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Homogenization of Periodic Multi-Dimensional Structures.

NADIA ANSINI - ANDREA BRAIDES - VALERIA CHIADO PIAT

Sunto. — Si studia il comportamento asintotico di una classe di funzionali integrali
che possono dipendere da misure concentrate su strutture periodiche multidimen-
sionali, quando tale periodo tende a 0. Il problema viene ambientato in spazi di So-
bolev rispetto a misure periodiche. Si dimostra, sotto ipotesi generali, che un ap-
propriato limite puo venire definito su uno spazio di Sobolev usuale usando tecni-
che di I'-convergenza. Il limite viene espresso come un funzionale integrale il cui
mtegrando é caratterizzato da opportune formule.

1. — Introduction.

In this paper we deal with the asymptotic behaviour of integral functionals
which may model energies concentrated on multidimensional structures. The
model example we have in mind is that of composite elastic bodies composed of
n-dimensional elastic grains interacting through contact forces depending on
the relative displacements of their common boundaries (see Example 3.1). In a
general setting, following the approach of Ambrosio, Buttazzo and Fonse-
ca[2], we consider integrals of the form

x dDu
F' = 0 d Iz
) fo(g dﬂe) :

defined on the space W,;?(2; R™) of Sobolev functions with respect to the
measure u,, which is the set of L?-functions of 2 whose distributional deriva-
tive is a measure absolutely continuous with respect to u, with p-summable
densities. We study the limit as e — 0 of such functionals under the hypotheses
that f is a Borel function 1-periodic in the first variable satisfying a standard
growth condition of order p, and

1
nB = e B)
&
where u is a fixed 1-periodic Radon measure. We show (Theorem 3.6) that un-
der suitable requirements on the measure u, the family (#,) I-converges as
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£¢—0 to a functional of the form
Fhom(u) = ffhom(Du) dx
Q

on WL ?(Q2; R™), where the function f,,,, is described by an asymptotic formu-
la that generalizes the usual one, corresponding to the case when u is the
Lebesgue measure (see Braides [4] and Miiller [15]). This problem had been
studied in the case when u is the restriction of the Lebesgue measure to a peri-
odic set whose complement is composed by well separated bounded sets by
Braides and Garroni [6] (media with stiff inclusions). Another meaningful case
is when u is the (n — 1)-dimensional Hausdorff measure restricted to the
union of the boundaries of a periodic partition of R"™. In this case the functions
in W,}’p(Q; R™) are piecewise constant and the functionals F', can be inter-
preted as a finite-difference approximation of the homogenized functional
(Section 5, see also Kozlov [13], Pankov [16] and Davini [8]).

The approach described above is somehow complementary to the «smooth
approach» where the functionals F', are defined as

Fow) = ff(f, Vu) du.
Q &

on C*(L2; R™), whose homogenization is studied by Zhikov[18] (see also
Braides and Chiado Piat [5] for the case u =y zp with E periodic, and Bouchitté,
Buttazzo and Seppecher [3] for relaxation results in the case of general w).

2. — Notation and preliminaries.

Let 2 be a bounded open subset of R"; we will use standard notation for
the Sobolev and Lebesgue spaces W1 ?(2; R™) and L?(2; R™); p' and p*
denoting the conjugate and Sobolev exponent of p = 1, respectively. The L “-
norm of a function u is denoted simply by [[u/|... We denote by A(£2) the family
of all open subsets of Q; M"™*" stands for the space of m X n matrices. The let-
ter ¢ will denote a strictly positive constant independent of the parameters un-
der consideration, whose value may vary from line to line. The Hausdorff k-di-
mensional measure in R" is denoted by 9c*. We write |E| for the Lebesgue
measure of K. If £ is a subset of R" then yp is its characteristic func-
tion.

Given a vector-valued measure u on £, we adopt the notation |u| for its to-
tal variation (see Federer [12]). We say that ue L(Q; R™) is a function of
bounded variation, and we write u e BV(Q; R™), if all its distributional first
derivatives D;u, are signed measure on 2. We denote by Du the M™ " "-valued
measure whose entries are D;u;. For the general exposition of the theory of
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functions of bounded variation we refer to Federer[12], Evans and
Gariepy [11], and Ziemer [17].

If ueL'(2; R™), we denote by % the precise representative of u, whose
components are defined by

1) u;(x) = lim sup qui(?/)dy,

=0 B, o)

where B(x, o) denotes the open ball of centre x and radius o.

