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Homogenization of Periodic Multi-Dimensional Structures.

NADIA ANSINI - ANDREA BRAIDES - VALERIA CHIADÒ PIAT

Sunto. – Si studia il comportamento asintotico di una classe di funzionali integrali
che possono dipendere da misure concentrate su strutture periodiche multidimen-
sionali, quando tale periodo tende a 0. Il problema viene ambientato in spazi di So-
bolev rispetto a misure periodiche. Si dimostra, sotto ipotesi generali, che un ap-
propriato limite può venire definito su uno spazio di Sobolev usuale usando tecni-
che di G-convergenza. Il limite viene espresso come un funzionale integrale il cui
integrando è caratterizzato da opportune formule.

1. – Introduction.

In this paper we deal with the asymptotic behaviour of integral functionals
which may model energies concentrated on multidimensional structures. The
model example we have in mind is that of composite elastic bodies composed of
n-dimensional elastic grains interacting through contact forces depending on
the relative displacements of their common boundaries (see Example 3.1). In a
general setting, following the approach of Ambrosio, Buttazzo and Fonse-
ca [2], we consider integrals of the form

Fe (u) 4s
V

fg x

e
,

dDu

dm e

h dm e ,

defined on the space W 1, p
m e

(V ; Rm ) of Sobolev functions with respect to the
measure m e, which is the set of L p-functions of V whose distributional deriva-
tive is a measure absolutely continuous with respect to m e with p-summable
densities. We study the limit as eK0 of such functionals under the hypotheses
that f is a Borel function 1-periodic in the first variable satisfying a standard
growth condition of order p, and

m e (B) 4e n mg 1

e
Bh

where m is a fixed 1-periodic Radon measure. We show (Theorem 3.6) that un-
der suitable requirements on the measure m, the family (Fe ) G-converges as
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eK0 to a functional of the form

Fhom (u) 4s
V

fhom (Du) dx

on W 1, p (V ; Rm ), where the function fhom is described by an asymptotic formu-
la that generalizes the usual one, corresponding to the case when m is the
Lebesgue measure (see Braides [4] and Müller [15]). This problem had been
studied in the case when m is the restriction of the Lebesgue measure to a peri-
odic set whose complement is composed by well separated bounded sets by
Braides and Garroni [6] (media with stiff inclusions). Another meaningful case
is when m is the (n21)-dimensional Hausdorff measure restricted to the
union of the boundaries of a periodic partition of Rn. In this case the functions
in W 1, p

m (V ; Rm ) are piecewise constant and the functionals Fe can be inter-
preted as a finite-difference approximation of the homogenized functional
(Section 5, see also Kozlov [13], Pankov [16] and Davini [8]).

The approach described above is somehow complementary to the «smooth
approach» where the functionals Fe are defined as

Fe (u) 4s
V

fg x

e
, ˜uh dm e

on C Q (V ; Rm ), whose homogenization is studied by Zhikov [18] (see also
Braides and Chiadò Piat [5] for the case m4x E with E periodic, and Bouchitté,
Buttazzo and Seppecher [3] for relaxation results in the case of general m).

2. – Notation and preliminaries.

Let V be a bounded open subset of Rn; we will use standard notation for
the Sobolev and Lebesgue spaces W 1, p (V ; Rm ) and L p (V ; Rm ); p 8 and p *
denoting the conjugate and Sobolev exponent of pF1, respectively. The L Q-
norm of a function u is denoted simply by VuVQ . We denote by A(V) the family
of all open subsets of V; Mm3n stands for the space of m3n matrices. The let-
ter c will denote a strictly positive constant independent of the parameters un-
der consideration, whose value may vary from line to line. The Hausdorff k-di-
mensional measure in Rn is denoted by H k. We write NEN for the Lebesgue
measure of E. If E is a subset of Rn then x E is its characteristic func-
tion.

Given a vector-valued measure m on V, we adopt the notation NmN for its to-
tal variation (see Federer [12]). We say that u�L 1 (V ; Rm ) is a function of
bounded variation, and we write u�BV(V ; Rm ), if all its distributional first
derivatives Di uj are signed measure on V. We denote by Du the Mm3n-valued
measure whose entries are Di uj . For the general exposition of the theory of
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functions of bounded variation we refer to Federer [12], Evans and
Gariepy [11], and Ziemer [17].

If u�L 1 (V ; Rm ), we denote by uA the precise representative of u, whose
components are defined by

uAi (x) 4 lim sup
rK01

s–
B(x , r)

ui (y) dy ,(1)

where B(x , r) denotes the open ball of centre x and radius r.

2.1. G-convergence. – We recall the definition of De Giorgi’s G-convergence
in L p spaces. If for all j�N Fj : L p (V ; Rm ) K [0 , 1Q] is a functional, then,
for u�L p (V ; Rm ), we define

G(L p ) - lim inf
jK1Q

Fj (u) 4 infmlim inf
jK1Q

Fj (uj ) : uj K
L p

un ,

and

G(L p ) - lim sup
jK1Q

Fj (u) 4 infmlim sup
jK1Q

Fj (uj ) : uj K
L p

un ;

if these two quantities coincide their common value will be called the G-limit
of the sequence (Fj ) in u, and will be denoted by G(L p ) - lim

jK1Q
Fj (u).

It is easy to check that l4G(L p ) - lim
jK1Q

Fj (u) if and only if

(a) for every sequence (uj ) converging to u we have

lG lim inf
jK1Q

Fj (uj ) ;

(b) there exists a sequence (uj ) converging to u such that

lF lim sup
jK1Q

Fj (uj ) .

We say that (Fe ) G-converges to l at u as eK0 if for every sequence of posi-
tive numbers (e j ) converging to 0 there exists a subsequence (e jk

) for which we
have

l4G(L p ) - lim
kK1Q

Fe jk
(u) .

