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Bollettino U. M. I.
(8) 1-B (2000), 95-116

An Analytic Proof of Numerical Stability
of Gaussian Collocation for Delay Differential (*).

NICOLA GUGLIELMI (**)

Sunto. – In questo articolo si investigano le proprietà di stabilità asintotica dei metodi
numerici per equazioni differenziali con ritardo, prendendo in esame l’equazione
test:

U 8 (t) 4aU(t)1bU(t2t) ,(0.1)

dove a , b�R , tD0, e g(t) è una funzione a valori reali e continua. In particolare,
viene analizzata la dipendenza dal ritardo della stabilità numerica dei metodi di
collocazione Gaussiana. Nel recente lavoro [GH99], la stabilità di questi metodi è
stata dimostrata facendo uso di un approccio geometrico, basato sul legame tra la
proprietà di stabilità in esame e la geometria della order star della funzione razio-
nale di A-stabilità dei metodi considerati (si veda [HW96] per una trattazione ge-
nerale della teoria delle order stars). In questo lavoro, invece, viene fornita una di-
mostrazione puramente analitica, che poggia le proprie basi su alcuni risultati che
legano le approssimanti di Padè della funzione esponenziale con certe serie
ipergeometriche.

1. – Introduction.

In this paper we investigate the asymptotic stability properties of numeri-
cal methods for delay differential equations of the form (0.1), where a , b�R ,
tD0, and g(t) is a continuous real-valued function. We direct attention to de-
lay-dependent stability of one-step Gaussian collocation for the considered
equation. In a recent paper Guglielmi and Hairer [GH99] proved stability of
such methods by means of a geometric approach, based on the link between
stability and order stars theory [HW96]. Here, instead, we revisit the subject
and give a purely analytic proof, which is based on some connections between
Padè approximants to the exponential and hypergeometric series.

There is a number of applications (see, for example Kuang [Kua93]) where
it is proper to consider differential equations with a dependence on the sol-
ution in the past. In particular the use of such models is essential when ODE-
based models are not efficient. An actual considerable subject, which receives

(*) This work was supported by the Italian M.U.R.S.T. and C.N.R.
(**) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.I.



NICOLA GUGLIELMI96

the attention of researchers, is the qualitative behaviour of DDEs. In this am-
bit has relevance the analysis of the capabilities of difference methods to pro-
vide good numerical approximations over long integration intervals.

The last decade has seen a relatively large number of papers concerned
with the study of the stability of numerical methods, using several test model
problems. A common feature of those papers is that they typically make as-
sumptions such that the solutions are asymptotically stable for every delay
tD0. Very seldom, instead, has been taken into consideration the dependence
of the asymptotic stability on the delay. Although seeming to be quite difficult,
even on apparently simple model problems like (0.1), such analysis would allow
for a better understanding of the requirements for DDE methods to be stable.
This paper aims to do this and is organized as follows. In Section 2, after a
short introduction to the subject, we set the stability framework and provide it
of some preliminary results. In Section 3 we analyze the root locus and give
some results to characterize it, which are essential to prove the stability result,
stated in Section 4. Finally, in Section 5 we draw some conclusions.

2. – Background and stability framework.

Following [Gug97], in order to simplify the notation, but without losing
generality, we assume that t is scaled in the model problem (0.1) so that the
delay t41. Hence, in the sequel, we shall consider the test equation

.
/
´

U 8 (t) 4aU(t)1bU(t21) ,

U(t) 4g(t) ,

tD0 ,

21 G tG0 .
(2.1)

By classical arguments [BC63], based on Laplace transform theory, the stabil-
ity analysis for the true solution of (2.1) leads to the exam of the quasipolyno-
mial characteristic equation

Gx (a , b ; l) 4l2a2b exp (2l) 40 .(2.2)

In particular, the asymptotic stability region turns out to be given by

S x4 ](a , b)N Gx (a , b ; l) 40 ¨ D(l) E0( .

Whenever (a , b) �S x , the asymptotic stability of U(t) is assured indepen-
dently of the initial function g(t).

In the considered case, that is a , b�R , the stability region S x turns out to
be given by the open connected domain included inside the half-plane aE1
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Figure 1. – Asymptotic stability region for the true solutions of equation (2.1).

and bounded to the right by the line

l 0 4 ](a , b) �R2 Nb42 a( ,(2.3)

and by the transcendental curve

g x4 ](a , b) �R2 Na4ax (f), b4bx (f); f� (0 , p)( ,(2.4)

where ax (f) 4f cot (f) and bx (f) 42 f/sin (f).