2.1. I'-convergence. — We recall the definition of De Giorgi’s I'-convergence
in L? spaces. If for all je N F;: L*(2; R™)—[0, + o] is a functional, then,
for ue L?(2; R™), we define

[(LP)-lim inf F;(u) = inf{nm inf F(u;) : ;= u} :
)+ ® N )+ ® N N
and

I(L?)-lim sup F;(u) = inf{lim sup F;(u;): u]gu} ;

j—+ j—o 4

if these two quantities coincide their common value will be called the I-limit
of the sequence (F;) in u, and will be denoted by I'(L?)- lim F;(u).
k j— 4+

It is easy to check that [ = - lim Fj(u) if and only if
(a) for every sequence (u;) converging to u we have
< ljullJrlI;f Fi(u;);
(b) there exists a sequence (u;) converging to u such that

[ =lim sup F;(w;).

j—>+
We say that (F,) I-converges to [ at u as ¢ — 0 if for every sequence of posi-

tive numbers (¢ ;) converging to 0 there exists a subsequence (¢;,) for which we
have

I=I(L*?)- lim F, (u).
f— + o Jk

We recall that the Iupper and lower limits defined above are L?’-lower
semicontinuous functions. For all properties of I'-convergence and its impor-
tance in the theory of homogenization we refer to the book of Dal Ma-
so [9].
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2.2. Sobolev spaces with respect to a measure. — The following notion of
Sobolev space with respect to a measure has been introduced by Ambrosio,
Buttazzo and Fonseca [2].

DEFINITION 2.1. — Let A be a finite Borel positive measure on the open set
QcR" and let 1<p<+o. The Sobolev space with respect to A2,
WhP(Q; R™), is defined as

@ WhP(Q;R™) = {ueL”(Q;Rm): Du<<2, —dZ“ e L) (Q; M)}

where L (LQ; RY) stands for the usual Lebesgue space of p-summable R™-
valued functions with respect to A.

REMARK 2.2. — By definition, functions in W} ?(2; R™) are functions of
bounded variation. From the properties of the space BV(£2; R™) the following
two facts can be easily deduced, that are used in the sequel.

(@) WHP(Q2; R™) is embedded in L~ V(Q; R™).
b) If ueWhHr(Q; R™), ve W} *(2) and

dDv
~ ® Lp Q, men
u aa eL;( )
then wve W ?(Q2; R™), and
aD . dD ~ _daD
3) ) _ 5 dDu | 5 90v.
di di dA

Note that in (3) it is necessary to consider the precise representatives,
since the measure A may take into account also sets of zero Lebesgue
measure.

If ueWHP(Q; R™) then Du(B) =0 if B is a set of zero (n — 1)-Hausdorff
measure. Hence, W} ?(Q; R™) = WL ?(Q; R™) if A — A’ is concentrated on a
set of Hausdorff dimension lower than n — 1; e.g., points in R?.

Properties of lower semicontinuity and relaxation for functionals defined
on Sobolev spaces with respect to a measure have been studied in [2].

3. — Statement of the main result.

Let u be a non-zero positive Radon measure on R" which is 1-periodic;
ie.,

u(B +e;) = u(B)
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for all Borel subsets B of R" and for all =1, ..., n. The measure u will be
fixed throughout the paper. We will assume the normalization
“) w0, 1)) =1,

For all € >0 we define the e-periodic positive Radon measure u, by

1
5) 4. (B) = e"ﬂ(;B)

for all Borel sets B. Note that by (4) the family (u,.) converges locally weakly™
in the sense of measures to the Lebesgue measure as ¢ —0.

In the sequel f: R" X M"*"—[0, + «) will be a fixed Borel function
1-periodic in the first variable and satisfying the growth condition of order
p = 1: there exist 0 < a < f such that

6) a|A|P<f(z, A) <B(1+|A|P)

for all e R" and A e M™*™"
For every bounded open set 2, we define the functionals at scale ¢ >0
as

f(f dDu
©) Fu, =38 \¢e’ du,

l + o0, otherwise .

) du., if ueW.?(Q;R"),

ExampLE 3.1. — (a) (Perfectly-rigid bodies connected with springs) We
take

E={yeR":3ie{l, ..., n} such that y;eZ},

that is, the union of all the boundaries of cubes Q; =1 + (0, 1)" with i1 e Z". E is
an (n — 1)-dimensional set in R". We take

wB) = Lo (BNE)
n

for all Borel sets B, where 9" ! stands for the (% — 1)-dimensional surface
measure. For every ¢ >0 we have

1
U (B)=—ed" " 1(BNekK).
n

In this case W, consists of functions which are constant on every connected
component of each £Q; N Q, since we must have Du =0 on these sets. In the
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case that u is constant on each eQ; N Q, e.g. if Q is convex, we have

du, & doc" !

where u; is the value of u on e@);. In this case the functionals F', take the

form
1 dD
o[ L) e

QNek € € dg()n_l

Note that if  is bounded then W, ?(2; R™) = W,> *(2; R™) for all p if the
number of connected components of each Q N &Q; is finite.

e %(ui—uj)®(i—j) on 9(e@;) N (@) N 2,

(b) (Elastic media connected with springs). Let E be as above and
let

1
u(B) = ——(|B| + 9" " YENB)),
n+1

1
uo(B) = ——(|B| +e3" ' ((¢E) N B)).
n+1

In this case the functions in VK}gp(Q; R™) are functions whose restriction to
each £Q; N Q2 belongs to W?(eQ;, N 2; R™), and such that the difference of
the traces on both sides of d(eQ;) N A(eQ;) N 2 is p-summable for every
1, e Z". The functionals F, take the form

0 ESCTA DAY (PTER BT P
X

n+1g € P e & dym!

