BOLLETTINO UNIONE MATEMATICA ITALIANA

L. BERETTA, A. TOGNOLI

Some remarks about proper real algebraic maps

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **3-B** (2000), n.1, p. 117–133.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2000_8_3B_1_117_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2000.

Some Remarks about Proper Real Algebraic Maps.

L. BERETTA - A. TOGNOLI

Sunto. – Nel presente lavoro si studiano le applicazioni polinomiali proprie

 $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q.$

In particolare si prova:

1) se $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ è un'applicazione polinomiale tale che $\varphi^{-1}(y)$ è compatto per ogni $y \in \mathbb{R}$, allora φ è propria;

2) se $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$ è polinomiale a fibra compatta e $\varphi(\mathbb{R}^n)$ è chiuso in \mathbb{R}^q allora φ è propria;

3) l'insieme delle applicazioni polinomiali proprie di \mathbb{R}^n in \mathbb{R}^q è denso, nella topologia C^{∞} , nello spazio delle applicazioni C^{∞} di \mathbb{R}^n in \mathbb{R}^q .

Introduction.

Let $\varphi: X \to Y$ be a continuous map between topological spaces, φ is called proper if for every compact $H \in Y$ the set $\varphi^{-1}(H)$ is also compact.

In the first part of this article we study polynomial and analytic proper maps.

In particular we prove:

1) Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ be a polynomial map such that $\varphi^{-1}(x)$ is compact for any $x \in \mathbb{R}$, then φ is proper.

2) Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$ be an analytic map such that: $\varphi(\mathbb{R}^n)$ is closed and $\varphi^{-1}(x)$ is compact, for any $x \in \mathbb{R}^q$, then φ is proper.

In the last part we study some improvements of the classical Weierstrass approximation theorem that asserts the density of the set P(n, q) of polynomial maps $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$ in the space $C^{\infty}(n, q)$ of C^{∞} maps $\psi \colon \mathbb{R}^n \to \mathbb{R}^q$ (endowed with the usual C^{∞} topology). In particular we prove

3) The set $P_R(n, q)$ of proper polynomial maps is dense in $C^{\infty}(n, q)$.

Moreover if $q \ge n$ the set of polynomial maps $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$ that have a proper polynomial extension $\tilde{\varphi} \colon C^n \to C^q$ is dense in $C^{\infty}(n, q)$.

Finally we prove a relative version of 3), see Theorem 4.

1. – Proper analytic maps $\varphi : \mathbb{R}^n \to \mathbb{R}^q$.

Let X be a topological space and $\varphi: X \to \mathbb{R}$ a continuous map, we shall denote:

$$X_a = \varphi^{-1}(\alpha) \qquad \alpha \in \mathbb{R}$$

$$X_a^+ = \varphi^{-1}(]\alpha + \infty[)$$
 $X_a^- = \varphi^{-1}(] - \infty, \alpha, [).$

If $\varphi: X \to \mathbb{R}$ is a continuous map between topological spaces we shall say that φ has *compact fibers* if for any $y \in Y$, $\varphi^{-1}(y)$ is compact; φ shall be called *proper* if $\varphi^{-1}(K)$ is compact for any compact set K of Y.

The map $\varphi: X \to Y$ shall be called *weakly proper* if for any $y \in \varphi(X)$ the neighbourhoods of $\varphi^{-1}(y)$ of type $U = \varphi^{-1}(B_y)$, B_y neighbourhood of y, are a foundamental system.

All spaces considered in the following are *metric* and *locally compact*.

LEMMA 1.1. – Let $\varphi: X \to Y$ be a continuous map between metric locally compact spaces, and let us suppose φ has compact fibers, then the following conditions are equivalent:

(i) φ is proper;

(ii) $\varphi(X)$ is closed and φ is weakly proper;

(iii) $\varphi(X)$ is closed and for any $y \in Y$, $\varphi^{-1}(y)$ has a compact neighbourhood U in X, of type $U = \varphi^{-1}(B_y)$, B_y neighbourhood of y in Y.

PROOF. – (i) \Rightarrow (ii). It is known that a proper map is also closed; (X and Y are metric spaces), so $\varphi(X)$ is closed.

If B_y is a compact neighbourhood of y in Y, then $U = \varphi^{-1}(B_y)$ is a compact neighbourhood of $\varphi^{-1}(y)$ in X.

Now we remark that: if $\{U_{\lambda}\}_{\lambda \in \Delta}$ is a set of compact neighbourhoods of $\varphi^{-1}(y)$ such that $\bigcap_{\lambda} U_{\lambda} = \varphi^{-1}(y)$ and the family $\{U_{\lambda}\}$ is closed under the finite intersection, then $\{U_{\lambda}\}_{\lambda \in \Delta}$ is a foundamental system of neighbourhoods of $\varphi^{-1}(y)$.

