in the Zariski topology.

2. – Examples of smooth quartic unirational hypersurfaces in P4 and P5.

To find examples of smooth quartic hypersurfaces which are unirational we
extend the tecniques of Conte-Murre used in [6] to prove the unirationality of
the quartic fivefold.

2.1. – Existence of a rational surface.

In [6] Conte and Murre proved that the generic X4 ’Pn with nF5, con-
tains a rational surface. It is possible to prove that also the generic quartic of
dimension 3 in P 4 contains a rational surface, more precisely we prove the
following

PROPOSITION 2.1. – Every X4 ’P 4 (K ) contains a rational surafce S 0 and
moreover if P *�X4 is a fixed point of X4 we can take S 0 going through it.

See [12] for the proof.

2.2. – Construction of the quadric bundle and unirationality of the X4 in P 4

and P 5 .

Consider X4 ’Pm11, with mF3 and S 0 the rational surface contained in
X4 . Fix R�S 0 and H 0 a hyperplane in Pm11 and take the tangent cone CR (X4 )
to X4 in R . Let QR 4CR (X4 )OH 0 be the quadric hypersurface of dimension
m22 obtained intersecting CR (X4 ) with H 0 . Consider the quadric bundle

p : X 1KS 0

with X 14 ](R , P 8 ) /R�S 0 , P 8�QR ( and p( (R , P 8 ) ) 4R . X 1 is an irre-
ducible variety defined over K0 of dimension m . If m44 QR is a quadric in P 3

while if m43 QR is a conic in P 2 and hence X 1KS 0 is a conic bundle.
If mF5 the existence of the rational surface S 0 in X4 is sufficient to prove,

applying in an essential way the Segre’s theorem, that the previous quadric
bundle has a rational section and hence to prove the unirationality of the
X4 ’Pm11 .

If m43, 4 the existence of the rational surface S 0 is not, alone, sufficient
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to conclude that the quadric bundle admits a rational section because it is not
possible to apply the Segre’s theorem. We note that if all conic bundles over a
rational surface were unirational then the previous construction would imply
automatically the unirationality of the quartic X4 ’P 4 . Unfortunately this
problem, also if it is not known if there exist examples of conic bundles which
are not unirational, is very far to be solved and it is, togheter the one of the
unirationality or not of the quartic hypersurface in P 4 and P 5, the most impor-
tant open problem in these rationality questions. It seems that the answer to
this problem is negative and a possible counterexample should be given by the
hypersurface of degree n, Xn, in P 4 containing a line of molteplicity n22 for
nF5.

Nevertheless there are special rational surfaces S 0 such that the previous
quadric bundle admits a rational section. We will study some of these particu-
lar cases.

i) Surfaces with separable asymptotics.
Let Fn be a surface in P 3 (K ), irreducible, of order nF3, which is not a de-

velopable ruled surface. Let x be a generic point of Fn and P x the tangent
plane to Fn in x . The intersection Fn OP x is a curve with a double point in x
and the lines l’P x such that x� l are the tangent lines to Fn in x with

moltx (lOFn ) F2 .

If Qx is the polar quadric to Fn in x, the intersection Qx OP x is a conic Cx with
a double point in x . Then in K(x) or in its quadratic extension

Cx 4 l 8x 1 l 9x

where l 8x and l 9x are two tangent lines to Fn in x, more precisely the two aymp-
totics lines. Let S be the congruence, defined over K, generated by the asymp-
totic lines to Fn moving x, contained in the Grassmannian of the lines in
P 3 G(1 , 3 ).

DEFINITION 2.1. – Fn has separable asymptotics if S4S 81S 9, that is if S
consists of two irreducible components over an algebraic extension of K .

We have that

moltx (lx89OFn ) F3

that is lx89OFn 43x1p1 1R1pa .

REMARK 2.1. – a) Every (non developable) ruled Fn has separable asymp-
totics. Moreover dim S 841, dim S 842 and S 84 ]generatrices of the ruled
surface(. If Fn is a cone or a developable surface S 84S 9 .



MARINA ROSANNA MARCHISIO306

b) If n42, F2 is a quadric and hence it has always separable asymptotics
and dim S 94 dim S 941.

c) If Fn has separable asymptotics then every surface in P 3, obtained
starting from Fn by a nondegenerate projectivity of P 3, has separable
asymptotics.