In order to obtain a meaningful limit of the functionals F, as ¢ —0, some
requirements have to be made so that the limit functionals admit an integral
representation on WLP(Q; R™).

DEFINITION 3.2. — A 1-periodic positive Radon measure u on R" will be
called p-homogenizable if the following properties hold:

(i) (Poincaré inequality) there exist a constant c¢ such that for all
keN

dDu |?
® f || de < ck? f ‘—“ du
©, % . % du
for all ue W P((0, k)") with f wdx =0;
(()y k)ﬂ,

(ii) (existence of cut-off functions) there exist K >0 and 6 > 0 such that
for all €>0, for all pairs U,V of open subsets of R" with UccV, and
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dist (U, 9V) = d¢, and for all we W), P (V) there exists ¢ W, “ (V) with
0s¢p=<1l ¢=1o0n U ¢ =0 1 a neighbourhood of IV, such that

© f

14

dD¢ _

V4
(dst(U )y f juf"de.

V\U

du, <

Iy
Such a ¢ will be called a cut-off function between U and V;
(iii) (existence of periodic test-functions) for all i =1, ..., n, there exists

Z; € W/};{;c(R ") such that x> z;(x) — x; is 1-periodic.

REMARK 3.3. — Note that the Lebesgue measure satisfies trivially all the
properties of Definition 3.2. Property (ii) depends on u and p.

ExAMPLE 3.4. — (@) The measure u in Example 3.1(a) is p-homogenizable
for all p = 1. In fact, (i) follows from the Appendix. To prove (ii) let 6 =5 V/n.
Fixed £ >0, set U, = U{eQ;: eQ; N U # ¢}. Note that U,cc V. Choose (we use
the notation [t] for the integer part of t)

pla) =1- (%[linf{lm—ylm:yeUs}]M)’
&

where |x—¥|.= max |x;—¥;|, and

1<isn

C= [linf{|x—y|m:erg,yeaV}]—
&

Note that |dD¢/du .| <n/(Ce) < c/dist (U, dV) for some constant ¢ indepen-
dent of U and V. Moreover, if u e W,}; P(V) then u is equal to a constant u; on
each cube &Q; such that D¢ # 0 on J(eQ;). Hence, for two such cubes

€ f |a|Pdac"'<e f (Jui |P + |u; |P) doc”~ 1 = f || do

3eQ; N 9¢Q); 9eQ; N 3eQ); eQ; U Q;
so that
dD¢ _|P cle -
J‘ ¢ % duESE_T________; J‘ |u|Pd3€n71$
v du, dist (U, dV) (V\U) N ¢E N spt D

[ urras.
dlst(U vy jul?dw

V\U

The proof of (ii) is then complete. To verify (iii) take simply z;(x) = [«;].
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(b) The measure u in Example 3.1(b) is p-homogenizable for all p = 1. In
fact, (i) follows from the Appendix. The proof of (ii) and (iii) is trivial since the

Lebesgue measure is absolutely continuous with respect to u.

The homogenization theorem for functionals in (7) takes the following
form.

THEOREM 3.5. — Let u be a p-homogenizable measure, and for every bound-
ed open subset Q of R" let F,(-, Q) be defined on LP(Q2; R™) by (7). Then the
I-limit

(10) From(u, Q) = I(LP)-lim F.(u, Q)

exists for all bounded open subsets 2 with Lipschitz boundary and for all
ue WHP(Q; R™), and it can be represented as

(11) From(tt, @) = [ from(Dw) dec,
Q

where the homogenized integrand satisfies the asymptotic formula

1 dD
(12) ﬁlom(A) = hm inf _n f f(x, _u) dlll
k— + o k (0, %o d//l

u, loc

uewl,p (Rn; Rm), w— Ax k—peT’iOdiC} .

If p>1 then Fopn(u, Q)= +o if ueL?(Q2; R™")\W"?(Q; R™). Further-
more, if fis convex then the cell-problem formula holds

dDu ) du:
du

[o, 1"

m>nmm=M{ff@

u, loc

uEWI,p (Rn, Rm)’ u—Ax l—peMOdiC}

Sfor all AeM™*",
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REMARK 3.6. — In formulas (12) and (13) we cannot replace the sets [0, k)"
and [0, 1)" by the sets (0, k)" and (0, 1)", respectively, if u charges
[0, 1)"\(0, 1)

REMARK 3.7. — If u is not a p-homogenizable measure then f;,,, may be equal
to + oo for all non-zero matrices A. As an example, take

(14) u(B)= 2 Mi+B),
ieZ"
where A is any probability measure with spt A contained in (0, 1)". Then test-

functions « in (12) must be constant on a periodic connected component of R”,
and hence we get that fi,m,(A) = + o if A=0.

