Bollettino

Unione Matematica Italiana

Tommaso Pacini

Complex structures on $S O_{g}(M)$

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B (1999), n.3, p. 639-654.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1999_8_2B_3_639_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Complex Structures on $\mathrm{SO}_{g}(M)$.

Tommaso Pacini

Sunto. - Data una varietà Riemanniana orientata (M, g), il fibrato principale $\mathrm{SO}_{g}(M)$ di basi ortonormali positive su (M, g) ha una parallelizzazione canonica dipendente dalla connessione di Levi-Civita. Questo fatto suggerisce la definizione di una classe molto naturale di strutture quasi-complesse su (M, g). Dopo le necessarie definizioni, discutiamo qui l'integrabilità di queste strutture, esprimendola in termini della struttura Riemanniana g.

1. - Introduction.

Let M be a smoothly parallelizable m-dimensional differentiable manifold. A parallelization of M is, basically, the choice of an isomorphism between the tangent plane $T_{x} M$ and \mathbb{R}^{m} that varies smoothly with respect to the parameter $x \in M$. Such a choice allows one to smoothly transfer a fixed structure, such as a complex structure, from \mathbb{R}^{m} to the tangent bundle $T M$ over M, thus giving M the additional structure of, for example, an almost complex manifold.

This is enough to prove that any even-dimensional parallelizable manifold admits an almost complex structure.

Let us now consider, for a fixed oriented m-dimensional Riemannian manifold (M, g), the $S O(m)$-principal fibre bundle of positively oriented orthonormal frames on (M, g) : call it $S O_{g}(M)$, and let $\pi: S O_{g}(M) \rightarrow M$ be the usual projection.

It is well known that $S O_{g}(M)$ possesses a standard parallelization. It is defined as follows.

Given a principal fibre bundle $P(M, G)$, the action of the Lie group G on the total space P induces a homomorphism σ of the Lie algebra \mathfrak{g} of G into the Lie algebra $\Lambda^{0}(T P)$ of vector fields on P.

For $A \in \mathfrak{g}$, we will denote $\sigma(A)$ by A^{*}.
For $u \in P$, let V_{u} be the tangent space to the fibre in u.
Since the action of G sends each fibre into itself, for each $u \in P \sigma$ induces a homomorphism $\sigma_{u}: \mathfrak{g} \rightarrow V_{u}$ defined by $A \mapsto A_{u}^{*}$ which is an isomorphism because G acts freely on P and $\operatorname{dim}(\mathfrak{g})=\operatorname{dim}\left(V_{u}\right)$.

We have thus proved that for each $u \in S O_{g}(M), V_{u}$ is canonically isomorphic to the Lie algebra $\mathfrak{v}(m)$ of $S O(m)$.

Consider now a connection on $\mathrm{SO}_{g}(M)$, i.e. a right-invariant distribution H on $S O_{g}(M)$ such that for all $u \in S O_{g}(M), H_{u} \oplus V_{u}=T_{u} S O_{g}(M)$.

The differential of π at $u, \pi_{*}[u]: T_{u} S O_{g}(M) \rightarrow T_{\pi(u)} M$, restricts to an isomorphism between H_{u} and $T_{\pi(u)} M$, which we will continue to denote by $\pi_{*}[u]$. Remember that each $u \in S O_{g}(M)$ is a basis of $T_{\pi(u)} M$; the frame $u=\left\{u_{i}\right\}$ pulls back to a frame of H_{u} and thus defines the isomorphism

$$
\begin{aligned}
& B_{u}: \mathbb{R}^{m} \rightarrow H_{u}, \\
& e_{i} \mapsto \pi_{*}[u]^{-1}\left(u_{i}\right),
\end{aligned}
$$

where $\left\{e_{i}\right\}$ is the standard basis of \mathbb{R}^{m}.
We have thus shown that any connection defines an isomorphism (which is smoothly dependent on u) between $T_{u} S O_{g}(M)=H_{u} \oplus V_{u}$ and $\mathbb{R}^{m} \oplus \mathfrak{p}(m)$, i.e. a parallelization of $\mathrm{SO}_{g}(M)$.

In what follows we will sometimes not specify the subscripts of the above isomorphisms, so as to avoid a too cumbersome notation.

The particular structure of this parallelization suggests a refinement of the previous construction. Namely, we define an almost complex structure on $S O_{g}(M)$ by transfering a fixed structure on \mathbb{R}^{m} to H_{u} and a fixed structure on $\mathfrak{d}(m)$ to V_{u}, via the above isomorphisms. This requires, as only additional hypotheses, that \mathbb{R}^{m} and $\mathfrak{o}(m)$ admit complex structures, i.e. that they be evendimensional. A quick calculation shows this to be true when $m=4 n$.

The goal of this article is to examine the integrability of such a class of almost complex structures. To do this, we fix the connection to be the Levi-Civita connection on $S O_{g}(M)$ induced by g and the structure on $\mathbb{R}^{4 n}$ to be the standard complex structure J_{0}. The structure J on $\mathfrak{p}(4 n)$ has, instead, no a priori restrictions.

