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Subgaussianity and Exponential Integrability of Real
Random Variables: Comparison of the Norms (*).

RITA GIULIANO ANTONINI

Sunto. – Nello spazio delle variabili aleatorie subgaussiane definite su (V , A , P), si
studia l’equivalenza tra la norma subgaussiana e la norma di Fernique, dando va-
lutazioni numeriche delle costanti di equivalenza. A tale scopo si fa uso di una
nuova caratterizzazione della norma subgaussiana delle variabili aleatorie
simmetriche.

0. – Introduction.

The concept of subgaussian random variable (which was introduced in 1960
by Kahane [1]) has been studied in detail by several authors: see [2], [3], [4],
[5], [6].

In particular, a norm t was introduced on the space of all subgaussian ran-
dom variables in the paper [2].

Another concept which has drawn the attention of mathematicians is that
of exponentially integrable random variable. As to our knowledge, the term
«exponentially integrable» is used for the first time in [5], but the space of
such variables has been studied earlier, for instance by Fernique [7], who had
introduced a suitable norm s on it.

Moreover, it is well known that the space of subgaussian random variables
coincides with the subspace of exponentially integrable centered random
variables.

In view of these facts, a question that quite naturally arises in whether the
two mentioned norms are equivalent (i.e. there exist positive constants a and b
such that as (X) Gt(X) Gbs (X) ).

Indeed, this question has been answered affirmatively in [6], and, in the
present paper we are concerned with the problem of giving numerical evalua-
tions for a and b (sections 2 and 4 respectively). The result of section 4 is ob-
tained by means of a new characterisation of the subgaussian norm t, which we
discuss in section 3.

(*) This paper is partially supported by GNAFA, CNR and MURST.
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We point out that our results improve those of [6] (see remarks (2.6)
and (4.18)).

We briefly sum up some preliminary results in section 1, in order to make
the exposition as self-contained as possible.

1. – The spaces SG(V) and EI(V).

Let X be a random variable, defined on the probability space (V , A , P).
The following definitions are found in the paper [2]:

(1.1). DEFINITION. – X is said to have subgaussian distribution (or simply
to be subgaussian) if there exists a real number aF0 such that, for every
t�R,

E[e tX ] G expg t 2

2
a 2h .

(1.2). REMARK. – It easily follows from the definition that any subgaussian
random variable is centered.

(1.3). DEFINITION. – The standard gaussian of X is the number

t(X) 4 infmaF0: E [e tX ] Gexpg t 2

2
a 2h, (t�Rn .(1.4)

We shall denote by SG(V) the set of subgaussian random variables. The fol-
lowing result is proved in [2]:

(1.5). THEOREM. – SG(V) is a vector space and, moreover, t is a norm on
SG(V). r

The following definition is given in the paper [5]:

(1.6). DEFINITION. – X is said to be exponentially integrable if there exists
a number eD0 such that

E[e eX 2
] E1Q .

We shall denote by EI(V) the space of exponentially integrable variables. As
to the structure of EI(V), we have the following result, due to Fernique [7]:

(1.7). THEOREM. – (a) EI(V) is a vector space.
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(b) For every r.v. X in EI(V), define

s (X) 4 inf ]aD0: E[e X 2 /a 2
] G2( .

Then s is a norm on EI(V).

The following theorem relates EI(V) and SG(V); it follows from the re-
sults of [2] and an application of Stirling formula:

(1.8). THEOREM. – Let X be a centered random variable. The following con-
ditions are equivalent:

(a) X is subgaussian;

(b) we have

sup
k
g 2k k! EX 2k

(2k) !
h1/2k

E1Q ;

(c) X is exponentially integrable.

We immediately deduce the

(1.9). COROLLARY. – SG(V) coincides with the subspace of EI(V) consist-
ing of the random variables which are centered and have finite moments of
any order.

(1.10). REMARK. – (a) ¨ (c) of theorem (1.8) follows also from the proof of
proposition (2.1) of section 2.

2. – Comparison of t and s. First part.

In this section we give a numerical evaluation for the constant a (see intro-
duction). We have indeed the following result:

(2.1). PROPOSITION. – Let X be a subgaussian variable (we recall that, by
(1.9), this amounts to saying that X is exponentially integrable, centered and
has finite moments of any order). Then

s (X) Gk212k2 t(X) .

PROOF. – The following inequality is proved in [2]: for every k�N, we
have

ENXNk G2g k

e
hk/2

t k (X) .(2.2)
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Fix now aD0. By (2.2) we have

E[e X 2 /a 2
] 411 !

kF1

1

k!
EX 2k 1

a 2k
G112 !

kF1

1

k!