REMARK 3.8. — Contrary to the usual homogenization results in the frame-
work of ordinary Sobolev spaces, the hypothesis that £ has a Lipschitz bound-
ary (which will be used in an essential way in Step 3 of Proposition 4.3) cannot
be removed from Theorem 3.5. To check this, take simply n =2 and

Q= (igl(qi_z—ifs, gi+27173)% (0, 1)) U (igl(o’ 1) (q;—27073, qi+2ﬂ>3)),

where (g;) is a numbering of @ N (0, 1). Take as u the measure of Example
3.1(a) and any fin Theorem 3.5. Note that, as £ N (1 /k) Q; is connected for all
sub-cubes (1/k) Q; of (0, 1)? each function u e W,;?(2 N (0, 1)*; R™) is con-

stant on each such 2N (1/k) Q;. Hence, the two spaces Wl 7(2nN(0, 1)

M1k

R™) and W} P((0, 1)%); R™) are equivalent, and, as (1/k) EN (0, 1)2c2N(0, 1)%

H1/k
Fl/lc(uv Q N (0’ 1)2) :Fl/k(u,(oy 1)2) .
If the thesis of Theorem 3.5 were true, then we would easily conclude that for

all ve Wh?(2N (0, 1% R™) with Fyon (u, 210 (0, 1)) < + oo there exists
ue WHP((0, 1)%; R™) with u=v on 2N (0, 1)* and

Fhom(vy QN (Oa 1)2) :Fhom(uy(oa 1)2) ’

which is not possible for example if =1 since |2 N (0, 1)*| =((0, 1)*|.

4. — Proof of the homogenization theorem.

The proof of Theorem 3.5 will be obtained at the end of the section,
as a consequence of the following propositions, which adapt to this case
the usual methods for the homogenization by [I-convergence. While the
usual compactness and integral representation results in Dal Maso [9] hold
with minor modification also in this case, a more complex proof for the
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so-called fundamental estimate, for the growth condition from above and
for the homogenization formula is necessary.

From now on, 2 will be a fixed bounded open subset of R" with Lipschitz
boundary.

PRrROPOSITION 4.1 (FUNDAMENTAL ESTIMATE). — For every o > 0 there exists
e, and M >0 such that for all U, U', V open subsets of Q with U'c U and
dist (U', VA\U) >0, for all ¢ < e, dist (U’, V\U) and for all ueW/};P(Q; R™),
veWP(Q; R™) there exists a cut-off function between U' and U, ¢e
Wi (UUV), such that

15) F.(pu+(1-¢)v, U'UV)<sA+0)(F(u, U)+F.(v,V))+

M
—v|td U U.
(dist(U’,V\U))p(UmV.!‘\U’ lu—v|Pde+ou, (UNWV\U")

ProoF. — Let K> 0 and 6 > 0 be the constants given by Definition 3.2(ii),
let NeN be such that Noe<dist(U’, V\U), and let U,={xeU:
Ndist(x, U'") <kdist(U’', V\U)}, Uy=U'.Foreachk=1, ..., Nlet ¢, be a
cut-off function between U, _; and U,, satisfying (9), which exists since
dist (U, _1, 9U;,) = de. We have, using Remark 2.2(b), (6) and (9)

Fs(gbku‘f'(l_gbk)'v, U,UV):

x ~ dDu ~ dDv _ . dD
ff(_’¢k + (1= ¢p) +U-0® m)d/tgs
vuv \ € du du, die,
D D
ff(ﬁ, d u)d,,,ﬁff(ﬁ, d v)dﬂ£+
U € du Vv e du,
p P
8 f (1+ ‘ dDu |7 ‘ dDv )dyg—f—
(U\Ux-DNV dit e du
~ n adD P
£p f (U -)® i du.<F.(u, U)+F.(v,V)+
(U \Up-1)NV e
P P
4B f (1+ ‘ dDu |7 ’ dDv )dﬂer
U\Ui-DNV du. du
KN?
4B f = o] de

(dist (U, VA 0, v

where K is the constant appearing in (9).
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Choose k such that

dDu |P dDv |P
1+ + d,ug+
U\Ui-NV du du,
KN? f | —v|?de <
(dist (U, VDY 0" v

1 dDu | | dDv |?

- 1+ + dﬂs"'

N\wamuor du . du,

KN? f |u—7}|pd90
(dist(U", VA (ympy\ - |

Then, taking into account also (6),

Fopru+(1=¢p)v, U'UV)<F (u, U)+F.(v,V)+

o LAz [ A2 )

Unwm\ur UNV\U’ du
KNP~! 4p
4p— , f |u—v|”dac+—ﬁus((UﬂV)\U’)s
(dist (U, VAD)Y v o N

4r g
(1 + —) (F.(u, U)+ F (v, V))+
Na

KNP-! , 4B
4 —v|Pde+ —2 4, (UNW\U").

We can choose ¢, satisfying

4P b 1
I o
omin{l, a} o€,
so that we can find N, depending only on ¢ and on the constants of the prob-
lem, in such a way that (15) holds, with M =4?KAN?~!. m

PROPOSITION 4.2. — For every Ae M™*" there exists z4 € W,};fge(R”; R™)
such that z4 — Ax is 1-periodic and satisfies

dDZA

p
(16) du<c|A|”.

[o, 1" ‘
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ProOOF. — Define z, = 2 E Ajizje;, where z; are as in Definition 3.2(iii).
=1y

Inequality (16) is trivial. .