We recall that the G-upper and lower limits defined above are L p-lower
semicontinuous functions. For all properties of G-convergence and its impor-
tance in the theory of homogenization we refer to the book of Dal Ma-
so [9].
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2.2. Sobolev spaces with respect to a measure. – The following notion of
Sobolev space with respect to a measure has been introduced by Ambrosio,
Buttazzo and Fonseca [2].

DEFINITION 2.1. – Let l be a finite Borel positive measure on the open set
V%Rn, and let 1 GpG1Q. The Sobolev space with respect to l,
W 1, p

l (V ; Rm ), is defined as

W 1, p
l (V ; Rm ) 4mu�L p (V ; Rm ): Dubl ,

dDu

dl
�L p

l (V ; Mm3n )n ,(2)

where L p
l (V ; RN ) stands for the usual Lebesgue space of p-summable RN-

valued functions with respect to l.

REMARK 2.2. – By definition, functions in W 1, p
l (V ; Rm ) are functions of

bounded variation. From the properties of the space BV(V ; Rm ) the following
two facts can be easily deduced, that are used in the sequel.

(a) W 1, p
l (V ; Rm ) is embedded in Ln/(n21) (V ; Rm ).

(b) If u�W 1, p
l (V ; Rm ), v�W 1, Q

l (V) and

uA 7
dDv

dl
�L p

l (V ; Mm3n )

then uv�W 1, p
l (V ; Rm ), and

dD(uv)

dl
4 vA

dDu

dl
1uA7

dDv

dl
.(3)

Note that in (3) it is necessary to consider the precise representatives,
since the measure l may take into account also sets of zero Lebesgue
measure.

If u�W 1, p
l (V ; Rm ) then Du(B) 40 if B is a set of zero (n21)-Hausdorff

measure. Hence, W 1, p
l (V ; Rm ) 4W 1, p

l 8 (V ; Rm ) if l2l 8 is concentrated on a
set of Hausdorff dimension lower than n21; e.g., points in R 3.

Properties of lower semicontinuity and relaxation for functionals defined
on Sobolev spaces with respect to a measure have been studied in [2].

3. – Statement of the main result.

Let m be a non-zero positive Radon measure on Rn which is 1-periodic;
i.e.,

m(B1ei ) 4m(B)
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for all Borel subsets B of Rn and for all i41, R , n. The measure m will be
fixed throughout the paper. We will assume the normalization

m( [0 , 1 )n ) 41 .(4)

For all eD0 we define the e-periodic positive Radon measure m e by

m e (B) 4e n mg 1

e
Bh(5)

for all Borel sets B. Note that by (4) the family (m e ) converges locally weakly*
in the sense of measures to the Lebesgue measure as eK0.

In the sequel f : Rn 3Mm3n K [0 , 1Q) will be a fixed Borel function
1-periodic in the first variable and satisfying the growth condition of order
pF1: there exist 0 EaGb such that

aNANp G f (x , A) Gb(11NANp )(6)

for all x�Rn and A�Mm3n.
For every bounded open set V, we define the functionals at scale eD0

as

Fe (u , V) 4
.
/
´

s
V

fg x

e
,

dDu

dm e

h dm e ,

1Q ,

if u�W 1, p
m e

(V ; Rm ) ,

otherwise .

(7)

EXAMPLE 3.1. – (a) (Perfectly-rigid bodies connected with springs) We
take

E4 ]y�Rn : )i� ]1, R , n( such that yi �Z( ,

that is, the union of all the boundaries of cubes Qi 4 i1 (0 , 1 )n with i�Zn. E is
an (n21)-dimensional set in Rn. We take

m(B) 4
1

n
H n21 (BOE)

for all Borel sets B, where H n21 stands for the (n21)-dimensional surface
measure. For every eD0 we have

m e (B) 4
1

n
eH n21 (BOeE) .

In this case W 1, p
m e

consists of functions which are constant on every connected
component of each eQi OV, since we must have Du40 on these sets. In the
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case that u is constant on each eQi OV, e.g. if V is convex, we have

dDu

dm e

4
n

e

dDu

dH n21
4

n

e
(ui 2uj )7 (i2 j ) on ¯(eQi )O¯(eQj )OV ,

where ui is the value of u on eQi . In this case the functionals Fe take the
form

e s
VOeE

gg x

e
,

1

e

dDu

dH n21 h dH n21 .

Note that if V is bounded then W 1, p
m e

(V ; Rm ) 4W 1, Q
m e

(V ; Rm ) for all p if the
number of connected components of each VOeQi is finite.

(b) (Elastic media connected with springs). Let E be as above and
let

m(B) 4
1

n11
(NBN1 H n21 (EOB) ) ,

m e (B) 4
1

n11
(NBN1eH n21 ((eE)OB)) .

In this case the functions in W 1, p
m e

(V ; Rm ) are functions whose restriction to
each eQi OV belongs to W 1, p (eQi OV ; Rm ), and such that the difference of
the traces on both sides of ¯(eQi )O¯(eQj )OV is p-summable for every
i , j�Zn. The functionals Fe take the form

1

n11
s

V

fg x

e
,

dDu

dx
h dx1e s

VOeE

gg x

e
,

1

e

dDu

dH n21 h dH n21 .

In order to obtain a meaningful limit of the functionals Fe as eK0, some
requirements have to be made so that the limit functionals admit an integral
representation on W 1, p (V ; Rm ).