In fact if V is an open neighbourhood of $\varphi^{-1}(y)$, then the sets $U'_{\lambda} = U_{\lambda} - V$ are compact and $\bigcap_{\lambda} U'_{\lambda} = \emptyset$ hence there exists $\lambda_1 \dots \lambda_q$ such that $\bigcap_{i=1} U'_{\lambda_i} = \emptyset$, and this proves that $\{U_{\lambda}\}$ is a foundamental system of neighbourhoods. Clearly the family $\{U_{\lambda}\}$ of compact neighbourhoods of type $U_{\lambda} = \varphi^{-1}(B_y^{\lambda})$, B_y^{λ} compact, satisfies the above condition and this proves that φ is weakly proper.

(ii) \Rightarrow (iii). Let $y \notin \varphi(X)$, then there exists a neighbourhood $U_y \ni y$, such that

$$\varphi^{-1}(U_u) = \emptyset.$$

Let now $y \in \varphi(X)$ and U_y a compact neighbourhood of $\varphi^{-1}(y)$, such a neighbourhood exists because $\varphi^{-1}(y)$ is compact and X is locally compact.

 φ is weakly proper, hence there exists a compact neighbourhood B_y of y in Y such that $\varphi^{-1}(B_y) \in U_y$, $\varphi^{-1}(B_y)$ is closed and hence compact.

So the claim is proved.

(iii) \Rightarrow (i). For any $y \in Y$ there exists a compact neighbourhood B_y such that $\varphi^{-1}(B_y)$ is compact.

If $K \in Y$ is a compact set, then K can be covered with $B_{y_1} \dots B_{y_q}$ such that $\varphi^{-1}(B_{y_i})$ is compact, clearly this implies that $\varphi^{-1}(K)$ is compact.

The lemma is proved.

LEMMA 1.2. – Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$ be an analytic map with compact fibers, such that $\varphi(\mathbb{R}^n)$ is closed, then φ is proper.

PROOF. – If we prove that φ is weakly proper the Lemma 1 proves the claim.

The fact that φ is weakly proper is a consequence of Lojasiewicz inequalities. Let

$$y^{0} = (y_{1}^{0} \dots y_{q}^{0}) \in \varphi(\mathbb{R}^{n})$$
 and $d(y_{1} \dots y_{n}) = \sum_{i=1}^{q} (y_{i} - y_{i}^{0})^{2}$

then

$$\Psi = d \circ \varphi \colon \mathbb{R}^n \to \mathbb{R}$$

is an analytic function such that

$$\left\{x \in \mathbb{R}^n \mid \Psi(x) = 0\right\} = \varphi^{-1}(y^0).$$

Lojasiewicz's inequalities assure that the sets

$$U_{\varepsilon} = \left\{ x \in \mathbb{R}^n \mid | \Psi(x) | \le \varepsilon \right\} = \varphi^{-1} \left(\left\{ \{y_i\} \in \mathbb{R}^q \mid \sum (y_i - y_i^0)^2 < \varepsilon \right\} \right) \quad \varepsilon > 0$$

are a foundamental system of neighbourhoods of $\varphi^{-1}(y^0)$.

COROLLARY 1. – Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a polynomial map, if there exists $\alpha \in \mathbb{R}$ such that $\mathbb{R}^n_{\alpha} = \varphi^{-1}(\alpha)$ is compact and non-empty, then, if n > 1:

$$\varphi(\mathbb{R}^n) = \begin{cases} [\beta, +\infty[\\]-\infty, \beta] \end{cases} \quad for some \ \beta \in \mathbb{R} .$$

If φ has compact fibers, then φ is a proper map.

PROOF. – Let us suppose \mathbb{R}^n_a compact and non-empty and let consider the open sets

$$\mathbb{R}^{n+}_{a} = \varphi^{-1}(]\alpha, +\infty[) \qquad \mathbb{R}^{n-}_{a} = \varphi^{-1}(]-\infty, \alpha[).$$

Clearly we have that \mathbb{R}^n_a contains the boundary of $\mathbb{R}^{n^+}_a$ and $\mathbb{R}^{n^-}_a$, a path from $x \in \mathbb{R}^{n^+}_a$ to $y \in \mathbb{R}^{n^-}_a$ contains a point of \mathbb{R}^n_a .

These facts implies that one and only one of the sets $\overline{\mathbb{R}_a^{n+}}$, $\overline{\mathbb{R}_a^{n-}}$ is bounded and hence compact.

So we have proved that

$$\varphi(\mathbb{R}^n) = \begin{cases} [\beta, +\infty[\\]-\infty, \beta] \end{cases}$$

because any non constant polynomial map $\varphi \colon \mathbb{R} \to \mathbb{R}$ is not bounded.

Let now suppose φ has compact fibers; we have proved that $\varphi(\mathbb{R}^n)$ is closed, so, from Lemma 2, we know that φ is weakly proper, hence from Lemma 1 we deduce that φ is proper.

2. – Some remarks about the dimension of the fibers of a polynomial map.

We shall denote by K the real or the complex field.