We fix an infinitesimal sequence (¢;). We define

F'(u, U)=I(L")-lim inf F, (u, U),
]—>+oo J

F"(u, U) = I(L?)-lim sup F. (u, U)

j—o+

for all we LP(£2; R™) and for all open subsets U of Q.

ProPOSITION 4.3 (GROWTH CONDITION). — We hawve
F'(u,U) < cf(l + |Du|?) dx
U

for all wue Wh?(Q; R™) and for all open subsets U of Q with |8U| =0.

PrOOF. — Step 1: we have F"(Ax, U) Sc|(_]|(1 + |A|?) for all AeM™™"
and for all Ue ().

Let z4 be given by Proposition 4.2. We may assume that z; — x; has mean
value 0 in the periodicity cell, so that the functions z4(x) = e24(x/e) converge
in Lh.(R"; R™) to Ax, and

dDz
F"(Ax, U) < lim sup ff(x zA)duss
e—>0+ d‘l/t‘g
dDzj |P —
B lim sup f(1+ “A )dugSc|U|(1+ |A|7).
e—0+ e

Step 2: we have F'"(u, U) < cf(l + | Du|?) dx for all piecewise affine func-
tion ue Wh?(Q; Rm) and for al1]l open subsets Uc L with |9U| = 0.

We write u = 2 X u,%;, where Uy, ..., Uy are disjoint open subsets of U
such that |U\UU | =0and |U;|=|U;|, and u;(x) = A;x + ¢; for some A, e

M™>*™ and cleRm. For each ¢ we set u(x) =24.(x)+ ¢;, as from Step 1.

We will prove Step 2 by finite induction. First, we give an estimate on U; U
U,. For all ¢ sufficiently small, we can apply Proposition 4.1 choosing the
sets

Ud = {xeU: dist(x, Uy) <n},

U, and U; as the sets U, U’ and V in its statement, respectively, where
n=mn,>0 will be determined later, and taking 6 =1, u =us and v =u{. We
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obtain then a cut-off function ¢ = ¢, between U, and Uj such that
F(p.us +(1—9)ufi, UyUU,) <2(F (uf, Uy) + F.(us, UY)) +

M
— |u28—uf|pd90+ug(UlﬂU2’7).
T v nuy

The constant M is the one given by Proposition 4.1 with ¢ = 1. We can choose
now 1 =17,, tending to 0 as e—0, in such a way that

taking into account that

tim [ fus i Pde= [ fue - |7de < dDull
&E—>

U;NnUY uinuvy

since u; are affine and uy=wu; on AU; N IV,. If we define wi=¢ us +
1 —¢e)uf, we have wi—u in LP(U, U Usy; R™) and

lim sup F,(w{, U U U,) <c f (1+|Du|?) dx
e—=0 Uy U Us

as in the proof of Step 1.

We can proceed now by induction, repeating at each step the previous ar-
gument replacing U, by U, U ... U U;, Uy by Uj . 1, ui by the w; constructed in
the preceding step, and us by u/, ;.

Step 3: conclusion.

To conclude the proof it suffices to recall that F"(-, U) is weakly lower
semicontinuous and  piecewise affine functions are dense in
WhP(Q; R™). m

PROPOSITION 4.4. — There exists a subsequence of (e;) (not relabeled) such
that for all open subsets U of 2 there exists the [-limit
I'- lim ng(u, U)=F(u, U),

j—>+

and there exists a function @: M™*"—R such that

Flu, U) = fqo(Du) dx

U

for all we Wh?(Q; R™) and Uc Q with |3U| = 0.
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PRrOOF. — The proof of this proposition can be obtained using the methods of
I'-convergence, for which we refer to the book by Dal Maso [9], outlining the
necessary modifications.

Using the compactness of I-convergence (see Theorem 8.5 in [9]) and a di-
agonal procedure, we extract a subsequence (not relabeled) such that the
I-limit

(L?y- lim F, (u, U)=F(u, U)
jom e

exists for all w e L?(Q; R™) and for all sets U in the countable family R of all
finite unions of open rectangles of £ with rational vertices.
Now, observe that for all open subsets Uc 2 with |9U|=0 we have

F"(u, U) =sup{F"(u, V): Vcc U, V open},
F'(u, U)=sup{F'(u, V): Vcc U, V open}.

This can be shown modifying the proof of [9] Proposition 18.6 for functionals
that satisfy the conclusions of Proposition 4.1 and Proposition 4.3.
Next, we note that the I-limit F(u, U) = I“-'lirP F, (u, U) exists for all
j—> + E

Uea(2) with |9U| =0, and for all weWhP(Q; R™) the function F(u, -) is
the restriction to the family these open sets of a Borel measure on £. This re-
sult can be obtained by [9] Proposition 16.4 and by the De Giorgi-Letta mea-
sure criterion ([9] Theorem 14.23), noting that the proof of [9] Proposition 18.3
can be repeated using Proposition 4.1.