DEFINITION 3.2. – A 1-periodic positive Radon measure m on Rn will be
called p-homogenizable if the following properties hold:

(i) (Poincaré inequality) there exist a constant c such that for all
k�N

s
(0 , k)n

NuNp dxGck p s
(0 , k)n

N dDu

dm N
p

dm(8)

for all u�W 1, p
m ((0 , k)n ) with s

(0 , k)n

u dx40;

(ii) (existence of cut-off functions) there exist KD0 and dD0 such that
for all eD0, for all pairs U , V of open subsets of Rn with U%%V, and



HOMOGENIZATION OF PERIODIC MULTI-DIMENSIONAL STRUCTURES 741

dist (U , ¯V) Fde, and for all u�W 1, p
m e

(V) there exists f�W 1, Q
m e

(V) with
0 GfG1, f41 on U, f40 in a neighbourhood of ¯V, such that

s
V

N dDf

dm e

uAN
p

dm eG
K

(dist (U , ¯V) )p
s

V 0 U

NuNp dx .(9)

Such a f will be called a cut-off function between U and V;

(iii) (existence of periodic test-functions) for all i41, R , n, there exists
zi �W 1, p

m , loc (Rn ) such that x O zi (x)2xi is 1-periodic.

REMARK 3.3. – Note that the Lebesgue measure satisfies trivially all the
properties of Definition 3.2. Property (ii) depends on m and p.

EXAMPLE 3.4. – (a) The measure m in Example 3.1(a) is p-homogenizable
for all pF1. In fact, (i) follows from the Appendix. To prove (ii) let d45 kn.
Fixed eD0, set Ue40]eQi : eQi OUc¯(. Note that Ue%%V. Choose (we use
the notation [t] for the integer part of t)

f(x) 412g 1

C
k 1

e
inf ]Nx2yNQ : y�Ue(lR1h ,

where Nx2yNQ4 max
1 G iGn

Nxi 2yi N, and

C4 k 1

e
inf ]Nx2yNQ : x�Ue , y�¯V(l22 .

Note that NdDf/dm eNGn/(Ce) Gc/dist (U , ¯V) for some constant c indepen-
dent of U and V. Moreover, if u�W 1, p

m e
(V) then u is equal to a constant ui on

each cube eQi such that Dfc0 on ¯(eQi ). Hence, for two such cubes

e s
¯eQiO¯eQj

NuA Np dH n21 Ge s
¯eQiO¯eQj

(Nui Np 1Nuj N
p ) dH n21 4 s

eQiNeQj

NuNp dx

so that

s
V

N dDf

dm e

uAN
p

dm eG
c p e

dist (U , ¯V)p
s

(V 0 U)OeEOspt Df

NuA Np dH n21 G

2n
c p

dist (U , ¯V)p
s

V 0 U

NuNp dx .

The proof of (ii) is then complete. To verify (iii) take simply zi (x) 4 [xi ].
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(b) The measure m in Example 3.1(b) is p-homogenizable for all pF1. In
fact, (i) follows from the Appendix. The proof of (ii) and (iii) is trivial since the
Lebesgue measure is absolutely continuous with respect to m.

The homogenization theorem for functionals in (7) takes the following
form.

THEOREM 3.5. – Let m be a p-homogenizable measure, and for every bound-
ed open subset V of Rn let Fe (Q , V) be defined on L p (V ; Rm ) by (7). Then the
G-limit

Fhom (u , V) 4G(L p ) - lim
eK0

Fe (u , V)(10)

exists for all bounded open subsets V with Lipschitz boundary and for all
u�W 1, p (V ; Rm ), and it can be represented as

Fhom (u , V) 4s
V

fhom (Du) dx ,(11)

where the homogenized integrand satisfies the asymptotic formula

(12) fhom (A) 4 lim
kK1Q

inf{ 1

k n
s

[0 , k)n

fgx ,
dDu

dm
h dm :

u�W 1, p
m , loc (Rn ; Rm ), u2Ax k-periodic} .

If pD1 then Fhom (u , V) 41Q if u�L p (V ; Rm ) 0W 1, p (V ; Rm ). Further-
more, if f is convex then the cell-problem formula holds

(13) fhom (A) 4 inf { s
[0 , 1 )n

fgx ,
dDu

dm
h dm :

u�W 1, p
m , loc (Rn ; Rm ), u2Ax 1-periodic}

for all A�Mm3n.
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REMARK 3.6. – In formulas (12) and (13) we cannot replace the sets [0 , k)n

and [0 , 1 )n by the sets (0 , k)n and (0 , 1 )n, respectively, if m charges
[0 , 1 )n 0 (0 , 1 )n.

REMARK 3.7. – If m is not a p-homogenizable measure then fhom may be equal
to 1Q for all non-zero matrices A. As an example, take

m(B) 4 !
i�Zn

l(i1B) ,(14)

where l is any probability measure with spt l contained in (0 , 1 )n. Then test-
functions u in (12) must be constant on a periodic connected component of Rn,
and hence we get that fhom (A) 41Q if Ac0.

REMARK 3.8. – Contrary to the usual homogenization results in the frame-
work of ordinary Sobolev spaces, the hypothesis that V has a Lipschitz bound-
ary (which will be used in an essential way in Step 3 of Proposition 4.3) cannot
be removed from Theorem 3.5. To check this, take simply n42 and

V4g 0
i41

Q

(qi222i23 , qi122i23 )3(0 , 1 )hNg 0
i41

Q

(0 , 1 )3(qi222i23 , qi122i23 )h ,

where (qi ) is a numbering of QO (0 , 1 ). Take as m the measure of Example
3.1(a) and any f in Theorem 3.5. Note that, as VO (1Ok) Qi is connected for all
sub-cubes (1 /k) Qi of (0 , 1 )2, each function u�W 1, p

m 1/k
(VO (0 , 1 )2 ; Rm ) is con-

stant on each such VO(1/k) Qi . Hence, the two spaces W 1, p
m 1/k

(VO(0, 1)2 ;
Rm ) and W 1, p

m 1/k
((0, 1)2 ; Rm ) are equivalent, and, as (1/k) EO(0, 1)2%VO(0, 1)2,

F1/k (u , VO (0 , 1 )2 )4F1/k (u , (0 , 1 )2 ) .