If *n*, *m*, *p* are positive integers we shall denote by $P_K(n, m, p)$ the vector space of polynomial maps

$$\varphi = (\varphi_1 \dots \varphi_m) \colon K^n \to K^m$$

such that

$$\deg \varphi_i \leq p \qquad i=1, \ldots, m \, .$$

If $V \subset K^s$ is an affine variety we shall denote by $P_K(V, m, p)$ the quotient space of $P_K(s, m, p)$ given by the maps $V \rightarrow K^m$ that are restriction of elements of $P_K(s, m, p)$. We shall also consider

 $P_K(n, m) = \bigcup_p P_K(n, m, p) \qquad P_K(V, m) = \bigcup_p P_K(V, m, p).$

The sets $P_K(n, m)$, $P_K(V, m)$ are endowed with the usual C^{∞} topology of uniform convergence on compact sets.

The sets $P_K(n, m, p)$ are, in a natural way, Euclidean spaces and they have the topology induced by these (i.e. we parametrize the polynomials using the coefficients).

On $P_K(n, m, p)$ we can also consider the induced Zariski topology and on $P_K(V, m, p)$ the quotient Zariski topology.

From the fact that $P_K(n, m, p)$, $P_K(V, m, p)$ are Hausdorff topological vector spaces of finite dimension we have

THEOREM 1. – The natural injections $P_K(V, m, p) \rightarrow P_K(V, m)$ are homeomorphisms onto the images for any affine variety $V \subset K^s$.

If $\varphi: V \to W$ is a map between affine varieties, we shall say that φ is algebraic if it is a rational regular map.

If $\varphi: V \to W$ is an algebraic map between affine varieties, we shall say that φ is dominating if W = Zariski closure of $\varphi(V)$.

Now we recall two well-known results.

THEOREM 2 (Algebraic Sard Theorem). – Let $\varphi: V \rightarrow W$ be an algebraic dominating map between complex, irreducible affine varieties.

Then the set

$$W^r = \{ y \in W | \varphi^{-1}(y) \cap V_{\text{reg}} \text{ is regular} \}$$

contains a Zariski open dense subset of W. Moreover the set

 $W^{1} = \{y \in W | \dim \varphi^{-1}(y) = \dim V - \dim W\}$

is a dense open Zariski subset of W.

See [2] page 42-46.

THEOREM 3 (Local Triviality of Semi-Algebraic Maps). – Let X, Y be semialgebraic sets and $\varphi: X \to Y$ a continuous semi-algebraic map.

Then there exists:

- (i) a finite semi-algebraic stratification $\{Y_1...Y_K\}$ of Y;
- (ii) a collection of semi-algebraic sets $\{F_1 \dots F_K\}$;

(iii) a collection of semi-algebraic homeomorphisms

$$g_i: F_i^I \to Y_i \times F_i$$
 $F_i^I = \varphi^{-1}(Y_i)$ $i = 1...K$

such that for every i = 1...K the following diagram is commutative

$$\varphi^{-1}(Y_i) = F_i^I \xrightarrow{g_i} Y_i \times F_i$$

$$\searrow \varphi \qquad p_i \checkmark$$

$$Y$$

where p_i is the natural projection.

Moreover we may suppose that φ is a trivial (i.e. equivalent to a projection) semi-algebraic map over each connected component of $Y - Y^1$, where Y^1 is the union of the strata of dimension lower than $p = \dim Y$.

See [1] page 98.

If X is a semi-algebraic set we shall say that X is pure p-dimensional if it has dimension p in any point. From the above results we deduce:

LEMMA 3. – Let $\varphi: V \to W$ be an algebraic dominating map between real affine irreducible varieties, then there exists an open dense subset, (dense in the usual topology), W' of W_{reg} such that $\varphi^{-1}(y) \cap V_{\text{reg}}$ is regular for any $y \in W'$ and dim $\varphi^{-1}(y) \leq \dim V - \dim W$.

Moreover there exists a nonempty open semi-algebraic subset $W'' \! \subset \! W''$ such that

$$\dim \varphi^{-1}(y) = \dim V - \dim W \quad \text{if } y \in W''.$$

PROOF. – Let $\tilde{\varphi}: \tilde{V} \to \tilde{W}$ be a complexification of φ and

$$\widetilde{W}' = \{ y \in \widetilde{W} \mid \widetilde{\varphi}^{-1}(y) \cap \widetilde{V}_{\text{reg}} \text{ is regular} \}$$

By Theorem 2 $\widetilde{W'}$ contains a dense, in the usual topology, Zariski open subset of $\widetilde{W}.$

We recall that in \widetilde{W} the usual closure coincides with the Zariski closure, this implies that $W' = \widetilde{W'} \cap W$ contains an open and dense subset of W_{reg} .

It is known that if $\tilde{\varphi}^{-1}(y) \cap \tilde{V}_{reg}$ is regular, then $\varphi^{-1}(y) \cap V_{reg}$ is regular and clearly

$$\dim_C \widetilde{\varphi}^{-1}(y) \ge \dim_R \varphi^{-1}(y)$$

so we have proved the first part of the claim.