It is possible to prove the following

THEOREM 2.1. – Let S 0 ’X4 ’P 4 , P 5 be a surface with separable asymp-
totics and let

p : X 1KS 0

be the quadric bundle constructed above. Then the quadric bundle admits a
rational section.

PROOF. – Let R�S 0 be a non singular point of S 0, then the tangent plane to
S 0 in R intersects its quadric tangent cone CR (X4 ) (i.e. the tangent cone in R to
the quartic hypersurafce X4 OTR (X4 ) where TR (X4 ) is the tangent space to X4

in R) in two generatrices which correspond to the two points in X 1 ((R , P 8 )
and (R , P 9 ) ) . Let S be the closure of the geometric locus of these couples of
points moving R on S 0 . S is the congruence generated by the asymptotic lines
moving R on S 0 and hence, by hypotesis, consists of two components S 8 and
S 9, over an algebraic extension of K, such that each determines a rational sec-
tion of p . r

In the next section we will study the monoidal quartic surfaces with sepa-
rable asymptotics.

ii) If S 0 is a ruled non developable surface of order 4, it contains a triple
line. In this case we can find unirational quartic hypersurfaces X4 cointaing S 0

which are smooth only in P 5 and not in P 4 .

iii) The Fano variety F1 (X4 ) of the lines contained in X4 ’Pn has dimen-
sion 2n27 (see [1]) and hence it is a curve (of genus 801, see [30]) for n44
and a variety of dimension 3 for n45. In this case to every rational curve con-
tained in F1 (X4 ) corresponds a rational normal scroll (called Hirzebruch’s sur-
face Fn ) contained in X4 the generatrices of which determine a rational section
of the quadric bundle p : X 1KS 0 . Hence we have the following

THEOREM 2.2. – Every X4 ’P 5 which contains a Hirzebruch surface (in
particular, a plane) is unirational.

It would be interesting to study if there exist always rational curves in
F1 (X4 ) (n45).
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iv) More generically it is possible to take as S 0 a generic rational surface
containing a pencil of algebraic asymptotics. Examples of such surfaces have
been given by B. Segre in [26]. To determine all surfaces of this type could be a
problem worthy of attention.

3. – Monoidal quartic surfaces with separable asymptotics and families
of smooth quartic unirational hypersurfaces in P 4 and P 5.

3.1. – Monoidal quartic surfaces with separable asymptotics.

We consider the monoidal quartic surfaces F4 that is the algebraic surfaces
which have a triple point as unique singularity. If we suppose that the triple
point T has homogeneous coordinates T4 (0 : 0 : 0 : 1 ), the equation of F4 is

x3 Qb(x0 , x1 , x2 )2a(x0 , x1 , x2 ) 40

where a(x0 , x1 , x2 ) and b(x0 , x1 , x2 ) are homogeneous polynomials, without
common factors, of degree four and three respectively.

Among all monoidal quartic surfaces F4 ’P 3 it is possible to characterize
the ones with separable asymptotics, to which we are interested for the rea-
sons explained before, in several ways for istance by the following

PROPOSITION 3.1. – Let F4 be as above then F4 has separable asymptotics if
and only if for the generic point x of F4 on K

h(x) 4 l(x)2

where h(x) is the equation of the Hessian surface of F4 and l(x) is an element
of K1 (x) with K1 quadratic extension of K (eventually equal to K ).

See [21] or [28] for the proof.
We note that the example of the particular quartic smooth hypersurface

which is unirational given by B. Segre in [28] in 1960 contains the monoidal
quartic surface with separable asymptotics of equation

x1
4 26x1

2 x2
2 1x2

4 1x3
4 1x3

3 x4 40 .

A. Predonzan in [22] gave a complete projective classification of all monoidal
quartic surfaces with separable asymptotics by the following
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THEOREM 3.1. – A monoidal surface F4 of order 4, not ruled, in a projective
space P 3 (K ), with K algebraic closed field of characteristic zero, has separa-
ble asymptotics if and only if is one of the following different projective types
of canonical equation

I )

II )

III )

IV )

V )

VI )

X0 X1 X2 X3 1X0
4 1X1

4 1X2
4 22(X0

2 X1
2 1X1

2 X2
2 1X2

2 X0
2 ) 40

X0 X1 X2 X3 1 (X1
2 2X2

2 )2 40

X1
2 X2 X3 1X0

2 X1
2 1X2

4 40

X1
2 X2 X3 1X0

4 40

X0
3 X3 1X1 X2 (X1

2 2X2
2 ) 40

X0
3 X3 1X1

2 X2
2 40 .

In the proof of the theorem, A. Predonzan, didn’t make explicitly most of the
very complicated and painful computations which led him to the result stated.
We checked them by using the modern symbolic computation systems Maple
[11] and CoCoA [3].