If the thesis of Theorem 3.5 were true, then we would easily conclude that for
all v�W 1, p (VO (0 , 1 )2 ; Rm ) with Fhom (u , VO (0 , 1 )2 )E1Q there exists
u�W 1, p ((0 , 1 )2 ; Rm ) with u4v on VO (0 , 1 )2 and

Fhom (v , VO (0 , 1 )2 )4Fhom (u , (0 , 1 )2 ) ,

which is not possible for example if fF1 since NVO (0 , 1 )2 NcN(0 , 1 )2 N.

4. – Proof of the homogenization theorem.

The proof of Theorem 3.5 will be obtained at the end of the section,
as a consequence of the following propositions, which adapt to this case
the usual methods for the homogenization by G-convergence. While the
usual compactness and integral representation results in Dal Maso [9] hold
with minor modification also in this case, a more complex proof for the
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so-called fundamental estimate, for the growth condition from above and
for the homogenization formula is necessary.

From now on, V will be a fixed bounded open subset of Rn with Lipschitz
boundary.

PROPOSITION 4.1 (FUNDAMENTAL ESTIMATE). – For every sD0 there exists
e s and MD0 such that for all U , U 8 , V open subsets of V with U 8%U and
dist (U 8 , V0U) D0, for all eEe s dist (U 8 , V0U) and for all u�W 1, p

m e
(V ; Rm ),

v�W 1, p
m e

(V ; Rm ) there exists a cut-off function between U 8 and U, f�
W 1, Q

m e
(UNV), such that

(15) Fe (fu1 (12f) v , U 8NV)G (11s) (Fe (u , U)1Fe (v , V) )1

M

(dist (U 8 , V0U) )p
s

(UOV)0 U 8

Nu2vNp dx1sm e ((UOV)0U 8 ) .

PROOF. – Let KD0 and dD0 be the constants given by Definition 3.2(ii),
let N�N be such that NdeGdist (U 8 , V0U), and let Uk 4 ]x�U :
N dist (x , U 8 ) Ek dist (U 8 , V0U)(, U0 4U 8. For each k41, R , N let f k be a
cut-off function between Uk21 and Uk, satisfying (9), which exists since
dist (Uk21 , ¯Uk ) Fde. We have, using Remark 2.2(b), (6) and (9)

Fe (f k u1 (12f k ) v , U 8NV)4

s
U 8NV

fg x

e
, f

A
k

dDu

dm e

1 (12f
A

k )
dDv

dm e

1 (uA 2vA)7
dDf k

dm e

h dm eG

s
U

fg x

e
,

dDu

dm e

h dm e1s
V

fg x

e
,

dDv

dm e

h dm e1

4p b s
(Uk 0 Uk21 )OV

u11N dDu

dm e
N

p

1N dDv

dm e
N

pv dm e1

4p b s
(Uk 0 Uk21 )OV

N(uA 2vA)7
dDf k

dm e
N

p

dm eGFe (u , U)1Fe (v , V)1

4p b s
(Uk 0 Uk21 )OV

u11N dDu

dm e
N

p

1N dDv

dm e
N

pv dm e1

4p b
KN p

(dist (U 8 , V0U) )p
s

(Uk 0 Uk21 )OV

Nu2vNp dx

where K is the constant appearing in (9).
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Choose k such that

s
(Uk 0 Uk21 )OV

u11N dDu

dm e
N

p

1N dDv

dm e
N

pv dm e1

KN p

(dist (U 8 , V0U) )p
s

(Uk 0 Uk21 )OV

Nu2vNp dxG

1

N
u s

(UOV)0 U 8

u11N dDu

dm e
N

p

1N dDv

dm e
N

pv dm e1

KN p

(dist (U 8 , V0U) )p
s

(UOV)0 U 8

Nu2vNp dxv .

Then, taking into account also (6),

Fe (f k u1 (12f k ) v , U 8NV) GFe (u , U)1Fe (v , V)1

4p b

Na
u s

(UOV)0 U 8

fg x

e
,

dDu

dm e

h dm e1 s
(UOV)0 U 8

fg x

e
,

dDv

dm e

h dm ev1

4p b
KN p21

(dist (U 8 , V0U) )p
s

(UOV)0 U 8

Nu2vNp dx1
4p b

N
m e ((UOV)0U 8 )G

g11
4p b

Na
h (Fe (u , U)1Fe (v , V) )1

4p b
KN p21

(dist (U 8 , V0U) )p
s

(UOV)0 U 8

Nu2vNp dx1
4p b

N
m e ((UOV)0U 8 ) .

We can choose e s satisfying

4p b

s min ]1, a(
11 4

1

de s

,

so that we can find N, depending only on s and on the constants of the prob-
lem, in such a way that (15) holds, with M44p KbN p21. r

PROPOSITION 4.2. – For every A�Mm3n there exists zA �W 1, p
m , loc (Rn ; Rm )

such that zA 2Ax is 1-periodic and satisfies

s
[0 , 1 )n

N dDzA

dm N
p

dmGcNANp .(16)
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PROOF. – Define zA 4 !
i41

m

!
j41

n

Aij zj ei , where zi are as in Definition 3.2(iii).