2.1. The stability function for the Gaussian collocation.

We consider here the Gaussian collocation method at s points, which can be
represented by an equivalent s-level implicit Runge-Kutta process (see e.g.
[HW96]), characterized by the abscissæ ci , the weights wi and the parameters
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aij , and represented by the Butcher tableau:

c1

c2

QQ
Q

cs

a11

a21

QQ
Q

as1

w1

a12

a22

QQ
Q

as2

w2

Q QQ

Q QQ

Q Q
Q

Q QQ

Q QQ

a1s

a2s

Q QQ

ass

ws

f

c A

wT
.N

By classical results the ci are the zeros of the shifted Legendre polynomial of
degree s; hence we have 0 Eci E1 and ci ccj , i , j41, R , s . Moreover, aij 4

s
0

ci

Lj (j) dj and wi 4s
0

1

Li (j) dj (where Li denote Lagrange polynomials corre-

sponding to the abscissæ ]ck (, k41, R , s , kc i).
As is well-known, collocation at s Gaussian points is characterized by the

nice feature that allows the highest order of non-stiff accuracy inside the class
of s-stage Runge-Kutta methods. In particular, this property still holds when
applying this method to equation (0.1) on particularly constrained meshes (see
[Bel84]), like the one we are going to consider. Actually, in the present work
we shall assume that the stepsize is constant and equal to an integer submulti-
ple of the delay, that is

h4
1

m
, m positive integer .(2.5)

According to this hypothesis (see [Zen85]), we can use the stage values com-
puted in the past to compute suitable approximations for the terms U(tn 1

ci h21). Doing this yields the numerical scheme (for nFm)

.
/
´

K (i)
n114agUn1h!

j41

s

aijK ( j)
n11h1bgUn2m1h !

j41

s

aijK ( j)
n2m11h , i41, R , s ,

Un114Un1h !
i41

s

wjK
(i)
n11 ,

which can be written, with Kn11 4 (K (1)
n11 , R , K (s)

n11 )T , in the more compact
form:

.
`
/
`
´

Kn11 4agUn e1
1

m
AKn11h1bgUn2m e1

1

m
AKn2m11h ,

Un11 4Un 1
1

m
wT Kn11 ,

(2.6)
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where e4 [1 , R , 1 ]T . In the first interval I1 4 [0 , t], that is for lGm , the
vectors Kl and the scalars Ul are determined by the initial function g , by apply-
ing the numerical method to the standard ODE

U 8 (t) 4aU(t)1bg(t21) , U(0) 4g(0) .

Following Zennaro [Zen85], to the constant coefficient system of difference
equations (2.6) is associated the characteristic equation

Gm (a , b ; j) 4Rg 1

m
(a1bj2m )h2j40 ,(2.7)

where

R (z) 411zwT (I2zA)21 e

is the rational A-stability function of the method.
With reference to equation (2.1), we first recall the definition of t(0)-stabil-

ity of a numerical method, recently given by the author [Gug97] (we denote by
N the set of the positive integers).

DEFINITION 2.1. – A numerical step-by-step method for DDEs is t(0)-
stable if

S m *S x (m�N .

The introduced property of t(0)-stability is stronger than the so-called P(0)-
stability property, which is a property holding «for all delays» (see [Bar75].

3. – The use of the root locus for stability analysis.

As is well-known, checking the asymptotic stability of the numerical sol-
ution ]Un (nF0 of (2.1), for a given pair (a , b) and a given stepsize fulfilling as-
sumption (2.5), means determining whether all the zeros ]j k ( of Gm (a , b ; j)
lie inside the open unit disk [Hen74].

First recall that the A-stability function R(z) of the s-stage Gaussian collo-
cation method is the (s , s)-Padè approximant to the exponential (see, for
example, [HW96]), which we denote by Ps , s (z). We can write such Padè ap-
proximant by making use of the well-known representation

Ps , s (z) 4
Ms (z)

Ms (2z)
, z�C ,(3.1)
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where

Ms (z) 4 !
k40

s

m k z k , m k 4
(2s2k) !

(2s) !
gs

k
h .(3.2)

We remark that all zeros of Ms (z) lie inside the complex left half-plane,
D(z) E0 (see [HW96]). Next Lemma, which is concerned with the continuity
of the zeros of Gm (a , b ; j), establishes an important result to the following
discussion.

Whenever b40, that is in the ODE case, all is known; hence, in the lemma,
we focus our attention to the case bc0.

LEMMA 3.1. – Let m be a fixed positive integer and bc0. The zeros of
Gm (a , b ; j) continuously depend on the parameters a and b .