(2k)k

e k
t 2k (X)

1

a 2k
.(2.3)

It is easily seen, by induction on n, that, for every nF1,

n n

e n n!
G

1

e
E

1

2
.(2.4)

For n42k , kF1, (2.4) becomes

(2k)2k

e 2k (2k) !
E

1

2
,

or equivalently,

2
(2k)k

e k
E

e k (2k) !

(2k)k
.

Hence the last quantity in (2.3) is majorized with

11 !
kF1

(2k) !

k!(2k)k
e k t 2k (X)

1

a 2k
.(2.5)

By Stirling formula, it is easy to see that

(2k) !

k!(2k)k
Gk2 2k e 2k .

Hence (2.5) is not greater than

11k2 !
kF1

g 2t 2 (X)

a 2 hk

G11k2 !
kF1

g 2t 2 (X)

a 2 hk

4

411k2
2t 2 (X)

a 2 22t 2 (X)
4

a 2 12(k221) t 2 (X)

a 2 22t 2 (X)
,

for aDk2t(X).
The last fraction above is not greater than 2 for

aFk212k2 t(X) ;

hence we have the inclusion

[k212k2 t(X), 1Q) % ]aD0: E[e X 2 /a 2
] G2( .
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We get the desired conclusion by taking the infima of the above
sets. r

(2.6). REMARK. – In the proof of theorem 4 in section 2 of [6] it is shown
that s (X) G3k2t(X), and we have

k212k2`2, 19 RE3 k2`4, 24 R .

3. – A characterisation of the gaussian standard for symmetric random
variables.

In this section we shall consider only symmetric random variables, which
we shall call, for the sake of brevity, simply random variables in the
following.

For every real number tc0, let Mt be the convex function defined by

Mt (x) 4
cosh tx21

e t 2 /2 21
, x�R .

For t40, put

M0 (x) 4x 2 , x�R .

Clearly, for every random variable X , tKE[Mt (X) ] is a symmetric function.
Moreover,

E[Mt (X) ] 4
E[e tX ]21

e t 2 /2 21
.

Now let X be a fixed random variable. Put, for each t,

At 4maD0: E kMtg X

a
hlG1n .

We shall assume that At is nonemtpy.
We have

(3.1). PROPOSITION. At 4A2t. Moreover At is a closed, left bounded
half-line.

The proof of (3.1) is an easy consequence of two lemmas:

(3.2). LEMMA. – The (symmetric) function tKE[e tX ] is increasing for
tD0 (hence it is decreasing for tE0).



RITA GIULIANO ANTONINI152

Now, for every t, put

t t (X) 4 inf At .

(3.3). LEMMA. –

E yMtg X

t t (X)
hzG1 .

The proofs of (3.2) and (3.3) are straightforward.
Now put

Et 4 ]X : t t (X) E1Q( .

We are interested in analyzing the structure of Et and the properties of t t on
Et . Since At 4A2t , we have

t t (X) 4t 2t (X) ; Et 4E2t .

Hence, there is no loss of generality in confining ourselves to the case
tF0.

We shall prove the following result:

(3.4). THEOREM. Et is a vector space and t t is a norm on Et .

PROOF. – It is easy to see that Et is a vector space and t t is a seminorm on it
(recall that Mt is convex). It remains to see that t t (X) 40 implies X40. The
relation t t (X) 40 amounts to saying that, for every aD0, we have

E kMtg X

a
hlG1 ,

or, equivalently,

E[e tX/a ] Ge t 2 /2 .

By the exponential Chebicev inequality, we deduce that, for every uD0

P(XDu) 4P(e tX/a De tu/a ) GE[e tX/a ] e 2tu/a Ge t 2 /2 e 2tu/a .

By letting a tend to zero, we get P(XDu) 40 for every uD0, hence
P(XD0) 40, and also P(Xc0) 40 because of the symmetry of X. r

Now, for every random variable X, put

t×(X) 4 sup
t

t t (X) ,
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and consider the set

G(V) 4mx�1
t

Et : t×(X) E1Qn .

We are interested in the structure of the pair (G(V), t×).
First of all, G(V) is obviously non-empty, since all gaussian variables be-

long to it. Moreover, it is clear, by its very construction, that

(3.5). PROPOSITION. – G(V) is a vector space and t× is a norm.
We now turn to examine the relation between (G(V), t×) and the normed

space (SG(V), t) defined in section 1. We state the following:

(3.6). THEOREM. – G(V) coincides with the subspace of SG(V) consisting
of the symmetric random variables. Moreover, t× 4t on G(V).