Inequality (16) is trivial. r

We fix an infinitesimal sequence (e j ). We define

F 8 (u , U) 4G(L p ) - lim inf
jK1Q

Fe j
(u , U) ,

F 9 (u , U) 4G(L p ) - lim sup
jK1Q

Fe j
(u , U)

for all u�L p (V ; Rm ) and for all open subsets U of V.

PROPOSITION 4.3 (GROWTH CONDITION). – We have

F 9 (u , U) Gcs
U

(11NDuNp ) dx

for all u�W 1, p (V ; Rm ) and for all open subsets U of V with N¯UN40.

PROOF. – Step 1: we have F 9 (Ax , U) GcNUN(11NANp ) for all A�Mm3n

and for all U� A(V).
Let zA be given by Proposition 4.2. We may assume that zj 2xj has mean

value 0 in the periodicity cell, so that the functions z e
A (x) 4ezA (xOe) converge

in L p
loc (Rn ; Rm ) to Ax, and

F 9 (Ax , U) G lim sup
eK01

s
U

fg x

e
,

dDz e
A

dm e

h dm eG

b lim sup
eK01

s
U

u11N dDz e
A

dm e
N

pv dm eGcNUN(11NANp ) .

Step 2: we have F 9 (u , U) Gcs
U

(11NDuNp ) dx for all piecewise affine func-

tion u�W 1, p (V ; Rm ) and for all open subsets U’V with N¯UN40.

We write u4 !
i41

N

x Ui
ui , where U1 , R , UN are disjoint open subsets of U

such that NU0 0
i

Ui N40 and NUi N4NUiN, and ui (x) 4Ai x1ci for some Ai �

Mm3n and ci �Rm. For each i we set ui
e (x) 4z e

Ai
(x)1ci , as from Step 1.

We will prove Step 2 by finite induction. First, we give an estimate on U1 N
U2 . For all e sufficiently small, we can apply Proposition 4.1 choosing the
sets

U2
h4 ]x�U : dist (x , U2 ) Eh( ,

U2 and U1 as the sets U , U 8 and V in its statement, respectively, where
h4h eD0 will be determined later, and taking s41, u4u e

2 and v4u e
1 . We
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obtain then a cut-off function f4f e between U2 and U2
h such that

Fe (f e u e
2 1 (12f e ) u e

1 , U1 NU2 )G2(Fe (u e
1 , U1 )1Fe (u e

2 , U2
h ) )1

M

h p
s

U1OU2
h

Nu e
2 2u e

1 Np dx1m e (U1 OU2
h ) .

The constant M is the one given by Proposition 4.1 with s41. We can choose
now h4h e , tending to 0 as eK0, in such a way that

lim
eK0

1

h e
p

s
U1OU2

h e

Nu e
2 2u e

1 Np dx40 ,

taking into account that

lim
eK0

s
U1OU2

h

Nu e
2 2u e

1 Np dx4 s
U1OU2

h

Nu2 2u1 Np dxGcVDuV

p
Q h p11

since ui are affine and u2 4u1 on ¯U1 O¯U2 . If we define w1
e4f e u e

2 1

(12f e ) u e
1 , we have w1

eKu in L p (U1 NU2 ; Rm ) and

lim sup
eK0

Fe (w1
e , U1 NU2 ) Gc s

U1NU2

(11NDuNp ) dx

as in the proof of Step 1.
We can proceed now by induction, repeating at each step the previous ar-

gument replacing U1 by U1 NRNUj , U2 by Uj11 , u e
1 by the w e

j constructed in
the preceding step, and u e

2 by u e
j11 .

Step 3: conclusion.

To conclude the proof it suffices to recall that F 9 (Q , U) is weakly lower
semicontinuous and piecewise affine functions are dense in
W 1, p (V ; Rm ). r

PROPOSITION 4.4. – There exists a subsequence of (e j ) (not relabeled) such
that for all open subsets U of V there exists the G-limit

G- lim
jK1Q

Fe j
(u , U) 4F(u , U) ,

and there exists a function W : Mm3n KR such that

F(u , U) 4s
U

W(Du) dx

for all u�W 1, p (V ; Rm ) and U%V with N¯UN40.
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PROOF. – The proof of this proposition can be obtained using the methods of
G-convergence, for which we refer to the book by Dal Maso [9], outlining the
necessary modifications.

Using the compactness of G-convergence (see Theorem 8.5 in [9]) and a di-
agonal procedure, we extract a subsequence (not relabeled) such that the
G-limit

G(L p ) - lim
jK1Q

Fe j
(u , U) 4F(u , U)

exists for all u�L p (V ; Rm ) and for all sets U in the countable family R of all
finite unions of open rectangles of V with rational vertices.

Now, observe that for all open subsets U’V with N¯UN40 we have

F 9 (u , U) 4 sup ]F 9 (u , V): V%%U , V open( ,

F 8 (u , U) 4 sup ]F 8 (u , V): V%%U , V open( .

This can be shown modifying the proof of [9] Proposition 18.6 for functionals
that satisfy the conclusions of Proposition 4.1 and Proposition 4.3.

Next, we note that the G-limit F(u , U) 4G- lim
jK1Q

Fe j
(u , U) exists for all

U� A(V) with N¯UN40, and for all u�W 1, p (V ; Rm ) the function F(u , Q) is
the restriction to the family these open sets of a Borel measure on V. This re-
sult can be obtained by [9] Proposition 16.4 and by the De Giorgi-Letta mea-
sure criterion ([9] Theorem 14.23), noting that the proof of [9] Proposition 18.3
can be repeated using Proposition 4.1.

Eventually, the existence of W : Mm3n KR such that

F(u , U) 4s
U

W(Du) dx

for all u�W 1, p (V ; Rm ) and for all U� A(V) with N¯UN40 follows from the
integral representation Theorem 4.3.2 in [7], observing that translation invari-
ance in x can be obtained, e.g., as in [9] Theorem 24.1 (see also [14] Lemma
4.2). r

PROPOSITION 4.5 (HOMOGENIZATION FORMULA). – For all A�Mm3n there
exists the limit in (12) and we have W(A) 4 fhom (A).