PROOF. – First of all we shall prove that Gm (a , b ; j) can be written in the
following way:

Gm (a , b ; j) f

Pm (a , b ; j)

Qm (a , b ; j)
,

where, for every (a , b)-pair (with bc0), the polynomials Pm (a , b ; j) and
Qm (a , b ; j) have no common zeros. To see this, set

z4
1

m
(a1bj2m )

and rewrite Gm (a , b ; j) as

(Ms (z)2jMs (2z) ) j ms

Ms (2z) j ms
,

j40 being a removable singularity of Gm . Then we are able to define the
polynomials

.
/
´

Pm (a , b ; j) 4 (Ms (z)2jMs (2z) ) j ms ,

Qm (a , b ; j) 4Ms (2z) j ms .
(3.3)

Being bc0, we easily get that j40 is not a zero of Gm and neither of the poly-
nomials Pm and Qm . As a consequence we can assume jc0. Then, let us sup-
pose Pm (a , b ; j) 40; we want to show that Qm (a , b ; j) c0.

According to the previous assumption, we get, by (3.3),

Ms (z) 4jMs (2z) .

If j were also a zero of Qm (a , b ; j), Ms (2z) should be zero, which would im-
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ply, by (3.4), Ms (z) 40. But since the zeros ]zk ( of Ms (z) lie in the complex left
half-plane, this leads to a contradiction. Thus, for all bc0, the zeros of
Gm (a , b ; j) coincide with those of the polynomial Pm (a , b ; j).

Further, with some algebraic manipulations, we get that the coefficient of
the principal term of Pm (a , b ; j) is given by kMs (2a/m), with kc0 suitable
constant. Since Ms (2a/m) does not vanish for any a�R , m�N , it holds that
Pm fulfils the assumptions of the well-known theorem on the continuity of the
zeros of a polynomial with respect to its coefficients. As a consequence, we are
in a position to state the continuity of the zeros of Gm (a , b ; Q) as functions of
the parameters a and b , in the half-planes bE0 and bD0. r

By virtue of previous lemma, an important tool for finding the asymptotic
stability regions of the method, consists in the determination of the root locus,
which is the set of (a , b)-pairs such that (2.7) has at least one zero of unit mod-
ulus. Setting i 4k21, for an arbitrary but fixed m�N we denote the root lo-
cus curve as:

Um »4](a , b) �R2N Gm (a , b ; exp (iW) )40; W� (2p , p]( .(3.5)

The determination of Um allows for the partition of the (a , b)-plane into a
number of different regions, each of them characterized by the property that
the number of roots of Gm lying inside/outside the unit disk is constant. This is
because any variation of this number would involve a transition of the parame-
ters (a , b) across the root locus. Hence we can state the following result,
which is a direct consequence of Lemma 3.1 and of A-stability of the method
(see e.g. [HW96]).

LEMMA 3.2. – If the condition Um OS x4¯ holds for all mF1, then the
method is t(0)-stable.

3.1. Investigating the root locus.

A convenient implicit representation of the root locus curve Um is given as
follows:

Ps , s (z) 4exp (iW) ,(3.6-a)

z4
1

m
(a1b exp (2 imW) ) ,(3.6-b)

with W� (2p , p].
Concerning the analysis of (3.6-a), we state the following result, which

yields a slight generalization of a result given by Dekker et al. [DKS86, Lem-
ma 4.2]. The proof, which is based on the principle of the argument, is quite
similar to that given there and is omitted for sake of conciseness.
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LEMMA 3.3. – Let W� (2p , p] be given. Then there are precisely s different
numbers z1 , R , zs , with zk �CN ]Q( such that

Ps , s (zk ) 4exp (iW) .

Moreover D(zk ) 40 for k41, R , s .

When we look at the roots of equation (3.6-a), where the number s of stages
is given (but suppressed from the notation), we get, by Lemma 3.3

zk (W) 4 iyk (W) , k41, R , s ,

where yk (W) �RN ]Q(. Thus, for any given W� (2p , p], the set

]iy1 (W), iy2 (W), R , iys (W)((3.7)

provides the s simple imaginary roots of equation (3.6-a) (in the extended com-
plex field).

REMARK 3.1. – By simply rewriting equation (3.6-a) with z41/z , i.e.

Ps , sg 1

z
h4exp (iW) ,(3.8)

on account of formulæ (3.1) and (3.2), it is easy to prove that, when s is even, a
root z of (3.8) becomes 0 at W40 (and hence the corresponding root z of (3.6-a)
becomes Q). Similarly, when s is odd, a root z of (3.8) becomes 0 at W4p
(and hence a root z of (3.6-a) becomes Q).

In the next lemma and theorem we provide a partial parametrization of
the considered roots yk as functions of W .

LEMMA 3.4. – Let W� (0 , p). Then the s roots of Equation (3.6-a) can be
parametrized through s distinct functions which are continuous with respect
to W .