It quickly becomes apparent that integrability requires additional hypotheses on J, i.e. that J be compatible both with J_{0} and with g in the sense defined by theorem 1 . Though clearly expressed, these conditions are of a fairly technical nature. We therefore proceed to show how a natural strengthening of our initial hypotheses suffices to express the above conditions in a much more elegant manner: theorem 2 basically states that, under the right hypotheses, the class of almost complex structures on $\mathrm{SO}_{g}(M)$ is integrable if and only if

$$
\left\{\begin{array}{l}
n=1:(M, g) \text { is an autodual Einstein manifold }, \\
n>1:(M, g) \text { has constant sectional curvature } .
\end{array}\right.
$$

The author wishes to thank professor de Bartolomeis for suggesting the problem and for his help in reaching this solution.

2. - Preliminaries.

Let (M, g) be an oriented $4 n$-dimensional Riemannian manifold.
Let $S O_{g}(M)$ be the associated $S O(4 n)$-bundle of positive orthonormal frames.

We will adopt the following notation:
$P:=S O_{g}(M)$,
$\mathfrak{n}(4 n):=$ Lie algebra of $S O(4 n):$ antisymmetric \mathbb{R}-valued matrices .

$$
\begin{aligned}
R: S O(4 n) & \rightarrow \operatorname{Diff}(P) \quad \text { action of } S O(4 n) \text { on } P, \\
g & \mapsto R_{g} .
\end{aligned}
$$

Let B and π_{*} be the isomorphisms defined in par. 1 and let $x:=\pi[u]$. Then the following diagram is commutative:

where u^{-1} simply associates to each vector in $T_{x} M$ its coordinates with respect to u.

Notice that, as u is an orthonormal frame, u^{-1} is an isometry between ($T_{x} M, g_{x}$) and $\mathbb{R}^{4 n}$ with the standard euclidean metric.

Let H be the Levi-Civita connection on P and Ω be its curvature. We recall that $\Omega \in \Lambda^{2}(P) \otimes \mathfrak{D}(4 n)$, i.e. is a $\mathfrak{D}(4 n)$-valued 2 -form on P.

In a standard way, each Ω_{u} can be alternatively viewed as an element of End $(\mathfrak{p}(4 n))$. Let us review the reasoning.
Ω has the property that $\Omega_{u}(X, Y)=0$ if $Y \in V_{u}$. It follows that Ω_{u} can be viewed, with no loss of information, as $\Omega_{u} \in \Lambda^{2}\left(H_{u}^{*}\right) \otimes \mathfrak{D}(4 n)$ or, through the isomorphism B, as $\Omega_{u} \in \Lambda^{2}\left(\mathbb{R}^{4 n}\right)^{*} \otimes \mathfrak{D}(4 n)$.

If we now identify $\Lambda^{2}\left(\mathbb{R}^{4 n}\right)$ with $\mathfrak{D}(4 n)$ via the canonical isomorphism

$$
\begin{aligned}
& \Lambda^{2}\left(\mathbb{R}^{4 n}\right) \rightarrow \mathfrak{D}(4 n) \\
& \quad \xi \\
& \quad \wedge \eta \mapsto \frac{1}{2}\left(\xi^{t} \eta-\eta^{t} \xi\right) \quad \text { (matrix multiplication) }
\end{aligned}
$$

we get $\Omega_{u} \in \mathfrak{D}(4 n)^{*} \otimes \mathfrak{D}(4 n)$, i.e. $\Omega_{u} \in \operatorname{End}(\mathfrak{D}(4 n))$.
It may be useful to underline the fact that, according to the above conventions, $\Omega_{u}(B \xi, B \eta)=\Omega_{u}(\xi \wedge \eta), \forall \xi, \eta \in \mathbb{R}^{4 n}$.

The following lemma translates the usual properties of Ω into this new setting:

Lemma 1. - 1. $\forall g \in S O(4 n), \Omega_{u} \circ a d(g)=a d(g) \circ \Omega_{u g}$.
2. Ω_{u} is symmetric with respect to the standard metric on $\mathfrak{D}(4 n)$.

Proof. - 1) Let us first prove that $\left(R_{g}\right)_{*}[u] B_{u} \xi=B_{u g}\left(g^{-1} \xi\right)$: the fact that the connection H is R-invariant shows that

$$
\left(R_{g}\right)_{*}[u] B_{u} \xi=B_{u g} \eta \text { for some } \eta \in \mathrm{R}^{4 \mathrm{n}}
$$

the fact that $\pi \circ R_{g}=\pi$ shows that

$$
\pi_{*}[u] B_{u} \xi=\pi_{*}[u g]\left(R_{g}\right)_{*}[u] B_{u} \xi=\pi_{*}[u g] B_{u g} \eta
$$

finally, the commutativity of the above diagram implies that

$$
\eta=(u g)^{-1} \pi_{*}[u g] B_{u g} \eta=(u g)^{-1} \pi_{*}[u] B_{u} \xi=g^{-1} u^{-1} \pi_{*}[u] B_{u} \xi=g^{-1} \xi .
$$

The proof of the first claim is then based upon the fact (cfr. [KN]) that Ω has the property that

$$
\begin{aligned}
& \forall g \in S O(4 n), \quad \forall X, Y \in T_{u} P \\
& \Omega_{u g}\left(\left(R_{g}\right)_{*}[u] X,\left(R_{g}\right)_{*}[u] Y\right)=\operatorname{ad}\left(g^{-1}\right) \Omega_{u}(X, Y) .
\end{aligned}
$$