To prove the last part it is enought to remember that φ is dominating, hence $\varphi(V)$ must contain an open set of W.

Now Theorem 3 applied to the map $\varphi^{-1}(W') \rightarrow W'$ proves the lemma.

REMARK 1. – Let $V \subset K^n$ be a cone with vertex in the origin and $P_K^h(V, m, p)$ the set of $\varphi = (\varphi_1 \dots \varphi_m) \in P_K(V, m, p)$ such that any φ_i is homogeneous of degree p. It is possible to extend the previous result to the homogeneous case.

For example we have that there exists an open dense subset B of $P_C^h(V, m, p)$, such that for any $\varphi = (\varphi_1 \dots \varphi_m) \in B$ we have

$$\dim V \cap (\cap \{\varphi_i = 0\}) = \dim V - m$$

Infact we can take φ_1 such that $\{\varphi_1 = 0\} \not\supset V, \varphi_2$ in such a way that

$$\{\varphi_2 = 0\} \not \supset V \cap \{\varphi_1 = 0\} (^1) \dots$$

LEMMA 4. – Let $\varphi: X \to Y$ be a semi-algebraic map between semi-algebraic sets of pure dimension p, q and let us suppose φ is dominating, then there exists an open dense subset, $Y' \subset Y$ such that

$$y \in Y' \Rightarrow \varphi^{-1}(y)$$
 is pure $p - q$ -dimensional

Moreover if Y is pure q-dimensional, φ is an open map and for $y \in Y'$, $\varphi^{-1}(y)$ is pure p-q-dimensional, with Y' dense subset, then X is pure p-dimensional.

PROOF. – The claim of the lemma follow easily from Theorem 3, in fact there exists an open dense subset $Y' \subset Y$ such that on any connected component Y'_i of Y' we have

$$\varphi^{-1}(Y_i') \cong Y_i' \times F_i.$$

So if X is pure p-dimensional, F_i must be pure p - q-dimensional.

On the converse if φ is open and F_i is pure p - q-dimensional then the set $\bigcup_i \varphi^{-1}(Y'_i)$ must be dense in X, and this implies that X is pure p-dimensional.

A criterion to recognize when a map is dominating is given in the following.

LEMMA 5. – Let $\varphi \colon V \to W$ be an algebraic map between real irreducible affine varieties and $\tilde{\varphi} \colon \tilde{V} \to \tilde{W}$ a complexification. If there exists $y_0 \in W$ such that

$$\dim_C \tilde{\varphi}^{-1}(y_0) = \dim_R V - \dim_R W$$

then φ is dominating.

(¹) Where \not means: doesn't contain any irreducible component.

PROOF. - The map

$$\widetilde{\varphi} \colon \widetilde{V} \to \widetilde{\varphi}(\widetilde{V})$$

is dominating, where $\widehat{}$ is the closure in the Zariski topology. If we prove that

$$\dim_C \widetilde{\varphi}(\widetilde{V}) = \dim_C \widetilde{W} = \dim_R W$$

then we have $\widetilde{W} = \widehat{\widetilde{\varphi}(\widetilde{V})}$ (because W is irreducible) and clearly φ is dominating.

By a classical result (see [2] page 45) we know that

$$\dim_C \widetilde{\varphi}^{-1}(y) \ge \dim_C \widetilde{V} - \dim_C \widetilde{\varphi}(\widetilde{V})$$

for any $y \in \tilde{\varphi}(\tilde{V})$.

So the hypothesis

$$\dim_C \widetilde{\varphi}^{-1}(y_0) = \dim_C \widetilde{V} - \dim_C \widetilde{W}$$

implies

$$\dim \widetilde{\varphi}(\widetilde{V}) = \dim \widetilde{W}$$

and hence the claim.

Let $V \subset K^s$ be an affine variety, we shall denote by $P_K^h(V, n, p)$ the subset of $P_K(V, n, p)$ of the elements that are restriction to V of homogeneous polynomials of degree p.

Now we consider the affine varieties

$$\begin{split} &\Gamma_{K}(V, \, n, \, p) = \left\{ (\alpha, \, x) \in P_{K}(V, \, n, \, p) \times V \, | \, \alpha(x) = 0 \right\} \\ &\Gamma_{K}^{h}(V, \, n, \, p) = \left\{ (\alpha, \, x) \in P_{K}^{h}(V, \, n, \, p) \times V \, | \, \alpha(x) = 0 \right\} \end{split}$$

and the natural projections

$$p: \Gamma_K(V, n, p) \rightarrow P_K(V, n, p).$$

PROPOSITION 1. – Let $V \in C^s$ be an affine irreducible variety with dim $V \ge n$. Then there exists a dense open Zariski subset U of $P_C(V, n, p)$ such that for any $\alpha \in U$ we have

$$\dim p^{-1}(\alpha) = \dim V - n$$

and

$$\dim \Gamma_C(V, n, p) = \dim P_C(V, n, p) + \dim V - n$$

A similar result holds for the projection

$$p_h: \Gamma^h_C(V, n, p) \rightarrow P^h_C(V, n, p).$$

PROOF. – The hypothesis dim $V \ge n$, K = C and the classical elimination theory assure that the maps p and p_h are dominating. It is known that