PROOF. – By virtue of Lemma 3.3 and because of the well-known analiticity
of the function Ps , s (z) in a neighbourhood of the imaginary axis (see, for
example, [HW96]), we can rewrite (3.6-a), with z4 iy (y�R), in the following
equivalent polynomial form (w.r.t. y):

ps (y ; W) 4Ms (iy)2exp (iW) Ms (2 iy) 40 .(3.9)

With this position, the effect of a root of (3.6-a) going to infinity for certain
values of the parameter W , would reveal itself through a reduction of the de-
gree of the polynomial ps for those values of W .

Now take into consideration equation (3.9). First observe that, on account
of (3.2), the coefficient of the principal term of the polynomial ps (y ; W) does
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not vanish for any W considered. By virtue of this, we fulfil the assumptions for
the continuous dependence of the zeros of a polynomial as functions of its coef-
ficients (see, for example, [Hen74, Theorem 4.10.c]). Hence, we are able to
parametrize every root y of (3.6-a) by a continuous function of W , in (0 , p). On
account of Lemma 3.3, such functions are distinct for every W . r

As a consequence of this we set

K 4 ]1, R , s(

and denote the considered set of roots as ]iy×1 (W), iy×2 (W), R , iy×s (W)(
where

y×k (W) :(0 , p) KR ,(3.10)

is a continuous function (k� K.
Now we are in a position to state the following theorem, which provides an

important property to the functions ]y×k (.

THEOREM 3.1. – For every k� K, the function y×k (W) is smooth and mono-
tonically increasing (in (0 , p)). Furthermore, it fulfils the inequality

y×k (W)
d 2 y×k

dW 2
(W) D0 (W� (0 , p) .(3.11)

In the proof we need the following lemma.

LEMMA 3.5. – The following relations hold:

(i) Ms21 (2 iy) Ms (iy)2Ms21 (iy) Ms (2 iy) 4h 2s21 y 2s21 ,

Ms (2 iy) Ms (iy) 4 !
j40

s

d 2 j y 2 j ,(ii)

where

h 2s21 42 is!(2s) !
(s21) !

(2s22) !
,(3.12)

d t 4 y s!

(2s) !
z2g2s2 t/2

t/2
h y (2s2 t) !

(s2 t/2 ) !
z2

.(3.13)

PROOF. – For what concerns the first relation, formula (i) is a direct conse-
quence of a result obtained by Hairer [Hai82].

Now direct attention at the second relation. By exploiting formulæ (3.2) we
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get

Ms (2 iy) Ms (iy) 4 !
r40

2s

d r y r ,

where

d r 4 (2 i)rg s!

(2s) !
h2

!
k40

r (2s2k) !

k!(s2k) !

(2s2r1k) !

(r2k) ! (s2r1k) !
(21)k .(3.14)

By making use of the Pochammer symbol,

(c)n 4
(c1n21) !

(c21) !
,

(3.14) can be rewritten, after some manipulations, as

d r 4 (2 i)r s! (2s2r) !

(2s) ! (s2r) ! r!
b r ,

with

b r 4 !
k40

r 1

k!

(2r)k (2s2r11)k (2s)k

(22s)k (s2r11)k

.(3.15)

Now introduce the following generalized hypergeometric series (see, for
example, [Sla66]):

3F2yr , 2s2r11, 2s

22s , s2r11
; zz »4 !

k40

Q 1

k!

(2r)k (2s2r11)k (2s)k

(22s)k (s2r11)k z k
.

Since (2r)k 40 for kDr , the summation (3.15) can be written in terms of the
previous generalized hypergeometric series as

b r 43F2y2r , 2s2r11, 2s

22s , s2r11
; 1z .

Then, applying Dixon’s theorem (see, for example, [Hen74], p. 43) yields:

b r 4

.
/
´

r!

(r/2 ) !

(s2r/211)r/2

(2s2r/211)r/2 (2s1r/2 )r/2

0

if r is even ,

if r is odd .

(3.16)

By setting r42 j (1 G jGs), we get

b 2 j 4 (21) j (2s2 j) ! (s22 j) !

[ (s2 j) ! ]2

(2 j) !

j!

s!

(2s) !
.(3.17)
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Finally, by (3.16) and (3.17), we are in a position to evaluate (3.15) and to state
(ii). r

PROOF OF THEOREM 3.1. – We proceed now to prove the theorem. Consider
(3.9); since the zeros of Ms (z) are located inside the complex left half-plane, we
get

¯ps (y ; W)

¯W
42 i exp (iW) Ms (2 iy) c0 ((W , y) �R2 .(3.18)

Thus, for every k� K the smoothness of y×k (W) in (0 , p) is a consequence of the
implicit function theorem.

Now fix k� K arbitrarily and direct attention at the function y×k (W). After
setting F× 4 (0 , p), let us denote by y×k (F×) the image of F× under y×k (Q).