This leads to:
$\operatorname{ad}(g) \circ \Omega_{u}(\xi \wedge \eta)=\operatorname{ad}(g) \Omega_{u}(B \xi, B \eta)=$

$$
\begin{array}{r}
\Omega_{u g^{-1}}\left(\left(R_{g^{-1}}\right)_{*}[u] B_{u} \xi,\left(R_{g^{-1}}\right)_{*}[u] B_{u} \eta\right)=\Omega_{u g^{-1}}\left(B_{u g^{-1}}(g \xi), B_{u g^{-1}}(g \eta)\right)= \\
\Omega_{u g^{-1}}(g \xi \wedge g \eta)=\Omega_{u g^{-1} \circ} \circ \operatorname{ad}(g)(\xi \wedge \eta) .
\end{array}
$$

2) The standard metric on $\mathfrak{p}(4 n)$ is $(M, N):=-\operatorname{tr} M N$. It is easy to check that

$$
\forall M \in \mathfrak{o}(4 n), \quad \forall \alpha, \beta \in \mathbb{R}^{4 n}, \quad(M, \alpha \wedge \beta)=-(M \alpha, \beta)
$$

where the product on the right-hand side is now the usual metric on $\mathbb{R}^{4 n}$.

Let $\xi, \eta, \alpha, \beta \in \mathbb{R}^{4 n}$ and let X, Y, A, B be the corresponding vectors in $T_{\pi(u)} M$.

Let R be the curvature tensor on (M, g) of type $(4,0)$, so that $R(X, Y, A, B)=\left(\Omega_{u}(\xi \wedge \eta) \alpha, \beta\right)$.

The proof of the second claim is then based upon the well known fact that $R(X, Y, A, B)=R(A, B, X, Y)$:

$$
\begin{aligned}
& \left(\Omega_{u}(\xi \wedge \eta), \alpha \wedge \beta\right)=-\left(\Omega_{u}(\xi \wedge \eta) \alpha, \beta\right)= \\
& -R(X, Y, A, B)=-R(A, B, X, Y)=-\left(\Omega_{u}(\alpha \wedge \beta) \xi, \eta\right)= \\
& \quad\left(\Omega_{u}(\alpha \wedge \beta), \xi \wedge \eta\right)=\left(\xi \wedge \eta, \Omega_{u}(\alpha \wedge \beta)\right)
\end{aligned}
$$

It is well known that (M, g) has constant sectional curvature c if and only if

$$
R(X, Y) Z=c(g(Z, Y) X-g(Z, X) Y)
$$

where R is now the curvature tensor of type $(3,1)$ on (M, g).
The following lemma translates this in terms of $\Omega_{u} \in \operatorname{End}(\mathfrak{D}(4 n))$.
Lemma 2. - (M, g) has constant sectional curvature if and only if $\Omega=\lambda I d$.

Proof. - Recall that, according to the usual definitions, if $\xi, \eta, \zeta \in \mathbb{R}^{4 n}$ are the coordinates of $X, Y, Z \in T_{x} M$ with respect to the basis u, then $\Omega_{u}(\xi \wedge \eta)$ is simply the matrix with respect to u of $R(X, Y) \in \operatorname{End}\left(T_{x} M\right)$.

It follows that $u^{-1} R(X, Y) Z=\Omega_{u}(\xi \wedge \eta) \xi$, so that

$$
\begin{gathered}
\Omega(\xi \wedge \eta)=\lambda(\xi \wedge \eta) \Leftrightarrow \Omega(\xi \wedge \eta) \zeta=\lambda(\xi \wedge \eta) \zeta, \quad \forall \zeta \in \mathbb{R}^{4 n} \\
\Leftrightarrow u^{-1} R(X, Y) Z=\lambda / 2\left(\xi^{t} \eta \zeta-\eta^{t} \xi \zeta\right)=\lambda / 2(\xi g(Y, Z)-\eta g(X, Z)), \quad \forall \zeta \in \mathbb{R}^{4 n} \\
\Leftrightarrow R(X, Y) Z=\lambda / 2(g(Z, Y) X-g(Z, X) Y) .
\end{gathered}
$$

Let us end this section with the following

Definition 1. - (M, g) is an Einstein manifold if Ric $=\lambda g$, where Ric is the Ricci tensor and λ is a constant.

It is a well known fact that, if $\operatorname{dim} M \geqslant 4,(M, g)$ is an Einstein manifold if and only if Ric $=\lambda g$ where $\lambda \in C^{\infty}(M)$.

3.-Some almost complex structures on $\mathrm{SO}_{g}(M)$ and their integrability.

Let J_{0} denote both the $4 n \times 4 n$ (or $2 n \times 2 n$, as needed) matrix $\left[\begin{array}{cc}O & -I \\ I & O\end{array}\right]$ and
the complex structure on $\mathbb{R}^{4 n}$ defined by:

$$
\begin{aligned}
\mathbb{R}^{4 n} & \rightarrow \mathbb{R}^{4 n} \\
x & \mapsto J_{0} x \quad \text { (matrix multiplication) } .
\end{aligned}
$$

Let J be any complex structure on $\mathfrak{D}(4 n)$.
As seen in the introduction, we define an almost complex structure y on P in the following way:

$$
\begin{aligned}
& J_{:} T_{u} P \rightarrow T_{u} P, \\
& J_{\mid H_{u}}:=B_{u} \circ J_{0} \circ B_{u}^{-1}, \\
& J_{\mid V_{u}}:=\sigma_{u} \circ J \circ \sigma_{u}^{-1} .
\end{aligned}
$$

We will call y the «constant almost complex structure induced by a complex structure of type $\left(J_{0}, J\right)$ ».