PROOF. – In order to simplify the proof of formula (12), we can suppose that
m([0 , 1 )n 0 (0 , 1 )n )40, which holds up to a translation. For all A�Mm3n and
k�N we define

gk (A)4inf { 1

k n
s

(0 , k)n

fgx ,
dDu

dm
h dm : u�W 1, p

m , loc (Rn ; Rm ), u2Ax k-periodic} .
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Fixed A�Mm3n let u�W 1, p
m , loc (Rn ; Rm ) with u2Ax k-periodic and with mean

value 0 on (0 , k)n. Define the sequence uj (x) 4e j u(x/e j ), and note that
uj KAx in L p

loc (Rn ; Rm ). We have then

W(A) 4F(Ax , (0 , 1 )n )G lim inf
jK1Q

Fe j
(uj , (0 , 1 )n )4

1

k n
s

(0 , k)n

fgx ,
dDu

dm
h dm .

Hence, W(A) Ggk (A), so that

W(A) G lim inf
kK1Q

gk (A) .(17)

Conversely, let wj KAx be such that

W(A) 4F(Ax , (0 , 1 )n )4 lim
jK1Q

Fe j
(wj , (0 , 1 )n ) .

Let sD0. Let Tj 41/e j and let uj (x) 4Tj wj (x/Tj ). We use the notation
Kj 4 [Tj ]11.

If j is large enough and ND4, we can use Proposition 4.1 with e41,
U4 (0 , Tj )n, V4 (0 , Kj )n 0(2Tj /N , Tj 22(Tj /N) )n, U 84 (Tj /N , Tj 2 (Tj /N) )n,
u4uj, and v4zA . We get then

(18) F1 (fu1 (12f) v , (0 , Kj )n )4F1 (fu1 (12f) v , U 8NV)G

(11s) (F1 (u , U)1F1 (v , V) )1MN p Tj
2p s

(UOV)0 U 8

Nu2vNp dx1sm((UOV)0U 8 ) .

Since fu1 (12f) v2Ax is Kj-periodic, we obtain

Kj
n gKj

(A) G (11s) (F1 (uj , (0 , Tj )
n )1F1 (zA , V) )1

MN p Tj
2p s

(0 , Tj )n 0 (Tj /N , Tj2 (Tj /N) )n

Nuj 2zA Np dx1sm((UOV)0U 8 )G

(11s) (Tj
n Fe j

(wj , (0 , 1 )n ))1c
Kj

n

N
(11NANp )1

MN p Tj
n s
(0 , 1 )n

Nwj 2zj N
p dx1scKj

n ,

where zj (x) 4Tj
21 zA (Tj x). Note that zj KAx in L p ((0 , 1 )n ; Rm ); hence

lim
jK1Q

s
(0 , 1 )n

Nwj 2zj N
p dx40 .

Dividing the estimate above by Kj
n , and letting first jK1Q and then sK0
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and NK1Q, we get

lim sup
jK1Q

gKj
(A) GW(A) .(19)

By (17) and (19) we obtain then

W(A) 4 lim inf
kK1Q

gk (A) 4 lim
jK1Q

gKj
(A) .

The first equality shows that W is independent of the sequence (e j ). Repeating
the reasoning then with a sequence (e j ) such that

lim
jK1Q

gKj
(A) 4 lim sup

kK1Q

gk (A)

the proof is complete. r

PROOF OF THEOREM 3.5. – The previous propositions show that the limit in
(10) exists and (11) holds with fhom given by (12). Formula (13) in the convex
case follows as in [15].

It remains to check that Fhom (u , V) 41Q if u�L p (V ; Rm )0
W 1, p (V ; Rm ) when pD1. Clearly, it suffices to prove this for f (A) 4NANp. In
this case, Fhom is convex, hence it is determined by its behaviour on
W 1, p (V ; Rm ) (see [9] Chapter 23). It will be enough then to prove that
fhom (A) FcNANp. Since fhom is positively homogeneous of degree p, it is suffi-
cient to check that fhom (A) c0 if Ac0. To this aim, let ueKAx be such that
Fe (ue , (0 , 1 )n )K fhom (A). If fhom (A) 40 then by Definition 3.2(i) and a scaling
argument we obtain that u1/k tends to a constant, and a contradic-
tion. r

5. – Limits of a class of difference schemes.

In this section we show how some energies depending on finite differences
can be seen as a particular case of functionals defined on Sobolev spaces with
respect to the measures introduced in Example 3.1(a). For the sake of illustra-
tion we deal only with the case of integrands independent of x. We remark
that in the case of quadratic functionals (i.e., c k (j) 4ck j 2 below), our result
can be framed in the theory of difference operators elaborated by Kozlov [13],
where a compactness and representation theorem is given for a general class
of operators.

Let V’R n be an open set with Lipschitz boundary, and let

Ie4 ]i�Zn : ei1 [0 , e]n ’V( .

Let c 1 R c n be convex functions such that

NjNp Gc k (j) Gc(11NjNp )
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for all j�M m3n and k41, R , n. We define Ae the set of functions

u :gZn O
1

e
VhKRm

and for all u�Ae

C e (u) 4 !
k41

n

!
i�Ie

e n c kg u(i1ek )2u(i)

e
h .

If u�Ae then we can associate to u the piecewise constant function vu :
VKRm defined by

vu (x) 4
.
/
´

u(i) ,

0 ,

x�ei1 [0 , e)n , ei�VOeZn ,

otherwise .