Then, for proving the second part of the theorem, it is convenient to take
into consideration the inverse mapping yKW(y). To this aim we write (3.6-a) as

W42 i log ( Ps , s (iy) ) , y� y×k (F×) ,(3.19)

where log(Q) is a certain determination of the natural logarithm (whose choice
depends on the considered root y×k and is such that the condition W� (0 , p) is
fulfilled). By differentiating (3.19) with respect to y , we get

dW

dy
4

Ps , s8 (iy)

Ps , s (iy)
.

Moreover, by (3.1) we get

P8s , s (iy)

Ps , s (iy)
4

M 8s (2 iy)

Ms (2 iy)
1

M 8s (iy)

Ms (iy)
.

Now, make use of the classical recurrence relation (see, for example,
[IN91])

Ms8 (z) 4
1

2
Ms (z)2

z

4(2s21)
Ms21 (z) ,

being M0 (z) f1. Then the following relation holds:

dW

dy
411

iy

4(2s21)
Y s (y) ,(3.20)

with

Y s (y) 4
Ms21 (2 iy) Ms (iy)2Ms21 (iy) Ms (2 iy)

Ms (2 iy) Ms (iy)
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rational function. Then, applying Lemma 3.5 yields

Y s (y) 4
h 2s21 y 2s21

!
j40

s

d 2 j y 2 j

,

where h 2s21 and d 2 j , j40, R , s , are given by (3.12) and (3.13), respectively.
Therefore, (3.20) takes the form

dW

dy
412

y 2s

!
j40

s

qj y 2 j

,

where

qj 4g2s2 j

j
h y (2s22 j) !

(s2 j) !
z2

, j40, R , s .

In the end we get

dW

dy
4

!
r40

s21

qr y 2r

!
r40

s

qr y 2r

4
q0 1q1 y 2 1R1qs21 y 2s22

q0 1q1 y 2 1R1qs21 y 2s22 1y 2s
.(3.21)

Hence, being qj D0, j40, R , s , W(y) is monotonically increasing in the do-
main y×k (F×). As a consequence, y×k (W) is also monotonically increasing in (0 , p).
Finally, since

d 2 W

dy 2
4

!
j40

s

2( j2s) qj y 2(s1 j)21

g!
j40

s

qj y 2 jh2

.
/
´

D0

E0

if yE0

if yD0 ,

we obtain (3.11). r

3.2. A set of functions for parametrizing the roots of (3.6-a).

For the complete determination of the root locus curve we need to extend
the parametrization of the roots to the whole domain (2p , p].

First, let us define the odd extensions of the functions ]y×k (W)( to the inter-
val (2p , 0 ), that is

y
q

k (W) »42 y×k (2W) , W� (2p , 0 ) for k41, R , s .

By observing that Ps , s (2 iy) 42 Ps , s (iy) for all y�R , it is immediate to
prove the following result.
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LEMMA 3.6. – The set ]i y
q

1 (W), i y
q

2 (W), R , i y
q

s (W)( provides the s roots of
equation (3.6-a), for W� (2p , 0 ). Moreover, for every k� K, y

q

k (W) is smooth
and monotonically increasing (in (2p , 0 ) ) and fulfils the inequality

y
q

k (W)
d 2 y

q

k

dW 2
(W) D0 (W� (2p , 0 ) .(3.22)

To terminate the parametrization we have left to consider the cases W40
and W4p . By Theorem 3.1 and Lemma 3.6, we have that for every l� K, y×l (W)
and y

q

l (W) are monotonically increasing in (0 , p) and (2p , 0 ), respectively.
Hence they have limit as WKp2 and as WK02, respectively. Therefore
let

lim
WKp2

y×l (W) 4yl
p , l41, R , s ,

lim
WK02

y
q

l (W) 4yl
0 , l41, R , s .

Concerning the numbers r and r 8 of finite roots of (3.6-a), corresponding to
the values W4p and W40, we have to distinguish the following two cases (see
Remark 3.1).

(1) If s is even r4s and r 84s21;

(2) if s is odd r4s21 and r 84s .

Next we are ready to state the following lemma.

LEMMA 3.7.

(i) Let W4p and assume yi
p (i� K) to be finite. Then iyi

p is one of the r
finite and distinct roots of (3.6-a). Viceversa, every finite root of (3.6-a) is the
limit of one of the functions iy×l (Q) (l� K) as WKp2 .

(ii) Similarly, let W40 and assume yj
0 ( j� K) to be finite. Then iyj

0 is
one of the r 8 finite and distinct roots of (3.6-a). Viceversa, every finite root of
(3.6-a) is the limit of one of the functions i y

q

l (Q) (l� K) as WK02 .