We want to investigate the integrability of y. The main tool for this is provided by a classical theorem by Newlander and Nirenberg (cfr. [NN]), which states that an almost complex structure \mathcal{J} on a manifold is integrable if and only if $N_{y} \equiv 0$, where N_{y} is the Nijenhuis tensor defined by

$$
N_{\check{y}}(X, Y):=[\zeta X, \zeta Y]-[X, Y]-\zeta[\zeta X, Y]-\zeta[X, \zeta Y] .
$$

Performing this calculation in our case requires a closer look at the structure of $\mathfrak{v}(4 n)$ and of the curvature tensor. For this purpose, we introduce the following notation.

$$
\begin{aligned}
& \operatorname{Sym}(n):=\{n \times n \text { real symmetric matrices }\}, \\
& \operatorname{Sym}_{0}(n):=\{A \in \operatorname{Sym}(n): \operatorname{tr} A=0\}, \\
& \mathfrak{l}(n):=\left\{A \in \mathfrak{v}(2 n): A J_{0}=J_{0} A\right\}=\left\{\left[\begin{array}{cc}
S & -T \\
T & S
\end{array}\right]: S \in \mathfrak{p}(n), T \in \operatorname{Sym}(n)\right\}, \\
& \mathfrak{u}_{0}(n):=\left\{\left[\begin{array}{cc}
S & -T \\
T & S
\end{array}\right]: S \in \mathfrak{D}(n), T \in \operatorname{Sym}_{0}(n)\right\}, \\
& s(n):=\left\{A \in \mathfrak{D}(2 n): A J_{0}=-J_{0} A\right\}=\left\{\left[\begin{array}{cc}
S & T \\
T & -S
\end{array}\right]: S, T \in \mathfrak{p}(n)\right\} .
\end{aligned}
$$

It is well known that $\mathfrak{t}(n)$ is the Lie algebra of the group of unitary matrices $U(n)$ and that $\mathfrak{u}_{0}(n)$ is the Lie algebra of the group of special unitary matrices $S U(n)$.

Let $\mathfrak{D}(4 n)$ have the usual metric:

$$
(A, B):=\operatorname{tr} A^{t} B=-\operatorname{tr} A B
$$

Then the equality

$$
A=\frac{A-J_{0} A}{2}+\frac{A+J_{0} A}{2}, \quad \forall A \in \mathfrak{v}(2 n)
$$

shows that

$$
\mathfrak{v}(2 n)=\mathfrak{u}(n) \oplus s(n), \quad \text { orthogonal decomposition }
$$

Notice also that

$$
\mathfrak{H}(n)=\mathfrak{l}_{0}(n) \oplus \mathbb{R} J_{0}, \quad \text { orthogonal decomposition }
$$

The algebra $\mathfrak{l}_{0}(n)$ is simple.
The algebra $\mathfrak{D}(n)$ is simple if and only if $n \neq 4$.
The algebra $\mathfrak{D}(4)$ is semisimple with orthogonal decomposition

$$
\mathfrak{v}(4)=\mathfrak{o}_{+}(4) \oplus \mathfrak{o}_{-}(4)
$$

where \mathfrak{o}_{+}(4) and $\mathfrak{D}_{-}(4)$ are simple ideals defined as the eigenspaces of the involution

$$
\phi: \mathfrak{n}(4) \rightarrow \mathfrak{p}(4)
$$

$$
\left[\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -c & 0 & f \\
-c & -e & -f & 0
\end{array}\right] \mapsto\left[\begin{array}{cccc}
0 & f & -e & d \\
-f & 0 & c & -b \\
e & -c & 0 & a \\
-d & b & -a & 0
\end{array}\right]
$$

It can easily be seen that $\mathfrak{o}_{+}(4)=\mathfrak{1}_{0}(4)$ and that $\mathfrak{D}_{-}(4)=\mathbb{R} J_{0} \oplus s(2)$; this leads us quickly to a characterization of the corresponding normal subgroups of $S O(4)$.

The subgroup corresponding to $\mathfrak{D}_{+}(4)$ is obviously $S U(2)$.
Let $\overline{S U(2)}$ be the subgroup corresponding to \mathfrak{D}_{-}(4).
Since $e^{(\pi / 2) J_{0}}=J_{0}, J_{0} \in \exp \left(\mathfrak{D}_{-}(4)\right)$ so $J_{0} \in \overline{S U(2)}$.
As $\overline{S U(2)}$ is normal in $S O(4)$, ad $(g) J_{0} \in \overline{S U(2)}, \forall g \in S O(4)$.
As $\overline{S U(2)}$ is simple, it can thus be described as the closure of the Lie subgroup generated by $\left\{\operatorname{ad}(g) J_{0}: g \in S O(4)\right\}$.

Finally, it is interesting that neither the adjoint action of $S U(2)$ on $\mathfrak{v}_{-}(4)$ nor of $\overline{S U(2)}$ on $\mathfrak{0}_{+}(4)$ are irriducible.