DEFINITION 5.1. – Let uj �Ae j
. We say that uj converges to u�L p (V) if and

only if vuj
converges to u in L p (V).

THEOREM 5.2. – The functionals C e G-converge as eK0 to

C(u) 4

.
/
´

!
k41

n

s
V

c kg ¯u

¯xk
h dx ,

1Q ,

u�W 1, p (V ; Rm ) ,

u�L p (V ; Rm ) 0W 1, p (V ; Rm ) ,

with respect to the convergence in L p (V) as in Definition 5.1.

PROOF. – Let f : M m3n K [0 , 1Q) be defined by

f (j) 4n !
k41

n

c kg j k

n
h

where j k 4jek . If we consider m as in Example 3.1(a), since f is convex, by for-
mula (13) it follows that

fhom (j) 4
1

n
f (nj) 4 !

k41

n

c k (j k ) .

In fact, the computation of (13) is trivial, since u(x) 4 !
k41

n

j k [xk ] is the unique

function u�W 1, p
m , loc (Rn ; Rm ), up to translations, such that u2jx is 1-periodic.
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By formula (11)

Fhom (u , V) 4

.
/
´

s
V

!
k41

n

c kg ¯u

¯xk
h dx ,

1Q ,

u�W 1, p (V ; Rm ) ,

u�L p (V ; Rm ) 0W 1, p (V ; Rm )

and Fhom (u , V) 4C(u).
For all U%%V open set with N¯UN40 and eD0, let

Fe (u , U) 4s
U

fg dDu

dm e

h dm e ,

and let uj �Ae j
converge to u�L p (V). Then

lim inf
jK1Q

C e j
(uj ) 4 lim inf

jK1Q
e j

n !
k41

n

!
i�Ie j

c ku uj (i1ek )2uj (i)

e j

vF

lim inf
jK1Q

!
k41

n

e js
U

c ku 1

n

dDvuj

dm e j

v dH n21 4

lim inf
jK1Q

s
U

fu dDvuj

dm e j

v dm e j
4 lim inf

jK1Q
Fe j

(vuj
, U ) FFhom (u , U )

by formula (10) and the definition of G-convergence, so that

lim inf
jK1Q

C e j
(uj ) F sup

U%%V
Fhom (u , U ) 4C(u) .

By the arbitrariness of uj

G(L p ) - lim inf
eK0

C e (u) FC(u) .

Conversely, suppose that vj �W 1, p
m e j

(V ; Rm ) converges to u in L p (V) and
define

uj (i) 4 lim sup
rK01

s–
B(0 , r)O [0 , e j )n

vj (x2e j i) dx(20)

for all i�Zn O (1 /e) V. Note that if i�Ie or i2ek �Ie for some k then the aver-
age in (20) is constant for r small enough.

By definition, uj converges to u�L p (V) and

lim sup
jK1Q

C e j
(uj ) G lim sup

jK1Q

Fe j
(vj , V) ;
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there follows that

G(L p ) - lim sup
eK0

C e (u) GG(L p ) - lim sup
eK0

Fe (u , V) 4C(u) ,

so that

G(L p ) - lim
eK0

C e (u) 4C(u) ,

and the proof is concluded. r

6. – Appendix: Sobolev inequalities in W 1, p
m .

In this appendix we include some results about Sobolev inequalities in the
spaces W 1, p

m . In particular, we will prove that the measures in Example 3.1 sat-
isfy the Poincaré inequality in Definition 3.2(i).

PROPOSITION 6.1. – Let m be the measure in Example 3.1(b). Then for all
1 GqGn(np22p11) /(n2p)(n21) ( for any qF1 if pFn) and for all k�N
there exists a constant C(k) such that for all u�W 1, p

m ( (0 , k)n ) with
s

(0 , k)n

u dx40 we have

u s
(0 , k)n

NuNq dxv1/q

GC(k)u s
(0 , k)n

N dDu

dm N
p

dmv1/p

.(21)

Moreover, if q4p then we can take C(k) 4ck with c a fixed constant.

PROOF. – If n41 then (21) follows from the Sobolev inequality for BV func-
tions (see Remark 6.4). We will deal only with the case pEn and qDp, which
again is not a restriction. The other cases can be derived from this by applying
Hölder’s inequality.

We set U4 (0 , k)n. We start by considering an inequality involving the
median of a function rather than the mean. We recall that the set of the medi-
ans of u (in U), med (u), is the set of real numbers t such that

NUO ]uD t(NG
1

2
NUN and NUO ]uE t(NG

1

2
NUN .

Let u�W 1, p
m (U). By the Poincaré inequality for BV functions, there exists a

constant c4c(U) such that for u�BV(U) and t�med (u)

Vu2 tVL n/(n21) (U) GcNDuN(U)(22)
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(see [17] Theorem 5.12.10). By a scaling argument it can be easily checked that
c may be chosen independent of k. From now on, we denote c any constant
which satisfies this property.

Let first qFnp/(n21), and set v4uNuNr21 with rD1. If 0 �med (u) then
0 �med (v); hence, by (22),

VvVL n/(n21) (U) GcNDvN(U) .

We then get, by Hölder’s and Minkowski’s inequalities,

gs
U

NuNrn/(n21) dxh(n21) /n

Gcs
U

NuNr21 N˜uNdx1

c s
UOE

Nu 12u 2 N(Nu 1Nr21 1Nu 2Nr21 ) dH n21 G

cV˜uVpgs
U

NuNp 8 (r21) dxh1/p 8

1cg s
UOE

Nu 12u 2 Np dH n21h1/p

3

gg s
UOE

Nu 1Np 8 (r21) dH n21h1/p 8

1g s
UOE

Nu 2Np 8 (r21) dH n21h1/p 8h .

