Watson, Bill: 
Superminimal fibres in an almost Hermitian submersion
 Bollettino dell'Unione Matematica Italiana Serie 8 3-B (2000), fasc. n.1, p. 159-172, Unione Matematica Italiana (English)
pdf (279 Kb), djvu (202 Kb).  | MR1755707  | Zbl 0956.53018  
Sunto
Se la varietà base, $N$, di una submersione quasi-Hermitiana, $f: M \to N$, è una $G_1$-varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, $M$, è $G_1$. Se la varietà base, $N$, è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, $M$, è Hermitiano.
Referenze Bibliografiche
[Bo] 
O. BORÜVKA, 
Sur une classe de surfaces minima plone'es dans un space á quatre dimensions a courbure constante, 
C. R. Acad. Sci., 
187 (
1928), 334-336. | 
Jbk 54.0795.02[Fa-Pa] 
M. FALCITELLI-
A. M. PASTORE, 
A note on almost Kähler and nearly Kähler submersions, (preprint), 
1998. | 
Zbl 0967.53023[Fr1] 
T. FRIEDRICH, 
On surfaces in four-spaces, 
Ann. Global Anal. & Geom., 
2 (
1984), 257-287. | 
Zbl 0562.53039[Gr2] 
A. GRAY, 
Pseudo-Riemannian almost product manifolds and submersions, 
J. Math. Mech., 
16 (
1967), 715-738. | 
MR 205184 | 
Zbl 0147.21201[Gr-He] 
A. GRAY-
L. HERVELLA, 
The sixteen classes of almost Hermitian manifolds and their linear invariants, 
Ann. Mat. Pura Appl. CXXIII (
1980), 35-58. | 
MR 581924 | 
Zbl 0444.53032[Gu-Wo] 
S. GUDMUNDSSON-
J. C. WOOD, 
Harmonic morphisms between almost Hermitian manifolds, 
Boll. Un. Mat. Ital. 11-B, Supp. 2 (
1997), 185-197. | 
MR 1456260 | 
Zbl 0879.53023[He-Vid] 
L. HERVELLA-
E. VIDAL, 
Nouvelles géométries pseudo-Kähleriennes $G_1$ et $G_2$, 
C. R. Acad. Sci. Paris 283 (
1976), 115-118. | 
MR 431008 | 
Zbl 0331.53026[Ko-No] 
S. KOBAYASHI-
K. NOMIZU, 
Foundations of Differential Geometry, Vol. II, 
Interscience, New York 
1969. | 
MR 238225 | 
Zbl 0175.48504[Kw] 
ST. KWIETNIEWSKI, 
Über Flachen des vierdimensionalen Raumes, deren sämtliche Tangentialbenen untereinander gleichwinklig sind, und ihre Beziehung zu ebenen Kurven, Dissertation, Zürich, 
1902. | 
Jbk 34.0702.01[Mi-Mo] 
M. J. MICALLEF-
J. D. MOORE, 
Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, 
Ann. Math., 
127 (
1988), 199-227. | 
MR 924677 | 
Zbl 0661.53027[Wa2] 
B. WATSON, 
The four-dimensional Goldberg Conjecture is true for almost Kähler submersions (to appear) 
J. of Geometry, 
1999. | 
MR 1800470 | 
Zbl 0979.53081[Wa-Va1] 
B. WATSON-
L. VANHECKE, 
J-symmetries and J-linearities of the configuration tensors of an almost Hermitian submersion, 
Simon Stevin, 
51 (
1977), 139-156. | 
MR 482558 | 
Zbl 0379.53038[Wa-Va2] 
B. WATSON-
L. VANHECKE, 
The structure equation of an almost semi-Kähler submersion, 
Houston Math. J., 
5 (
1979), 295-305. | 
MR 546764 | 
Zbl 0423.53028