1) $q = \dim \Gamma_C(V, n, p) \ge \dim P_C(V, n, p) + \dim V - n.$

2) There exists an open dense Zariski subset U' of $P_C(V, n, p)$ such that if $\alpha \in U'$ then

$$\dim p^{-1}(\alpha) = q - \dim P_C(V, n, p)$$

(see [M] page 46).

Now we shall show that for a dense subset
$$U'' \subset P_C(V, n, p)$$
 we have

3) $a \in U'' \implies \dim p^{-1}(a) = \dim V - n$

If we prove 3) then from 1) and 2) it follows that

$$q = \dim P_C(V, n, p) + \dim V - n$$

and hence from 2) and Theorem 2, that there exists a Zariski open dense subset U of $P_C(V, n, p)$ such that

$$a \in U \implies \dim p^{-1}(a) = \dim V - n$$
.

To prove 3) let us consider $\alpha = (\alpha_1 \dots \alpha_n) \in P_C(V, n, p)$.

If α_1 is constant we can approximate α_1 with a non-constant element $\beta_1 \in P_C(V, 1, p)$.

Let now $x'_1 \dots x'_{n_1}$ be a finite set of points such that any irreducible component of $V \cap \{\beta_1 = 0\}$ contains one x'_j . If α_2 is identically zero on some irreducible component of $V \cap \{\beta_1 = 0\}$ we approximate α_2 with β_2 such that

$$\beta_2(x_j') \neq 0 \quad \forall j$$
.

So finally we approximate $(\alpha_1 \dots \alpha_n)$ with $(\beta_1 \dots \beta_n)$ and by construction we have

dim
$$V \cap \left(\bigcap_{j} \{\beta_j = 0\}\right) = \dim V - n$$
.

The proposition is proved for the map p, the demonstration runs in a similar way for p_h .

COROLLARY 2. – Under the hypothesis of the proposition, there exists a Zariski open dense subset U of $P_C(V, n, p)$ such that

(I) If $P = (P_1 \dots P_n) \in U$ then P_j is not constant on

$$\bigcap_{K\neq j} \{P_K = 0\} \qquad j = 1 \dots n$$

PROOF. - If condition (I) is not satisfied then

$$\bigcap_{K=1}^{n} \{ P_K = 0 \} = \emptyset$$

 \mathbf{or}

dim
$$\bigcap_{K=1}^{n} \{ P_K = 0 \} > \dim V - n$$
.

So the proposition proves the corollary.

If P_1, \ldots, P_q are elements of $\mathbb{R}[x_1 \ldots x_n]$, then the set $V = \bigcap_{j=1}^q \{P_j = 0\}$ may have codimension greater than q and in general V is not purely dimensional.

Let now consider $C^n = \{z_1 = x_1 + iy_1 \dots z_n = x_n + iy_n\}$ and for any $P \in C[z_1 \dots z_n]$ the decomposition P = P' + iP'' into the real and the imaginary part.

DEFINITION 1. – An element

$$P \in \mathbb{R}[x_1 \dots x_n, y_1 \dots y_n]$$

shall be called real (imaginary)part if there exist $Q \in \mathbb{R}[x_1 \dots x_n, y_1 \dots y_n]$ such that P + iQ(Q + iP) is element of $C[z_1 \dots z_n]$.

We shall denote $(\mathbb{R}_{\mathbb{R}}[x, y])_n^q$ the vector space of q-uple of elements of

$$\mathbb{R}[x_1 \dots x_n, y_1 \dots y_n]$$

that are real parts. We have

PROPOSITION 2. – There exists an open dense subset U of $(\mathbb{R}_{\mathbb{R}}[x, y])_n^q$, $q \leq n$ such that

$$(P'_1 \dots P'_q) \in U \implies V = \bigcap_{j=1}^q \{P'_j = 0\}$$

is pure 2n - q-dimensional.

PROOF. - We recall some well-known facts:

1) if $P' \in \mathbb{R}_{\mathbb{R}}[x, y]$ the element P'' such that $P' + iP'' \in C[z]$ is determined, up to an additive constant, (one can reduce the proof to the case n = 1 and use the Cauchy-Riemann conditions).

2) Let $P_j = P'_j + iP''_j \in C[z]$, $j = 1 \dots q$; if $\tilde{V} = \bigcap_{j=1}^q \{P_j = 0\}$ is regular of complex dimension n - q, then $V = \bigcap_{j=1}^q \{P'_j = 0\}$ is regular of dimension 2n - q (the problem is local and we can use the implicit function theorem).