Let us now go back to the curvature tensor Ω.
Let $\operatorname{Sym}(\mathfrak{D}(4 n)):=\{\phi \in \operatorname{End}(\mathfrak{p}(4 n))$ symmetric with respect to the standard metric on $\mathfrak{D}(4 n)\}$.

Lemma 1 shows that $\Omega_{u} \in \operatorname{Sym}(\mathfrak{p}(4 n))$.
Referring the reader to [Be] for further details, we recall that Ω_{u} admits
a canonical decomposition as sum of three elements in $\operatorname{Sym}(\mathfrak{D}(4 n))$; we will write $\Omega_{u}=E_{u}+Z_{u}+W_{u}$.

The decomposition shows that $E_{u}=\lambda I d$ while Z_{u} and W_{u} are traceless. Furthermore, it shows that $Z_{u}=0$ if and only if (M, g) is an Einstein manifold, and that $W_{u}=Z_{u}=0$ if and only if (M, g) has constant sectional curvature. W_{u} is known as the Weyl tensor.

When $n=1$ and one considers the splitting $\mathfrak{v}(4)=\mathfrak{o}_{+}(4) \oplus \mathfrak{D}_{-}(4)$, it can be shown that $W_{u}\left(\mathfrak{D}_{+}(4)\right) \subseteq \mathfrak{D}_{+}(4), \quad W_{u}\left(\mathfrak{D}_{-}(4)\right) \subseteq \mathfrak{D}_{-}(4), \quad Z_{u}\left(\mathfrak{b}_{+}(4)\right) \subseteq \mathfrak{p}_{-}(4)$, $Z_{u}\left(\mathfrak{D}_{-} .(4)\right) \subseteq \mathfrak{D}_{+}$(4). Furthermore, $Z_{u_{\mathfrak{0}_{+}(4)}}={ }^{t} Z_{u_{\mathfrak{p}_{-}(4)}}$.

If follows that, with respect to the above splitting of $\mathfrak{v}(4)$ and omitting the subscripts, Ω_{u} admits the block-matrix representation

$$
\Omega \simeq\left[\begin{array}{cc}
W^{+}+\lambda I d & Z \\
{ }^{t} Z & W^{-}+\lambda I d
\end{array}\right]
$$

where $W^{+}:=W_{\mid \mathfrak{0}_{+}(4)}, W^{-}:=W \mid \mathfrak{0}_{(4)}$ and $Z:=Z_{\left.\right|_{\mathfrak{0}_{-}(4)}}$.
It is also true that W^{+}and W^{-}are traceless operators; they are the positive and negative Weyl tensors, respectively.

We can now go back to our initial problem of studying the integrability of \mathcal{y}.
DEfinition 2. - A complex structure J on a Lie algebra \mathfrak{g} is integrable if the left-invariant almost complex structure induced by J on the corresponding Lie group G is integrable, or, equivalently, if

$$
N_{J}(X, Y):=[J X, J Y]-[X, Y]-J[J X, Y]-J[X, J Y]=0, \quad \forall X, Y \in \mathfrak{g}
$$

We can now prove the following

Theorem 1. - Let (M, g) be a $4 n$-dimensional oriented Riemannian manifold.

Let \mathcal{y} be the constant almost complex structure on $S O_{g}(M)$ induced by a structure of type $\left(J_{0}, J\right)$.

Then \mathcal{J} is integrable if and only if the following two conditions are satisfied:

1. J is integrable and satisfies the following compatibility condition with respect to J_{0} :

$$
\forall X \in \mathfrak{p}(4 n), \quad\left[J_{0}, X\right]=J(X)+J_{0} J(X) J_{0}
$$

2. $\Omega_{u}\left(J_{0} X\right)=J \Omega_{u}(X) \forall u \in P, \forall X \in s(2 n)$.

Proof. - The proof is basically the calculation of the Nijenhuis tensor N_{y} on P defined above.

As N_{y} is a tensor, $N_{y} \equiv 0$ if and only if the following three cases are true:

1. $N_{\mathrm{y}}\left(X^{*}, Y^{*}\right)=0, \forall X, Y \in \mathfrak{D}(4 n)$.
2. $N_{\check{y}}\left(X^{*}, B \xi\right)=0, \forall \xi \in \mathbb{R}^{4 n}, \forall X \in \mathfrak{D}(4 n)$.
3. $N_{\gamma}(B \xi, B \eta)=0, \forall \xi, \eta \in \mathbb{R}^{4 n}$.

We will consider the three cases separately.

1) $N_{\mathscr{Y}}\left(X^{*}, Y^{*}\right)=\left[\zeta X^{*}, \zeta Y^{*}\right]-\left[X^{*}, Y^{*}\right]-\zeta\left[\zeta X^{*}, Y^{*}\right]-\zeta\left[X^{*}, \zeta Y^{*}\right]=$

$$
\begin{array}{r}
{\left[(J X)^{*},(J Y)^{*}\right]-\left[X^{*}, Y^{*}\right]-J\left[(J X)^{*}, Y^{*}\right]-J\left[X^{*},(J Y)^{*}\right]=} \\
{[J X, J Y]^{*}-[X, Y]^{*}-(J[J X, Y])^{*}-(J[X, J Y])^{*},}
\end{array}
$$

where the final identity follows from the fact that the above mentioned $\sigma: \mathfrak{v}(4 n) \rightarrow \Lambda^{0}(T P)$ is a Lie algebra homomorphism.