PROOF. – Consider first the case (i), that is W4p . By defining

FW (z) :(W , z) K
Ms (z)

Ms (2z)
2exp (iW) ,(3.23)

the first statement, which asserts that iyi
p is a root of Fp (z), that is

of

Ms (z)

Ms (2z)
21 ,(3.24)
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follows directly by the continuity of FW (z) in a neighbourhood of the imaginary
axis.

Viceversa, for what concerns the second statement, let V be a compact set
including inside all the r (pure imaginary) roots of (3.24), such that no zeros of
Ms (2z) lie within it. Then, the functions (3.23) are analytic in V and, by Lem-
ma 3.3, different from zero for z�¯V .

Now, because of the uniform convergence of ]FW (z)( on every compact sub-
set of V , we have from Rouché’s theorem that each finite zero of (3.24) is the
limit of a corresponding zero of FW (z) (as WKp2). This proves the first part of
the lemma; the proof of (ii) is analogous. r

In conclusion, by virtue of Lemmas 3.4, 3.6 and 3.7, we are able to give
a suitable parametrization of the set of functions (3.7), in the whole domain
(2p , p]. Specifically, we set, for every k� K,

yk (W) »4

.
`
/
`
´

y
q

k (W) ,

y 0
k

y×k (W) ,

y p
k ,

W� (2p , 0 ) ,

W40 ,

W� (0 , p) ,

W4p ,

( if yk
0 is finite) ,

( if yk
p is finite) .

(3.25)

3.3. An ordering relation for the functions yk (Q).

LEMMA 3.8. – Let F4 (2p , p] and yi (F) denote the image of F under yi

(with i41, R , s). Then,

( i ) yl (F)1yk (F) 4¯ (l , k41, R , s , lck ;

0
l41

s

yl (F) 4R .( ii )

PROOF. – Suppose that yl (W 8 ) 4yk (W 9 ) for some kc l and some W 8 , W 9�F .
By (3.6-a), this would imply exp (iW 8 ) 4exp (iW 9 ) and consequently W 84W 9 ,
which would contradict Lemma 3.3. Hence (i) is proved. Furthermore, (ii) is an
immediate consequence of the property

N Ps , s (iy)N4 N Ms (iy)

Ms (2 iy) N f1 , (y�R ,

which implies that, for any given y , there exists a corresponding W�F such
that (3.6-a) is fulfilled. r

Summarizing the results stated through Lemmas 3.6, 3.7 and Theorem 3.1,
we have that every branch yi is odd and monotonically increasing in (2p , 0 )
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as well as in (0 , p). Hence we have, for every i� K,

yi (F) 4 (n i , s i ]0(2s i , 2n i ] ,

where n i 4 min (Nyi
0N , Nyi

pN) and s i 4 max (Nyi
0N , Nyi

pN). Furthermore, by
virtue of the results stated by Lemma 3.8, we can conventionally label the
numbers n i , s i in the following way:

n 1 Es 1 4n 2 Es 2 4n 3 Es 3 REs s22 4n s21 Es s21 4n s Es s .

As a consequence we can order the roots (3.25) according to the following
rule:

yl (Q) T yk (Q) if n l En k .(3.26)

With this choice we have n 1 40 (by Lemma 3.8) and hence

y1 (0) 40 .(3.27)

Moreover (see Remark 3.1) we have s s 41Q . Hence, in both cases s odd and
s even, ys is the unbounded branch. More in detail,

lim
WK01

ys (W) 42Q , lim
WK02

ys (W) 41Q , if s is even ,(3.28)

lim
WKp2

ys (W) 41Q , lim
WK2p1

ys (W) 42Q , if s is odd .(3.29)

3.4. A compact representation for the root locus.

In this section we consider the matter of representing the roots of (3.6-a)
through a unique function in the extended domain (2sp , sp], instead of s
functions in (2p , p] (which is done by means of (3.25)). To do this, simply con-
sider the periodic extensions yk (W) (with period 2p) of the functions yk (W) and
define the function

Ys (W) »4

.
`
`
/
`
`
´

y1 (W) ,

y2 (W) ,

QQ
Q

QQ
Q

ys21 (W) ,

ys (W) ,

W� (2p , p] ,

W� (22p , 2p] 0(p , 2p] ,

QQ
Q

QQ
Q

W� (2(s21) p , 2(s22) p]0((s22) p , (s21) p] ,

W� (2sp , 2(s21) p]0 ((s21) p , sp) .

Evidently, by the properties of the functions (3.25) (and of theirs periodic ex-
tensions), Ys (W) is odd. Moreover, by (3.28) and (3.29), ys (W) is upper-un-
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bounded as WKsp and thus

Ys (sp) »4 lim
WK (sp)2

Ys (W) 41Q .(3.30)

An illustrative example now follows.