Eventually, the existence of ¢: M"*"— R such that

F(u, U) = fgo(Du) dux
U

for all ue WhP(Q; R™) and for all Ue A(R) with |dU| = 0 follows from the
integral representation Theorem 4.3.2 in [7], observing that translation invari-
ance in « can be obtained, e.g., as in [9] Theorem 24.1 (see also [14] Lemma
42). =

PrOPOSITION 4.5 (HOMOGENIZATION FORMULA). — For all Ae M™*" there
exists the limit in (12) and we have @(A) = fiom(A).

PRrOOF. — In order to simplify the proof of formula (12), we can suppose that
u([0, 1)"\ (0, 1)") =0, which holds up to a translation. For all A M™*" and
keN we define

n u, loc
(0, k)"

1 dD
gr(A) = inf { f f(%, 7 “ ) du: ueW>? (R"; R™), u — Ax k—periodic}.
u
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Fixed Ae M"*" let ue W"P (R"; R™) with u — Az k-periodic and with mean

u, loc
value 0 on (0, k)". Define the sequence wu,;(x) =e;u(x/e;), and note that

wj—Ax in L) (R"; R™). We have then

loc

1 D
@(A) = F(Ax, (0, 1)") < lim inf F, (u;,(0, 1)) = — f f(ac, —“) du .
jotw k"’(o o du
Hence, ¢p(A) < g,.(A), so that

am ¢(A) < lim inf g,(A).
— + o0

Conversely, let w;— Ax be such that
@A) = F(Ax,(0, 1)") = lim F, (w;,(0,1)").
)=+ J h
Let 0>0. Let T;=1/e; and let u;(x) = T;w;(x/T;). We use the notation
K, =[T;]1+1.
If j is large enough and N >4, we can use Proposition 4.1 with ¢ =1,

U= (0, T)", V= (0, K)'\@T;/N, T; - 2(T;/N))", U' = (T;/N, T; — (T;/N)",
u=1u;, and v =2z4. We get then

18)  Fi(pu+ (1 —-¢)v,(0,K)")=Fi(pu+ (1 —-¢)v, U'UV)<

(1+0)Fy(u, )+ Fy(o, VI+MN?T [ Ju—v|?de+ ou(UNVNT) .
UNV\U’

Since ¢pu + (1 — ¢) v — Ax is K;-periodic, we obtain

K} gk,(A) < (1 +0) (Fy (w;, (0, T))") + Fy (24, V) +

(0, T)"\(T}/N, T; — (T;/N))"

.I{j'ﬂ
(1+0)(T}'F,,(w;, (0, 1)")) + 07(1 +]A[") +

MN*T} f |w; — 2; |"dw + ocKj",

0, 1)"

where z;(x) = T, '24(T;x). Note that z;—Ax in L?((0, 1)"; R™); hence

lim f |w;—2; |[Pde=0.

Dividing the estimate above by K/, and letting first j— + o and then 0—0
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and N— + o, we get
19) lim sup ng(A) < @(A).

j—+

By (17) and (19) we obtain then
@(A) =lim inf g, (A) = lim gg(A).
k— + j—o At 7

The first equality shows that ¢ is independent of the sequence (¢;). Repeating
the reasoning then with a sequence (¢;) such that

lim  gg (A) = lim sup g,(A)
jo e T k

— +

the proof is complete. =

Proor or THEOREM 3.5. — The previous propositions show that the limit in
(10) exists and (11) holds with fi,, given by (12). Formula (13) in the convex
case follows as in [15].

It remains to check that Fy,(u, Q)=+ if ueL?(Q;R™)\
WL P(Q2; R™) when p > 1. Clearly, it suffices to prove this for f(4) = |A|P. In
this case, Fyom is convex, hence it is determined by its behaviour on
WhP(Q; R™) (see[9] Chapter 23). It will be enough then to prove that
Jhom(A) = c|A|P. Since fion is positively homogeneous of degree p, it is suffi-
cient to check that fi,,(A) # 0 if A # 0. To this aim, let u,— Ax be such that
F,(u,,(0, 1)") = foom Q). If fiom(A) = 0 then by Definition 3.2(1) and a scaling
argument we obtain that wu,, tends to a constant, and a contradic-
tion. =

5. — Limits of a class of difference schemes.

In this section we show how some energies depending on finite differences
can be seen as a particular case of functionals defined on Sobolev spaces with
respect to the measures introduced in Example 3.1(a). For the sake of illustra-
tion we deal only with the case of integrands independent of x. We remark
that in the case of quadratic functionals (i.e., v ,(&) = ¢, £ below), our result
can be framed in the theory of difference operators elaborated by Kozlov [13],
where a compactness and representation theorem is given for a general class
of operators.

Let QcR" be an open set with Lipschitz boundary, and let

I.={ieZ": ¢i+[0,e]"cQ}.
Let v ..., be convex functions such that

|7 <yr(8) <1+ [E])
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for all EeM™*" and k=1, ..., n. We define A, the set of functions

1
u: (Z”ﬂ —9) —R™
I3

and for all ueA,

W)= D zenwk(w)_

k=1 iel, £

If ueA, then we can associate to u the piecewise constant function v,:
Q—R"™ defined by

w(i), wxeer+[0,8)", etelNel",
vu(w) =

0, otherwise .