3) If \widetilde{W} is a complex affine variety, then the set of regular points is open and dense, in the usual topology, in \widetilde{W} (see [M]).

4) By Proposition 1 there exists an open dense subset \widetilde{U} of $P_{C}(n,\,q,\,p)$ such that

$$(P_1 \dots P_q) \in \widetilde{U} \implies \dim_{C} \bigcap_{j=1}^{q} \{P_j = 0\} = n - q$$

Moreover we may suppose, (see Corollary 2), $(P_1 \dots P_q) \in \widetilde{U} \Rightarrow$ for any $j = 1 \dots q$, P_j is not constant on $\bigcap_{K \neq j} \{P_K = 0\}$.

Let us consider the natural map

$$p: P_C(n, q) \rightarrow (\mathbb{R}_{\mathbb{R}}[x, y])_n^q$$

that associate to an element $(P_1 \dots P_q) \in P_C(n, q)$ the real parts

$$(P'_1 \dots P'_q) \in (\mathbb{R}_{\mathbb{R}}[x, y])_n^q.$$

Clearly p is surjective and open, hence from Corollary 2, we deduce that there exists an open dense subset U of $(\mathbb{R}_{\mathbb{R}}[x, y])_n^q$ such that if $(P'_1 \dots P'_q) \in U$ then for any choice of $(P''_1 \dots P''_q)$ such that $(P_1 + iP''_1 \dots P_q + iP''_q) \in P_C(n, q)$ we have

$$\dim \ \tilde{V} = \dim_C \bigcap_{j=1}^q \{P_j = 0\} = n - q \qquad P_j = P_j' + P_j''.$$

Let now $x^0 \in V = \bigcap_{j=1}^q \{P_j' = 0\}, (P_1' \dots P_q') \in U$, then we can choose the additive constants in such a way that

$$x^0 \in \bigcap_{j=1}^q \{P_j''=0\}$$
 with $P_j'+iP_j'' \in C[z]$

Now the point x^0 is limit of regular points of \tilde{V} and hence from the above points 2) and 3) we know that V is of dimension 2n - q in the point x^0 . The proposition is proved.

REMARK 2. – A similar result, with the same proof, holds for the imaginary part of elements of C[z].

3. - Some improvements to the Weierstrass approximation theorem.

The classical Weierstrass approximation theorem states that any $C^{\,\infty}$ map

$$\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$$

can be approximated, in the $C^{\,\infty}$ topology, by polynomial maps.

The following are natural questions:

(I) any C^{∞} map $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$ can be approximated by proper polynomial maps $\psi_{\lambda} \colon \mathbb{R}^n \to \mathbb{R}^q$?

(II) when a C^{∞} map $\varphi \colon \mathbb{R}^n \to \mathbb{R}^q$ can be approximated by polynomial maps ψ_{λ} such that $\psi_{\lambda} \colon C^n \to C^q$ is proper?

(III) Let $V \subset \mathbb{R}^n$ be a compact affine variety and $\varphi : \mathbb{R}^n \to \mathbb{R}^q$ a C^{∞} map such that φ/V is polynomial, when can we approximate φ with polynomial proper maps $\psi_{\lambda} : \mathbb{R}^n \to \mathbb{R}^q$ such that

$$\psi_{\lambda}/V = \varphi/V?$$

The purpose of this paragraph is to give some positive answer to the above questions.

In the following we shall consider K^n canonically embedded in $P_n(K)$

$$i: K^n \hookrightarrow P_n(K)$$

and we shall denote

$$P_n^{\infty}(K) = P_n(K) - i(K^n).$$

Let $\varphi: V_1 \to V_2$ be an algebraic map defined between two affine K-varieties, we shall call $\widehat{\varphi}: \widehat{V}_1 \to \widehat{V}_2$ a projective compactification of φ if there exist:

1) two algebraic embedding

$$i_j: V_j \rightarrow K^{n_j} \qquad j = 1, 2$$

such that $\widehat{V}_j = \text{Zariski}$ closure of $i_j(V_j)$ in $P_{n_j}(K)$

2) an algebraic map

$$\widehat{\varphi} \colon \widehat{V}_1 \to \widehat{V}_2$$

such that the following diagram is commutative

$$\begin{array}{cccc} V_1 & \stackrel{\varphi}{\to} & V_2 \\ \downarrow & & \downarrow \\ \widehat{V}_1 & \stackrel{\widehat{\varphi}}{\to} & \widehat{V}_2 \end{array}$$

As before we shall denote $\widehat{V}_j^{\infty} = \widehat{V}_j - i_j(V_j)$.

We shall say that $\widehat{\varphi}$ is a good (projective) compactification if

$$\widehat{\varphi}(\widehat{V}_1^\infty) \subset \widehat{V}_2^\infty$$
.

We have the

LEMMA 6. – Let $\varphi: V \to W$ be an algebraic map between affine K-varieties, then φ has a projective compactification, $\widehat{\varphi}: \widehat{V} \to \widehat{W}$.