EXAMPLE 3.1. – Consider Gaussian collocation at 2 points. In this case
K 4 ]1, 2( and

.
`
/
`
´

y×1 (W) 4
gk6k(72cos (W) ) sin (W/2 )2 23 sin (W)h

2 sin (W/2 )2
,

y×2 (W4
2gk6k(72cos (W) ) sin (W/2 )2 13 sin (W)h

2 sin (W/2 )2
,

W� (0 , p) ,

which are plotted in Figure 2 (left side), together with y
q

1 (W) and y
q

2 (W). In this
case we get

Y2 (W) »4

.
`
/
`
´

y×2 (W12p) ,

y
q

1 (W) ,

y×1 (W) ,

y
q

2 (W22p) ,

W� (22p , 2p) ,

W� (2p , 0 ) ,

W� (0 , p) ,

W� (p , 2p) ,

y2
p ,

y1
0 ,

y1
p ,

W42 p ,

W40 ,

W4p ,

which is plotted in Figure 2 (right side). According to (3.30), it is easy to verify
that

Y2 (2p) »4 lim
WK (2p)2

Y2 (W) 41Q .

Concerning Ys , we are able to state the following result, whose importance is
crucial to the final discussion.

Figure 2. – Construction of Y2 by means of y1 and y2 (case s42).
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LEMMA 3.9. – The function Ys (W) :(2sp , sp] KRNQ is smooth, odd and
monotonically increasing. Furthermore

Ys (W) DW , for WD0 .(3.31)

PROOF. – By Theorem 3.1 and Lemma 3.6, Ys (W) is continuous, smooth and
monotonically increasing in every open interval (kp , (k11) p) , k42 s ,
2s11, R , s21.

Then analyse, for k42 s , 2s11, R , s21, the critical points W k
x 4kp .

Consider equation (3.6-a), fix k and let WKW k
x . On account of the periodic and

continuous dependence of the right-hand side of equation (3.6-a) with respect
to W , the continuity of Ys (W) also at the points ]W k

x ( is easily obtained on the
basis of the ordering relation (3.26), by making use of the same arguments
used to prove Lemma 3.7. Moreover, the smoothness of Ys (W) at every W k

x is
still obtained as a consequence of Implicit Function Theorem.

Finally, on account of the continuity, we immediately obtain the global
monotonicity. This proves the first part of the Lemma.

Since Ys (0) 40 (by (3.27)), Ys (W) D0 in (0 , sp]. Moreover, by exploiting
formula (3.21), we get y18 (0) 41 and thus

Ys8 (0) 41 .(3.32)

Therefore, property (3.31) is a direct consequence of the convexity of Ys for
WD0, which is due to (3.11) and (3.22). r

At this point, by making use of the function Ys (W), we are able to exploit
equation (3.6-b) to rewrite Um (see (3.5)) into the following compact
form:

(3.33) Um 4](a , b) �R2 N)W� (2sp , sp] : (a1b exp (2 imW) )4 im Ys (W)( ,

which turns out to be very well suited to the stability analysis.
The case W40 is singular and needs to be separately considered. Doing

this, by a general result concerning R-K methods [Gug97], we obtain the fol-
lowing result.

LEMMA 3.10. – For the s-stage Gaussian collocation, applied to the test
equation (2.1), the following relation holds:

l 0 � Um ,

l 0 being the straight line defined by (2.3).

By the way, observe that l 0 OS x4¯ . Henceforth, in order to apply Lemma
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3.2, we shall focus our attention on the set

Vm »4 Um0l 0 .(3.24)

With routine algebraic manipulations, by (3.33) we obtain

Vm 4](am (W), bm (W) ) ; W� (0 , sp]( ,

where

.
/
´

am (W) 4m Ys (W) cot (mW) ,

bm (W) 42
m Ys (W)

sin (mW)
.

(3.35)

Observe that Vm is parametrized in the interval (0 , sp]. This is because am (W)
and bm (W) are even functions with respect to W (as they should).

The analysis of formulæ (3.35) gives that Vm is a piecewise regular alge-
braic curve (as shown in Figure 3), with singularities at W4 lp/m ,
l40, 1 , R , sm .

We introduce some final notations. First define the intervals

Il 4g(l21)
p

m
, l

p

m
h ,(3.36)

with l41, R , sm . Then we define, in the (a , b)-plane, the algebraic
curves

g l 4](am (W), bm (W) )NW�Il ( ,(3.37)

where, naturally, ]g l ( depend on m and s .
With the exception of the case when WK01 (where (am (W), bm (W) )K

(1 , 21), as is common to any R-K process for DDEs [Gug97]), we get

lim
WK l(p/m)

Nam (W)N41Q , lim
WK l(p/m)

Nbm (W)N41Q , l41, R , sm .