DEFINITION 5.1. — Let u; e A, . We say that u; converges to u e L"(£2) if and
only if v, converges to u in LP(Q).

THEOREM 5.2. — The functionals ¥, I'-converge as ¢—0 to

> fwk(j—”)dac, ueWhr(Q2; R™),

]P('U/): k=1g XLy,
+ o0, ueL?(Q; R™)\W"?(Q; R™),

with respect to the convergence in LP(L) as in Definition 5.1.

PRrOOF. — Let f: M™*"—[0, + ) be defined by

n

f&) =n kilwk(g")

where &, = Ee;,. If we consider u as in Example 3.1(a), since f'is convex, by for-
mula (13) it follows that

1 n
.ﬁlom(“;:) = _f(ng) = E wk(gk)
n k=1

In fact, the computation of (13) is trivial, since u(x) = >, &,[x,] is the unique
k=1

. 1.
function ue WP

. e @"; B™), up to translations, such that u — & is 1-periodic.
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By formula (11)

fZ ( ) . weW'r(Q; R"),
Fhom(u Q) Q = axk
+ oo, ueL?(Q; R™)\WV'P(Q; R™)

and Fyom(u, Q) = ¥(u).
For all Ucc £ open set with |dU|=0 and &> 0, let

Fo(u, U) = ff( le”
U

)dﬂu

and let ujeAsj converge to ue LP(L2). Then
< w; (1 + ;) — u; (1)

lim inf ¥, () = lim inf &7 >, >, wk( i ) >

j—>+ J ! j—>+

k=1 iel; £

lim inf > €;f¢k( )df){”lz
Jo e =
dDv,,
lim inf ff “ | du, =liminf F, (v,, U) = Fyn(u, U)
=t Y ‘. J j— + oo AR

by formula (10) and the definition of I'-convergence, so that

lim inf ¥, (u )= sup Fyom(u, U) = P(u).

Jo At UccQ
By the arbitrariness of u;

I(L?)-lim ionf Y. (u) =¥ (u).

Conversely, suppose that v,»z—:W/};j”(Q;Rm) converges to u in LP(Q) and
define

(20) u; (1) = lim sup 3f vi(x —&;1) da

e=0" B0, )N [0, ;)"

for all te Z" N (1/e) Q. Note that if i e I, or 1 — ¢, € I, for some k then the aver-
age in (20) is constant for ¢ small enough.
By definition, u; converges to u e L”(£2) and

lim sup‘P (u)<hm supF (v Q);

]—>+oc ]—>+00
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there follows that
I(L?)-lim sup ¥, (u) < [(L?)-lim sup F,(u, Q) = ¥Y(u),
e—0 e—0
so that
F(Lp)—lin}] Y. (u)=%¥Yu),

and the proof is concluded. =

6. — Appendix: Sobolev inequalities in Wul"’.

In this appendix we include some results about Sobolev inequalities in the
spaces W,}' P, In particular, we will prove that the measures in Example 3.1 sat-
isfy the Poincaré inequality in Definition 3.2(i).

PrOPOSITION 6.1. — Let u be the measure in Example 3.1(b). Then for all
1sgsnnp—-2p+1)/(n—p)n—-1) (forany q=1if p=n) and for all ke N
there exists a constant C(k) such that for all uwe Wﬂ1 P((0, k)") with

udx =0 we have
P 1p
f du | .

(07 k)n
dDu
(0, k"
Moreover, if ¢ =p then we can take C(k) = ck with ¢ a fixed constant.

(0, k)"

1/q
(21) ( f |u|qdac) SC(k)(

ProoF. — If n = 1 then (21) follows from the Sobolev inequality for BV func-
tions (see Remark 6.4). We will deal only with the case p <n and q > p, which
again is not a restriction. The other cases can be derived from this by applying
Holder’s inequality.

We set U= (0, k)". We start by considering an inequality involving the
median of a function rather than the mean. We recall that the set of the medi-
ans of uw (in U), med (u), is the set of real numbers ¢ such that

1 1
[Un{u>t}|< U] and U0 {u<t}|<_|U].

Let ue Wj”’ (U). By the Poincaré inequality for BV functions, there exists a
constant ¢ = c¢(U) such that for v e BV(U) and t e med (u)

(22) e ¢

Ln/(n—l)(U) < C |Du| (U)
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(see [17] Theorem 5.12.10). By a scaling argument it can be easily checked that
¢ may be chosen independent of k. From now on, we denote ¢ any constant
which satisfies this property.

Let first ¢ = np/(n — 1), and set v = u|u|’"‘1 with » > 1. If 0 e med (%) then
0 e med (v); hence, by (22),

”?} Ln/('n,—l)(U) < C|D’U|(U) .