3.2. – Tethraedral surfaces and families of smooth quartic unirational hy-
persurfaces in P 4 and P 5.

The most general monoidal quartic surface S in P 3 with separable asymp-
totics is the one of equation

X0 X1 X2 X3 1X0
4 1X1

4 1X2
4 22(X0

2 X1
2 1X1

2 X2
2 1X2

2 X0
2 ) 40

and it is called tethraedral surface.
We determined in a rigorous way the equation of this surface by the mo-

dern tools of symbolic computation Maple and CoCoA in the following way. The
equation of the generic monoidal quartic surface, as we saw before, is

x3 Qb(x0 , x1 , x2 )2a(x0 , x1 , x2 ) 40 .

b(x0 , x1 , x2 ) 40 is the equation of the cubic tangent cone to S in the triple
point. It is possible to prove that if this surface has separable asymptotics it
consists of irreducible linear components i.e. it breaks into planes. The most
general case is the one in which the cubic tangent cone consists of three planes
not going through a same line. Hence we can suppose that the equation of the
tangent cone to the tethraedral surface S in T is

x0 x1 x2 40 .

Moreover, by other characterizations of the surfaces with separable asymp-
totics, it is possible to prove, see [22], that S has 6 double points pi which are
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the vertices of a complete plane quadrilateral and the diagonal trilateral of
which is the intersection of the plane containing the quadrilateral with the cu-
bic tangent cone. If we take x3 40 as the equation of the plane containing the
quadrilateral we can consider the following picture

d0 , d1 , d2 are the lines of equations x0 40, x1 40, x2 40 and pi are the 6 double
points of coordinates, supposed a0 , a1 , a2 c0,

p1u ka2

ka0

: 0 : 1v ,

p4u0 : 2
ka2

ka1

: 1v ,

p2u2
ka1

ka0

: 1 : 0v ,

p5u ka1

ka0

: 1 : 0v ,

p3u0:
ka2

ka1

: 1v ,

p6u2
ka2

ka0

: 0 : 1v .

Hence we obtain for L1 , L2 , L3 , L4 respectively the equations:

ka0x0 1ka1x1 2ka2x2 40

ka0x0 2ka1x1 2ka2x2 40

ka0x0 1ka1x1 1ka2x2 40

ka0x0 2ka1x1 1ka2x2 40 ,

and we can put

a(x0 , x1 , x2 ) 4L1 QL2 QL3 QL4
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i.e.

a(x0 , x1 , x2 ) 4a0
2 x0

4 1a1
2 x1

4 1a2
2 x2

4 22(a0 a1 x0
2 x1

2 1a1 a2 x1
2 x2

2 1a0 a2 x0
2 x2

2 ) .

The equation of S becomes

x0 x1 x2 x3 1a0
2 x0

4 1a1
2 x1

4 1a2
2 x2

4 22(a0 a1 x0
2 x1

2 1a1 a2 x1
2 x2

2 1a0 a2 x0
2 x2

2 ) 40

and by the coordinate change

.
`
/
`
´

X0

X1

X2

X3

4

4

4

4

ka0x0

ka1x1

ka2x2

x3

ka0 a1 a2

it assumes the canonical form I).
In order to find families of quartic smooth hypersurfaces in P 4 and P 5

which are unirational we want to determine the dimension of the algebraic
systems of all quartic hypersurfaces X4 ’P r (K ) which contain a tethraedral
surface (and hence they are unirational over an extension K1 of K as we saw
before).
The dimension of the family of all tethraedral surfaces S in P 3 is 15. Denoting
P r 4P r (K ), put

F4 ]S tethraedral /) P 3 %P r with P 3 *S( ,

S4 ]X4X4 ’P r /) S�F , with S’X( ,

and consider the incidence corrispondence:

I4 ](S , X) �F3S/S’X(

with the relative projections:

W
I

I
F

K
s

S

If the generic S�F, contained in the linear space of dimension three of equa-
tion ]x4 4R4xr 40(, has equation

W 4 (x0 , R , x3 ) 40 ,
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where (x0 : R : xr ) are the homogeneous coordinates of P r, then the generic
X�S which contains S has equation

!
i44

r

xi fi (x0 , R , xr )1lW 4 (x0 , R , x3 ) 40 ,

where fi are general homogeneous polynomials of degree 3 and l�K *.
We proved

THEOREM 3.2. – Let S be defined as above. If rF8, S4N OP r (4)N . If rG7, S
is an algebraic irreducible system over K and

dim S4gr14

4
h14r232 .

See [13] for the proof.
If rF6 the theorem doesn’t add anything because the generic X4 is, in this

case, unirational. But if r44, 5 the previous theorem says that dim S4

54, 114 (while dimN OP r (4)N469, 125). In this way we constructed tw o fami-
lies of quartic hypersurfaces in P 4 and P 5 which are unirational of dimension
respectively 54 and 114.

4. – Further possible developments: conjectures and open problems.

As we told in section 2 the most important and significant open problem
consits of deciding if there exist or not conic bundles which are not unirational
and a negative answer to this problem implies immediately the unirationality
of the generic quartic hypersurface in P 4 . Nevertheless in the 1928 G. Fano in
[7] gave the following

CONJECTURE 4.1. – The hypersurface of degree n Xn in P 4 containing a
line l of molteplicity n22 is not unirational if nF5;

reinforcing furthermore, in handwrite papers kept in the library «G. Peano» of
the Department of Mathematics of the University of Turin, saying that the
previous hypersurface doesn’t contain any surface. It is obvious that the so-
lution to the Fano conjecture would represent an important step in the under-
standing of these rationality problems.

Concerning the unirationality of the quartic hypersurface in P 4 and P 5 it
seems that in this moment there are no precise opinions neither about their
probable unirationality or not-unirationality (also if the majority of the experts
seems to prefer no). Moreover there are no ideas which can bring us to define
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a possible line to attack this problem. It is worth to study in depth the nice re-
sults of B. Segre, that we mentioned in section 2 (but also see [27]), on the ra-
tional surfaces which contain such a surface, and hence which are unirational
as we did in section 3 for the quartic monoidal surfaces. In the same way it ap-
pears useful the study of the existence or not of rational curves on the Fano
variety (of dimension 3) of the lines of the X4 in P 5 for the reasons that we ex-
plained in section 2.

Concerning the generic hypersurface of degree d Xd in Pn, we think that
probably the more significant open problems are of two types:

(i) determine which are effectively the hypersurfaces, for d c n, which
are unirational. With regard to this problem the result of J. Harris, B. Mazur
and R. Pandharipande, that we mentioned in section 1, and which says that Xn

is unirational if the codimension of its singular locus is sufficiently big with re-
spect to d and n, also if it generalized the Morin’s result for the generic Xn it
appears not fully satisfactory. By the way there is the paper [23] of A. Predon-
zan where it is conjectured that every Xd is unirational for d c n if Xd is not
the locus of a family not unirational of linear subspaces and it is proved to be
true for d44 and nF7 (this proof is very interesting and it would be worth to
analize it in a modern language);

(ii) improve the limits n(d) actually known, by which if n c n(d) then
the generic Xd in Pn is unirational (we remember that n(4) 46, n(5) 417,
both could be too hight, and surely are too hight the n(d) known for dF6).
There is the following

CONJECTURE 4.2. – (A. Conte) Every Xd in Pn which contains a linear
space of dimensione d22 is unirational.

This conjecture is true for d44, 5 and if it is proved it would imply the uni-
rationality of the generic Xd in Pn for

(n2d12)(d21) Fg2d22

d
h

because if the previous disequality is true, the generic Xd in Pn always con-
tains a linear space of dimension d22 (by [19]).

Of course all these open problems would be easily solved if we had an avail-
able criterion about unirationality for the algebraic varieties. But this is a
problem very complicated and difficult and seems unassalaible also by the de-
pest and sofisticated tecniques of the modern Algebraic Geometry.
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