If $\widehat{\varphi}$ is a good compactification, then φ is a proper map. If K = C and φ is proper, then $\widehat{\varphi}$ is a good compactification.

PROOF. - Let

 $V \subset K^n$ $W \subset K^m$

and

$$\Gamma_{\alpha} \subset K^n \times K^m \subset P_n(K) \times P_m(K)$$

the graph of φ .

Let us define $i_V: V \to \Gamma_{\varphi}$, $i_V(x) = (x, \varphi(x))$, $\widehat{V} = \text{Zariski closure of } \Gamma_{\varphi}$ in $P_N(K) \supset P_n(K) \times P_m(K)$ and $\widehat{\varphi}$ the natural projection

$$P_n(K) \times P_m(K) \to P_m(K)$$

restricted to $\widehat{\Gamma}_{\varphi}$.

 $P_n(K)$ is compact, $K = \mathbb{R}$, C, hence if $\widehat{\varphi}$ is a good compactification then φ is a proper map.

On the converse if K = C, then the Zariski closure coincides with the usual one, and hence, if φ is proper, then $\widehat{\varphi}$ is a good compactification.

If $V \subset K^n$ and $\varphi: V \to W$ is an algebraic map, then, in general, the projective compactification $\widehat{\varphi}: \widehat{V} \to \widehat{W}$ cannot be found in such a way that $\widehat{V} \subset P_n(K)$. We shall try to find a sufficient condition to realize \widehat{V} in $P_n(K)$.

Let us consider a polynomial map

$$\varphi = (\varphi_1, \ldots, \varphi_m): K^n \to K^m$$

given by

(1)
$$y_j = \varphi_j(x_1 \dots x_n) \quad j = 1 \dots m \quad \deg \varphi_j \leq p$$
.

If we consider the homogeneous coordinates

$$u_0 \dots u_m$$
 $y_j = \frac{u_j}{u_0}$ $v_0 \dots v_n$ $x_j = \frac{v_j}{v_0}$

then the relations (1) give:

(2)
$$\frac{u_j}{u_0} = \varphi_j \left(\frac{v_1}{v_0} \dots \frac{v_n}{v_0} \right) \quad j = 1 \dots m$$

and hence

(3)
$$\frac{u_j}{u_0} = \frac{v_0^{d_j} \check{\varphi}_j (v_0 \dots v_n)}{v_0^p} \quad j = 1 \dots m$$

where

$$p = \sup \deg \varphi_j \qquad d_j = p - \deg \varphi_j$$

$$\check{\varphi}_j(v_0\ldots v_n) = v_0^{d'} \varphi_j\left(\frac{v_1}{v_0}\ldots \frac{v_n}{v_0}\right) \qquad d'_j = \deg \varphi_j.$$

If we now suppose $d'_{j} = p$, for all j, then relation (3) are satisfied if

(4)
$$\begin{cases} u_j = \check{\varphi}_j(v_0 \dots v_n) & j = 1 \dots m \\ u_0 = v_0^p \end{cases}$$

If $v_0 \neq 0$ relations (4) give the algebraic map $\check{\varphi}$, if they define a regular map

$$\widehat{\varphi}: P_n(K) \to P_m(K)$$

then $\widehat{\varphi}$ is the unique algebraic extension of φ , and $\widehat{\varphi}$ is a good projective compactification of φ .

Clearly relations (4) define a regular map in a neighbourhood of $(\overline{v}_0, \ldots, \overline{v}_n)$ if one, at least, of the numbers $\check{\varphi}_j(\overline{v}_0 \ldots \overline{v}_n)$, \overline{v}_0 is different from zero.

Let now $V \in K^n$ be an affine variety and $\varphi: V \rightarrow K^m$ a polynomial map.

DEFINITION 2. - If relations (4) define a projective compactification

$$\widehat{\varphi}:\widehat{V} \to P_m(K)$$

then $\widehat{\varphi}$ shall be called a very good (projective) compactification.

PROPOSITION 3. – Let $V \in C^m$ be a complex affine variety of dimension n, if $q \ge n$, then the set of elements of $P_C(V, q)$ that have a very good projective compactification is dense in $P_C(V, q)$.

In the real case the same result holds for any $q \ge 1$.

PROOF. – Let $\varphi = (\varphi_1 \dots \varphi_q) \in P_C(V, q)$ and

$$\varphi_{\varepsilon} = (\varphi_1 + \varepsilon \psi_1, \ldots, \varphi_q + \varepsilon \psi_q): V \rightarrow C^q \qquad \varepsilon \in \mathbb{R}.$$

By Proposition 1 we may choose $(\psi_1 \dots \psi_q)$ in a open dense subset U of some $P_C^{h}(V, q, p)$ in such a way that φ_{ε} has a very good projective compactification for any $\varepsilon \in \mathbb{R}'$, \mathbb{R}' open dense subset of \mathbb{R} .