Finally we define the convex cones

.
/
´

V24 ](a , b) �R2 N2bFNaN( ,

V14 ](a , b) �R2 NbFNaN( .
(3.38)

The following result gives a useful geometric characterization of the root locus
curve.
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LEMMA 3.11. – The curves g l , l41, R , sm , do not intersect each other at
any finite point of the (a , b)-plane. Furthermore, the following relationships
hold:

g l %V2 if l is odd and g l %V1 if l is even .(3.39)

PROOF. – Let W 8�Il 8 and W 9�Il 9 , with l 9D l 8 . If the curves g l 8 and g l 9 in-
tersected, we should have

.
/
´

am (W 8) 4am (W 9 ) ,

bm (W 8) 4bm (W 9 ) ,
(3.40)

for certain values W 8 , W 9 . Since

am (W)

bm (W)
42cos (mW) ,(3.41)

(3.40) should imply

W 94W 81 (l 92 l 8 )
p

m
.

However, by the monotonicity of Ys (W) (Lemma 3.9) it follows that (3.40) can-
not hold. Finally, by (3.41), one readily gets (3.39). r

An example for the root locus, relevant to the choice s42 and m42, is
shown in Figure 3. Here, the numbers plotted inside the different connected
regions refer to the numbers of roots of (2.7) with modulus larger than 1 .

4. – The main result.

In this section we show that s-stage Gaussian collocation is stable.

THEOREM 4.1. – The s-stage Gaussian collocation is t (0)-stable.

PROOF. – According to Lemma 3.2, our goal is to show that Vm OS x4¯ for

all mF1. By making use of (3.37), we write Vm 4 0
l41

sm

g l .

Now, by Lemma 3.11 we have that, if l is even, the curves g l lie in V1 and
hence do not intersect S x . Therefore, we can restrict our attention to the
curves g l with odd index l , which lie in V2 (see (3.39)). Relevant to these
curves, we can suitably express the condition of non-intersection, that is

g l %V2 0S x if l is odd .(4.1)
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In order to do this, we consider an algebraic reformulation of (4.1). To this
purpose, it turns out to be convenient to represent the stability region S x

(Figure 1) as

S x4 S
! 0 S ,

where S
!

4 ](a , b) �R2 Na1NbNE0( and S4S x 0 S
!

4S x1 V2 .
Now examine g x (see (2.4)), which bounds S to the right. After some ma-

nipulations we obtain that the points belonging to the curve fulfil the
relation

kb 2 2a 2 4arccosg2
a

b
h ,

where arccos :[21, 1 ] K [0 , p].
By restricting our attention to the pairs (a , b) belonging to V2 , the prop-

erty (a , b) �V2 0S is expressed by the inequality kb 2 2a 2 Darccos (2a/b)
or equivalently, with r42 a/b , by

2b k12r 2 Darccos (r) .(4.2)

On account of (4.2), with

r m (W) 42
am (W)

bm (W)
4cos (mW) ,

condition (4.1) reads

bm (W) k12r m (W)21arccos (r m (W) )E0 , (W�g(l21)
p

m
, l

p

m
h ,(4.3)

with 1 G lGsm and l odd. Since rFarccos (cos (r) ) if rF0, inequality (4.3) is
certainly fulfilled if

Ys (W) DW (W� (0 , sp) .(4.4)

Therefore, applying Lemma 3.9 concludes the proof. r

We make here some final considerations to have a better understanding of
the stability set S m . Firstly observe that

amg lp

2m
h40 , l41, R , sm .

Thus, if we restrict our attention to the set ]g 2 l21 (, lF1, that is to the curves
belonging to V2 , and look at (3.37), we get (by virtue of Lemma 3.9) the fol-
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Figure 3. – Example of root locus for the Gaussian collocation method at 2 points (s42
and m42).

lowing relation:

bmg (2 l 821) p

2m
hDbmg (2 l 921) p

2m
h , if l 9D l 8 .

T h i s i n d u c e s a n u s e f u l o r d e r i n g r e l a t i o n f o r t h e c u r v e s ]g 2 l21 (,
l41, 2 , R .

As a consequence, we are able to determine the actual boundary of the nu-
merical asymptotic stability regions, which is

¯S m 4 l 00 g 1 .

According to this, the dashed region in Figure 3, which refers to the case
s42, identifies S 2 .

5. – Conclusions.

In this work we have provided an analytic proof of t(0)-stability of Gaus-
sian collocation methods for DDEs. Although such property has also been
proved by means of geometric properties of order stars [GH99], the approach
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considered here establishes an interesting link between stability and certain
results for hypergeometric series (involved in the diagonal Padè approxima-
tions to the exponential).
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