We need a simple lemma, whose proof is straightforward:

(3.7). LEMMA. – Let X be a random variable. Put

A4maD0: E kMtg X

a
hlG1 (tn4 ]aD0: E[e tX/a ] Ge t 2 /2 (t( ;

B4 ]bD0: E[e tX ] Ge b 2 t 2 /2 (t( .

Then we have A4B.

PROOF of (3.6). – We have A41
t

At ; since At is a left bounded half-line for

each t, the same is true for A. Moreover, by the preceding lemma, for every
random variable X, we have

t×(X) 4 sup
t

t t (X) 4 inf A4 inf B4t(X) . r

4. – Comparison of t and s. Second part.

In the first part of this section we shall consider symmetric random varia-
bles and we shall use the characterization of t given in section 3, namely the
formula

t(X) 4 sup
t

t t (X) .(4.1)

We begin with the following
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(4.2). PROPOSITION. – For every symmetric random variable X, we
have

sup
NtNGk2

t t (X) Gs (X) .

For the proof, we need some preliminary facts.
Consider the function M defined by

M(x) 4e x 2
21 , x�R .

It is obvious that

s (x) 4 infmaD0: EkMg X

a
hlG1n .(4.3)

We shall use also the functions Mt defined in section 3. Then we have the
easy

(4.4). LEMMA. – For every t, with NtNGk2, we have

Mt (x) GM(x) ,

for every x.

PROOF of (4.2). – Let aD0 be such that

E kMg X

a
hlG1 .

From the preceding lemma we get

E kMtg X

a
hlG1 ,

for each t, with NtNGk2.
This amounts to saying that the following inclusion holds:

maD0: E kMg X

a
hlG1n%At ,

so that, by (4.3), we obtain

s (X) Ft t (X) .

By taking the supremum with respect to t in the preceding relation, we con-
clude the proof. r

We now pass to evaluate sup
NtNDk2

t t (X).
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(4.5). LEMMA. – For every pair of real numbers t,x, we have

e tx 1e 2tx Ge (1 /2)(t 21x 2 ) 11 Ge (1 /2)(t 21x 2 ) 12 .

(4.6). LEMMA. – For every pair of real numbers t, x, we have

Mtg x

2
hG

1

2
Mt (x) .

The proofs of (4.5) and (4.6) are simple exercises.

(4.7). PROPOSITION. – For every symmetric random variable X, we
have

sup
NtNDk2

t t (X) Gk2 s (X) .

PROOF. – From lemma (4.5) we easily get the relation

Mt (x) G
1

2
u11

1

e t 2 /2 21
v e x 2 /2 .(4.8)

Since NtNDk2, we have

1

2
u11

1

e t 2 /2 21
vG

1

2
g11

1

e21
h4

e

2(e21)
4b .(4.9)

We observe that bE1, so that

1

2b
D

1

2
.(4.10)

Now let aD0 be such that

E kMg X

a
hlG1 ;

from (4.8) and (4.9) we get

E yMtg Xk2

a
hzGbE[e X 2 /a 2

] 4bE kMg X

a
hl1bG2b .

Hence, we deduce from lemma (4.6) and relation (4.10) that

E yMtg X

ak2
hz4E yMtg 1

2

Xk2

a
hzG

1

2
E yMtg Xk2

a
hzGbE1 .
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The preceding relation says that ak2�At , that is

a k2Ft t (X) .(4.11)

On taking the infimum with respect to a in (4.11), and recalling (4.3) again, we get

k2 s (X) Ft t (X) ,

and now, by taking the supremum with respect to t, we obtain the required
relation. r

Propositions (4.2) and (4.7), together with (4.1) yield

(4.12). PROPOSITION. – For every symmetric subgaussian random varia-
ble X, we have

t(X) Gk2 s (X) . r

We now drop the assumption of symmetry, and use an argument of sym-
metrization: let X be any subgaussian variable and Y an independent copy of
X. By Jensen inequality and (4.12) we have

E[e tX ] GE[e t(X2Y) ] Gexp k t 2

2
2s 2 (X2Y)lGexp k t 2

2
8s 2 (X)l ,

since s is a norm and s (X) 4s (Y).
Hence we deduce the

(4.13). PROPOSITION. – For every subgaussian random variable X, we
have

t(X) G2k2 s (X) .

(4.14). REMARK. – It is hardly possible to evaluate the constant b by the
methods of [6] (see introduction).
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