Let q4rn/(n21) and a4p 8 (r21); then we can rewrite the estimate
above as

gs
U

NuNq dxhr/q

GcV˜uVpgs
U

NuNa dxh(r21) /a

1cg s
UOE

Nu 12u 2 Np dH n21h1/p

3

gg s
UOE

Nu 1 Na dH n21h(r21) /a

1g s
UOE

Nu 2Na dH n21h(r21) /ah .

Interpreting u 6 as traces of Sobolev functions defined on each cube of U0E,
we have

g s
UOE

Nu 6Na dH n21h1/a

GcVuVW 1, p (U 0 E)(23)

for pGaGp(n21) /(n2p) (see [1] Theorem 7.58). Hence,

VuVq
r GcV˜uVp VuVa

r21 1cg s
UOE

Nu 12u 2Np dH n21h1/p

(VuVp
r21 1V˜uVp

r21 ) .

Note that aEqGn(np22p11) /(n21)(n2p). By Hölder’s inequality

VuVa
r21 GVuVq

r21 NUN(r21)(1 /a21/q) and VuVp
r21 GVuVq

r21 NUN(r21)(1 /p21/q) .
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If we denote c1 4NUN(r21)(1 /a21/q) and c2 4NUN(r21)(1 /p21/q), we get

(24) VuVq
r Gc1 cus

U
N dDu

dm N
p

dmv1/p

VuVq
r21 1cus

U
N dDu

dm N
p

dmv1/p

3

uc2 VuVq
r21 1us

U
N dDu

dm N
p

dmv(r21) /pvG

(c1 1c2 ) cus
U

N dDu

dm N
p

dmv1/p

VuVq
r21 1cus

U
N dDu

dm N
p

dmvr/p

.

By Young’s inequality

(c1 1c2 ) cus
U

N dDu

dm N
p

dmv1/p

VuVq
r21 G

1

r
ug 2(r21)

r
h(r21) /r

(c1 1c2 ) cus
U

N dDu

dm N
p

dmv1/pvr

1

r21

r
gVuVq

r21g r

2(r21)
h(r21) /rhr/(r21)

4

g 2(r21)

r
hr21 ((c1 1c2 ) c)r

r
us

U
N dDu

dm N
p

dmvr/p

1
1

2
VuVq

r ,

so that, by (24),

VuVq Gc4 cus
U

N dDu

dm N
p

dmv1/p

,

where c4 411c1 1c2 . In particular, we have that, for a general u and
t�med (u),

Vu2 tVq Gc4 cus
U

N dDu

dm N
p

dmv1/p

.(25)

By Minkowski’s inequality and (25)

VuVq GVu2 tVq 1NtN NUN1/q Gc4 cus
U

N dDu

dm N
p

dmv1/p

1NtN NUN1/q .(26)
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Suppose in addition that s
U

u dx40. We then can estimate

NtN4Ns–
U

u dx2 tNGs–
U

Nu2 tNdxGgs–
U

Nu2 tNn/(n21) dxh(n21) /n

G

c

NUN(n21) /n
s

U
N dDu

dm NdmGc
NUN1/p 8

NUN(n21) /n
us

U
N dDu

dm N
p

dmv1/p

4

cNUN(p2n) /npus
U

N dDu

dm N
p

dmv1/p

,

by (22) and Jensen’s and Hölder’s inequalities. Finally, by (26),

gs
U

NuNq dxh1/q

Gc (c4 1NUN1/q1 (p2n) /np )us
U

N dDu

dm N
p

dmv1/p

.

To conclude the proof set

(27) C(k) 4c(c4 1NUN1/q1 (p2n) /np ) 4

c(11k n(r21)(1 /a21/q) 1k n(r21)(1 /p21/q) 1k n/q1 (p2n) /p ) .

In particular if q4np/(n21) we have a4r4p and C(k) 4c(113k (p21) /p ). If
qEnp/(n21) an application of Hölder’s inequality yields that we can take
C(k) 4ck ( (p2n) /p1 (n/q) ). We obtain the last statement of the proposition when
p4q. r

REMARK 6.2. – The last statement of the previous proposition proves the
Poincaré inequality in Definition 3.2(i) for the measures m in Example 3.1. In
fact, the Poincaré inequality for the measures in Example 3.1(a) is a particular
case of that for the measures in Example 3.1(b).

REMARK 6.3. – Proposition 6.1, and hence also p-homogenizability, can be
proved for measures of the more general form

m(B) 4
1

11 H n21 (EO [0 , 1 )n )
(NBN1 H n21 (BOE) ) ,

provided that E is a 1-periodic closed set of s-finite n21-dimensional Haus-
dorff measure and that [0 , 1 ]n 0 E has a finite number of connected compo-
nent, each one with a Lipschitz boundary. The proof follows the same line, re-
marking that the particular form of E was used only in (23).

REMARK 6.4. – The validity of a Sobolev inequality for a general m depends
on the measure m itself and p. In particular it always holds if n41 for all p and
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q, or if pEn/(n21) with q4n/(n21). In fact, in this case, by the Sobolev in-
equality for BV-functions and Hölder’s inequality

gs
U

NuNn/(n21) dxh(n21) /n

GcNDuN(U) 4cs
U

N dDu

dm NdmG

cus
U

N dDu

dm N
p

dmv1/p

m(U)(p21) /p .

Conversely, if qDpFn/(n21), take a 1-periodic function u�(BVloc (Rn )O
L p ((0 , 1 )n )0L q ((0 , 1 )n )), and set m4NDuN. Clearly NdDu/dmN41, so that
u�W 1, p

m (U) for all subsets U of Rn, but we have s
U

NuNq dx41Q for each U
sufficiently large.
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