Therefore

$$
N_{y}\left(X^{*}, Y^{*}\right)=0 \Leftrightarrow[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]=0
$$

so that

$$
N_{y}\left(X^{*}, Y^{*}\right)=0, \quad \forall X, Y \in \mathfrak{D}(4 n) \Leftrightarrow J \text { is integrable. }
$$

2) We first show that $\left[X^{*}, B \xi\right]=B(X \xi)$.

Let $\alpha_{t}:=\exp (t X)$.
Notice that X^{*} is, by definition, the vector field induced by the 1-parameter group of diffeomorphisms $R_{\alpha_{t}}$.

Remember (cfr. proof of lemma 1) that $d R_{g}[u]\left(B_{u} \xi\right)=B_{u g}\left(g^{-1} \xi\right)$. Then:

$$
\begin{aligned}
{\left[X^{*}, B \xi\right]=\lim _{t \rightarrow 0} \frac{B \xi-d R_{\alpha_{t}}[\alpha(-t)](B \xi)}{t} } & =\lim _{t \rightarrow 0} \frac{B \xi-B\left(\alpha(t)^{-1} \xi\right)}{t}= \\
B\left(\lim _{t \rightarrow 0} \frac{\xi-\exp (-t X) \xi}{t}\right) & =\left.B \frac{d}{d t}(-\exp (-t X) \xi)\right|_{t=0}=B(X \xi)
\end{aligned}
$$

Consequently:

$$
\begin{aligned}
& N_{y}\left(X^{*}, B \xi\right)=\left[\zeta X^{*}, \mathfrak{y} B\right]-\left[X^{*}, B \xi\right]-\jmath\left[\zeta X^{*}, B \xi\right]-\jmath\left[X^{*}, \mathfrak{y} B\right]= \\
& {\left[(J X)^{*}, B\left(J_{0} \xi\right)\right]-B(X \xi)-\zeta\left[(J X)^{*}, B \xi\right]-\jmath\left[X^{*}, B\left(J_{0} \xi\right)\right]=} \\
& B\left(J(X) J_{0} \xi\right)-B(X \xi)-B\left(J_{0} J(X) \xi\right)-B\left(J_{0} X J_{0} \xi\right)
\end{aligned}
$$

Therefore

$$
N_{\mathfrak{y}}\left(X^{*}, B \xi\right)=0 \Leftrightarrow J(X) J_{0} \xi-X \xi-J_{0} J(X) \xi-J_{0} X J_{0} \xi=0
$$

so that

$$
N_{\check{y}}\left(X^{*}, B \xi\right)=0, \quad \forall \xi \Leftrightarrow J(X) J_{0}-X-J_{0} J(X)-J_{0} X J_{0}=0
$$

Left multiplication by J_{0} proves that

$$
N_{\mathrm{y}}\left(X^{*}, B \xi\right)=0, \quad \forall \xi, \forall X \Leftrightarrow\left[J_{0}, X\right]=J(X)+J_{0} J(X) J_{0}, \quad \forall X
$$

3) We first prove that $[B \xi, B \eta]_{u} \in V_{u}$.

Let θ be the unique $\mathbb{R}^{4 n}$-valued 1 -form on P such that

$$
\theta(X)=0, \quad \forall X \in V_{u} \quad \text { and } \quad \theta(B \xi)=\xi .
$$

θ defines a $\mathbb{R}^{4 n}$-valued 2-form, called the torsion of the connection, in the following way:

$$
\Theta(X, Y):=d \theta\left(X^{h}, Y^{h}\right)
$$

or, equivalently,

$$
\Theta(X, Y):=\frac{1}{2}\left\{X^{h} \theta\left(Y^{h}\right)-Y^{h} \theta\left(X^{h}\right)-\theta\left[X^{h}, Y^{h}\right]\right\},
$$

where X^{h}, Y^{h} denote the horizontal components of X, Y.
Recall that, by definition, the Levi-Civita connection has $\Theta \equiv 0$.
Since $\theta(B \xi)$ and $\theta(B \eta)$ are constant, it then follows that

$$
\theta[B \xi, B \eta]=-2 \Theta(B \xi, B \eta)=0
$$

that is,

$$
[B \xi, B \eta] \in V_{u} .
$$

Let ω be the $\mathfrak{o}(4 n)$-valued 1 -form defined on P by the connection. We recall that

$$
\omega(X)=0, \quad \forall X \in H_{u}
$$

and that

$$
\Omega(X, Y)=d \omega\left(X^{h}, Y^{h}\right)=\frac{1}{2}\left\{X^{h} \omega\left(Y^{h}\right)-Y^{h} \omega\left(X^{h}\right)-\omega\left[X^{h}, Y^{h}\right]\right\}
$$

From the preceding result it follows that $N_{\mathrm{j}}(B \xi, B \eta) \in V_{u}$, so that

$$
N_{y}(B \xi, B \eta)=0 \Leftrightarrow \omega N_{y}(B \xi, B \eta)=0 .
$$

Noticing that $\omega[B \xi, B \eta]=-2 \Omega(B \xi, B \eta)$ and $\omega \mathcal{J}=J \omega$ proves that $N_{\check{\gamma}}(B \xi, B \eta)=0 \Leftrightarrow \Omega\left(B J_{0} \xi, B J_{0} \eta\right)-\Omega(B \xi, B \eta)-$

$$
J \Omega\left(B J_{0} \xi, B \eta\right)-J \Omega\left(B \xi, B J_{0} \eta\right)=0
$$

Let us now use the identification described in par. 1, viewing Ω_{u} as $\Omega_{u}: \Lambda^{2}\left(\mathbb{R}^{4 n}\right) \rightarrow \mathfrak{D}(4 n)$.