In fact if $(\psi_1 \dots \psi_q)$ have the property

$$\dim \bigcap_{j=0}^{q} \{ \psi_j = 0 \} = 0 \quad \text{and} \quad \deg \varphi_i < p$$

relation (4) define the desidered compactification.

It is now clear that $\varphi = \lim_{\varepsilon \to 0} \varphi_{\varepsilon}$, hence the proposition is proved if K = C.

In the real case let us define $\psi_1 = \ldots = \psi_q = \sum_{j=0}^m x_j^{2d}$ with d big enough.

REMARK 3. – In the complex case the hypothesis $q \ge \dim V$ is necessary because if φ has a good projective compactification then it is a proper map, and hence with finite fibers.

In the following we shall state a relative approximation theorem.

Let $V \subset \mathbb{R}^n$ be an affine variety, $W \subset V$ a closed affine subvariety and $\varphi: W \to \mathbb{R}^q$ an algebraic map.

We shall denote $C^{\infty}(V, \varphi, q)$, $P(V, \varphi, q)$ the spaces of C^{∞} , and algebraic maps $V \rightarrow \mathbb{R}^{q}$ extending φ .

By $P_C(V, \varphi, q)$ we shall denote the subspace of the algebraic maps that have a good projective compactification and extend φ .

We recall that an affine variety W is called *quasi regular* if in any point the germ of the algebraic complexification coincides with the germ of the analytic complexification.

We have

THEOREM 4. – Let V be a real affine variety, W a closed affine quasi-regular compact subvariety and $\varphi: W \to \mathbb{R}^q$ an algebraic map.

Then $P_C(V, \varphi, q)$ is dense in $C^{\infty}(V, \varphi, q)$.

PROOF. - We wish to prove the following claim:

under the hypothesis of the theorem, for any compact set $H \subset V$ there exists an algebric map $g: V \to \mathbb{R}^N$ such that:

1) there exists an open set $U \supset W \cup H$ in V, such that $g: U \rightarrow g(U)$ is an algebraic isomorphism;

2) there exists a sphere $S^{N-1} \subset \mathbb{R}^N$ such that $g(W) = g(V) \cap S^{N-1}$.

PROOF (of the claim). – a) if $V \subset \mathbb{R}^n$ there exists a polynomial $P \in \mathbb{R}[x_1 \dots x_n]$ such that

$$W = \left\{ x \in \mathbb{R}^n \, | \, P(x) = 0 \right\}.$$

Using Segre's map we can find an embedding $i: V \to \mathbb{R}^N$ such that there exists an hyperplane $I \in \mathbb{R}^N$ with the property $i(W) = i(V) \cap I$ (see [2]).

b) If we consider the inverse of the stereographic map

$$\sigma: S^N - \{0\} \to \mathbb{R}^N$$

we verify that σ^{-1} : $\mathbb{R}^N \to S^N$ can be extended to an algebraic map

$$\widehat{\sigma}^{-1}: P_N(R) \to S^{1}$$

(see [T]).

The map $\widehat{\sigma}^{-1}$ is an isomorphism on \mathbb{R}^N and the constant map on $P_N(\mathbb{R})^{\infty}$.

c) If we consider the composition

$$g = \widehat{\sigma}^{-1} \circ i \colon V {\rightarrow} S^N$$

it easy to verify that $g: V \rightarrow g(V)$ is an algebraic isomorphism and

$$g(W) = g(V) \cap \widehat{\sigma}^{-1}(I).$$

It is well-known that the inverse of stereographic projection sends linear subspaces into spheres, hence $\hat{\sigma}^{-1}(I)$ is an N-1 sphere and the claim is proved.

PROOF (of the theorem). – We can suppose $V \subset \mathbb{R}^N$ in such a way that

$$W = \left\{ x \in V | \sum_{j=1}^{N} x_j^2 - 1 = 0 \right\}.$$

It is known (see [T]) that $P(V, \varphi, q)$ is dense in $C^{\infty}(V, \varphi, q)$ because W is quasi regular.

Let now $\psi \in P(V, \varphi, q)$, then

$$\psi_{\varepsilon} = \psi + \varepsilon \left(\sum_{j=1}^{N} x_j^2 - 1\right)^{2d}$$

is, for small ε , an approximation of ψ and, if d is big enough,

 $\psi_{\varepsilon} \in P_C(V, \varphi, q).$

The theorem is proved.

REFERENCES

- [B.R.] R. BENEDETTI J. J. RISLER, Real Algebraic and Semi-Algebraic Sets, Herman, Paris, 1990.
- [M] D. MUMFORD, Algebraic Geometry I, Complex Projective Varieties, Springer Verlag, Berlin, 1976.
- [T] A. TOGNOLI, Algebraic Approximation of Manifolds and Spaces, Sem. Bourbaki N. 548, 1979-80.

L. Beretta and A. Tognoli: University of Trento

Pervenuta in Redazione il 2 luglio 1999