We then get, by Hélder’s and Minkowski’s inequalities,

(n—1)/n
(f|u|m/(n—1)d9(;) gcf|u|’”‘1|Vu|dx+
o U

c f [t —w [(Jut | T4 |u |7 docm <

UNE
! p' 1/p
c||Vu||p(f|u|p(r—1>dgg) +c( f |u+_u*|pd%7271) »
v UNE
p' 1/p’
(( f |u+|p’<r—1)d3(.n—1) +( f |u—|p'(r—1)d:){vn—l) )
unk UNE

Let ¢g=m/(n—1) and a=p'(r—1); then we can rewrite the estimate
above as

1/q (r—1)/a 1/p
(f|u|qu) $c||Vu||p(f|u|adac) +c( [t —u |”d3{"*1> x
U U

UNE

(r—1)/a (r—1)/a
(( f|u+|“df)t’”*1) +( f|u*|“df)t’”*1) )
UNE UNE

Interpreting u * as traces of Sobolev functions defined on each cube of U\E,
we have

1/a
23) ( [ |u- |“d:)(”‘1) < dlullyr v p
UNE
for p<a<pn—1)/(n—p) (see[1] Theorem 7.58). Hence,
1 1 p r—1 1
eelly < ell Vel flelle™ +c( J |u+—u‘|pdf}€”‘) (lally = + [[V2ally =)
UNE

Note that a <g<mn(np —2p +1)/(n —1)(n — p). By Holder’s inequality

ol < g~ U120 and <l e,
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If we denote ¢; = |U|" PVe"1D and ¢, = |U|"~ VP~ VD we get

» 1/p » 1/p
/ dﬂ) \|urr;-1+c(f dﬂ) ><
U

U
NG
du <

(c2||u||:;1 " (f
U
» 1/p
(01+02)C(f d/t) ||%||§‘1+C(f
U U

By Young’s inequality

J

U

dDu

du

dDu

@4 ullsec (

dDu

dDu

» ¥/p
du | .

dDu

» 1/p
d, |l <
- u) o

_ (r=1)/r
l((z(’” 1)) (cl+cz)c(f
7 r U
(” ” 1( )(r 1)/1)1‘/(7" 1)

(Cl+02)c(

" 1/p\7
du +

20r—1) ”((c1+c2)c)’ f dDu, G T
+ = [lully,
7 U 2
so that, by (24),
1/p
dDu |?
||u||qu4c(f au du) ,
U du

where ¢, =1+ ¢, + c;. In particular, we have that, for a general u and

t e med (u),
P Up
f du | .

U
1/p
dy) +|t] |U| M.

dDu

(25) ||u—t||q$c4c(
du

By Minkowski’s inequality and (25)

26)  |ull, < [lw =, + || |U|1/‘1Sc4c(f
U
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Suppose in addition that f udx =0. We then can estimate
U

(n—1)/n
qudac—t s;[|u—t|dx<(f|u—t|"/<"1>dac) <
U U U

c f dDu | . . u|e f dDu
|U|(n—1)/nU d/l U= C |U|(n 1)/n

f

U

|t]=

p ) Lp
» 1/p
du

dDu

Cl Ul (p —n)/mp (
du

by (22) and Jensen’s and Holder’s inequalities. Finally, by (26),

1/q » 1/p
(f 1urva) S%w|U|“q“”"”/””>(f du) '
U

U
To conclude the proof set

20 Clk) =clcy + | Ul 1/q + (p—n)/np) _

dDu

du

c(1+ kn(r—l)(l/a—l/q) + kn(r—l)(l/p—l/q) + kn/q+(p—n)/p)_

In particular if ¢ = np/(n — 1) we have a = =p and C(k) = c(1 + 3k» ~1/P), If
q <np/(n —1) an application of Holder’s inequality yields that we can take
C(k) = ck@~m/P+ D) We obtain the last statement of the proposition when

p=q. N

REMARK 6.2. — The last statement of the previous proposition proves the
Poincaré inequality in Definition 3.2(i) for the measures 4 in Example 3.1. In
fact, the Poincaré inequality for the measures in Example 3.1(a) is a particular
case of that for the measures in Example 3.1(b).

REMARK 6.3. — Proposition 6.1, and hence also p-homogenizability, can be
proved for measures of the more general form
1

B) =
“B) = e T m A0, 1)

(|B|+ac" Y BNE)),

provided that E is a 1-periodic closed set of o-finite % — 1-dimensional Haus-
dorff measure and that [0, 1]*\ £ has a finite number of connected compo-
nent, each one with a Lipschitz boundary. The proof follows the same line, re-
marking that the particular form of £ was used only in (23).

REMARK 6.4. — The validity of a Sobolev inequality for a general x4 depends
on the measure u itself and p. In particular it always holds if » = 1 for all p and
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q, or if p <n/(n — 1) with ¢ = n/(n — 1). In fact, in this case, by the Sobolev in-
equality for BV-functions and Hoélder’s inequality

(n—1)/n
(f|u|n/(n—1)dx) SClD’Ml(U):Cf
U

U

dDu

» 1/p
d/,t) ﬂ( U)(p - 1)/10_

Conversely, if ¢ >p=n/(n —1), take a l-periodic function u e (BV,.(R™) N
L?((0, 1)")\LY((0, 1)*)), and set u= |Du|. Clearly |dDw/du|=1, so that

we W, ?(U) for all subsets U of R", but we have |u|?dex = + o for each U
suff1c1ently large.
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