The above translates as

$$
N_{y}(B \xi, B \eta)=0 \Leftrightarrow \Omega\left(J_{0} \xi \wedge J_{0} \eta-\xi \wedge \eta\right)=J \Omega\left(J_{0} \xi \wedge \eta+\xi \wedge J_{0} \eta\right)
$$

We now, as before, identify $\Lambda^{2}\left(\mathbb{R}^{4 n}\right)$ with $\mathfrak{D}(4 n)$. Then $J_{0} \xi \wedge J_{0} \eta-\xi \wedge \eta$ corresponds to an element $X \in s(2 n)$, as can easily be seen by proving that it anticommutes with J_{0}, and $J_{0} \xi \wedge \eta+\xi \wedge J_{0} \eta=-J_{0} X$, so that

$$
N_{\check{y}}(B \xi, B \eta)=0 \Leftrightarrow \Omega(X)=J \Omega\left(-J_{0} X\right)
$$

We can then conclude that

$$
N_{y}(B \xi, B \eta)=0 \quad \forall \xi, \eta \Leftrightarrow \Omega\left(J_{0} X\right)=J \Omega(X) \quad \forall X \in s(2 n)
$$

The two conditions appearing in theorem 1 are of different nature. The first is algebraic, in the sense that, being J_{0} fixed, it concerns only the complex structure J on the Lie algebra $\mathfrak{D}(4 n)$. The second is twistor-like, in the sense that it implies a compatibility between the metric g and the complex structure J.

The canonical splitting $\mathfrak{v}(4 n)=\mathfrak{u}(2 n) \oplus s(2 n)$ suggests restricting our attention to those J 's such that $J(\mathfrak{l}(2 n)) \subseteq \mathfrak{H}(2 n), J(s(2 n)) \subseteq s(2 n)$, i.e. defined as the sum of a complex structure J_{1} on $\mathfrak{u}(2 n)$ and a complex structure J_{2} on $s(2 n)$: we will say that J is of type $\left(J_{1}, J_{2}\right)$.

The following lemma shows that, when J is of type (J_{1}, J_{2}), condition (1) of theorem 1 can be reformulated in a much simpler manner:

Lemma 3. - Let J be a complex structure on $\mathfrak{D}(4 n)$ of type (J_{1}, J_{2}).
The following conditions are equivalent:

1. J_{1} is integrable;

$$
\forall A \in s(2 n), \quad J_{2}(A)=J_{0} A \quad(\text { matrix multiplication }) .
$$

2. $\forall A \in \mathfrak{D}(4 n),\left[J_{0}, A\right]=J(A)+J_{0} J(A) J_{0} ; J$ is integrable.

Proof. $-1 \Rightarrow 2$:
$\forall A \in s(2 n), \quad\left[J_{0}, A\right]=J_{0} A-A J_{0}=J(A)+J_{0}^{2} A J_{0}=J(A)+J_{0} J(A) J_{0}$,
$\forall A \in \mathfrak{U}(2 n), \quad\left[J_{0}, A\right]=0=J(A)+J_{0} J(A) J_{0}$,
$\forall A, B \in s(2 n), \quad N_{J}(A, B)=\left[J_{0} A, J_{0} B\right]-[A, B]-J\left[J_{0} A, B\right]-J\left[A, J_{0} B\right]=$

$$
J_{0} A J_{0} B-J_{0} B J_{0} A-A B+B A-J\left(J_{0} A B-B J_{0} A+A J_{0} B-J_{0} B A\right)=0
$$

$\forall A, B \in u(2 n), \quad N_{J}(A, B)=0$ by hypothesis,
$\forall A \in u(2 n), \forall B \in s(2 n)$,
$N_{J}(A, B)=\left[J_{1}(A), J_{0} B\right]-[A, B]-J_{0}\left[J_{1}(A), B\right]-J_{0}\left[A, J_{0} B\right]=$

$$
\begin{array}{r}
J_{1}(A) J_{0} B-J_{0} B J_{1}(A)-A B+B A-J_{0} J_{1}(A) B+J_{0} B J_{1}(A)- \\
J_{0} A J_{0} B-B A=0 .
\end{array}
$$

$2 \Rightarrow 1$: as $N_{J_{1}}=N_{J \mid u(2 n)}, J_{1}$ is obviously integrable;

$$
\forall A \in s(2 n), \quad 2 J_{0} A=\left[J_{0}, A\right]=J(A)+J_{0} J(A) J_{0}=2 J(A)=2 J_{2}(A) .
$$

Definition 3. - A complex structure on $\mathbb{R}^{4 n} \oplus \mathfrak{D}(4 n)$ is of type $\left(J_{0}, J_{1}, J_{2}\right)$ if it is given by the sum of the standard complex structure on $\mathbb{R}^{4 n}$, of any complex structure J_{1} on $\mathfrak{u}(2 n)$ and of any complex structure J_{2} on $s(2 n)$.

A complex structure $\left(J_{0}, J_{1}, J_{2}\right)$ is of integrable type if J_{1} is integrable and J_{2} is the standard structure on $s(2 n)$ defined by $J_{2}(X)=J_{0} X$ (matrix multiplication).

It is important to mention that integrable structures on $\mathfrak{l l}(2 n)$ exist (cfr. [Mo]) and have been extensively studied (cfr. [Sn]).

We will now examine the integrability of constant almost complex structures on $S O_{g}(M)$ induced by structures of type (J_{0}, J_{1}, J_{2}).

Theorem 2. - Let (M, g) be a $4 n$-dimensional oriented Riemannian manifold.

Let y be the constant almost complex structure on $S O_{g}(M)$ induced by a structure of type $\left(J_{0}, J_{1}, J_{2}\right)$.

Then J is integrable if and only if

1. $\left(J_{0}, J_{1}, J_{2}\right)$ is of integrable type.
2. (M, g) has the following property:
$n=1:(M, g)$ is an autodual Einstein manifold (i.e. $\left.Z \equiv W^{-} \equiv 0\right)$.
$n>1:(M, g)$ has constant sectional curvature.

Proof. - Given the additional hypotheses on \mathfrak{J}, the preceding lemma shows that condition (1) is equivalent to the first condition of theorem 1 . We therefore only need to prove that condition (2) is equivalent to the second condition of theorem 1 .

As usual, let $J:=J_{1} \oplus J_{2}$ denote the complex structure on $\mathfrak{p}(4 n)$.
Notice that, as $J(s(2 n)) \subseteq s(2 n)$, the second condition of theorem 1 may be simply expressed by $[\Omega, J]_{\mid s(2 n)}=0$.

On the other hand, lemma 2 shows that (M, g) has constant sectional curvature if and only if $\Omega=\lambda I d$, while previous considerations prove that, in the case $n=1,(M, g)$ is an Einstein manifold with $W^{-} \equiv 0$ if and only if $\Omega_{\mid 0-(4)}=\lambda I d$.

To prove the theorem, it is thus sufficient to prove that $\left.[\Omega, J]\right|_{s(2 n)}=0$ if and only if

$$
\begin{aligned}
& n=1: \Omega_{\left.\right|_{0-}(4)}=\lambda I d, \\
& n>1: \Omega=\lambda I d .
\end{aligned}
$$

One of the two implications is obvious: that $\Omega_{\left.\right|_{0_{-}(4)}}=\lambda I d$ and $\Omega=\lambda I d$ imply $[\Omega, J]_{\mid s(2 n)}=0$.

We will prove the viceversa in two steps, by showing

1. $[\Omega, J]_{\mid s(2 n)}=0 \Rightarrow \Omega(\operatorname{ad}(g) s(2 n)) \subseteq \operatorname{ad}(g) s(2 n), \quad \forall g \in S O(4 n)$.
2. $\Omega(\operatorname{ad}(g) s(2 n)) \subseteq \operatorname{ad}(g) s(2 n) \Leftrightarrow\left\{\begin{array}{l}n=1: \Omega_{\left.\right|_{0_{-}(4)}}=\lambda I d, \\ n>1: \Omega=\lambda I d .\end{array}\right.$
1) Let $\left[\Omega_{u}, J\right]_{\mid s(2 n)}=0, \forall u \in P$.

In particular, $\left[\Omega_{u g}, J\right]_{\mid s(2 n)}=0, \forall g \in S O(4 n)$.
We saw that $\Omega_{u g}=a d\left(g^{-1}\right) \circ \Omega_{u} \circ a d(g), \forall g \in S O(4 n)$.
Let $X \in s(2 n)$ and $g \in U(2 n)$. Then

$$
\operatorname{ad}(g) X \in s(2 n) \quad \text { and } \quad \operatorname{ad}(g) J(X)=\operatorname{ad}(g) J_{0} X=J_{0} \operatorname{ad}(g) X=J \operatorname{ad}(g) X
$$

so that, combining the above expressions,

$$
\begin{aligned}
0=\left[\Omega_{u g}, J\right]_{\mid s(2 n)}=\left[\operatorname{ad}\left(g^{-1}\right) \Omega_{u} \operatorname{ad}(g), J\right]_{\mid s(2 n)}=\left[\operatorname{ad}\left(g^{-1}\right), J\right]_{\mid \Omega_{u}(s(2 n))}, & \\
& \forall g \in U(2 n) .
\end{aligned}
$$

This is enough to prove that $\Omega(s(2 n)) \subseteq s(2 n)$: by denoting with Δ the projection of $\Omega(s(2 n))$ onto $\mathfrak{l}(2 n)$ with respect to the decomposition $\mathfrak{p}(4 n)=$ $\mathfrak{u}(2 n) \oplus s(2 n)$, all we must do is to show that $\Delta=0$.

As $[\operatorname{ad}(g), J]_{\mid s(2 n)}=0$, the above expression implies that

$$
[\operatorname{ad}(g), J]_{\mid \Delta}=0, \quad \forall g \in U(2 n) .
$$

Let $\tilde{\Delta}:=\{X \in \mathfrak{l}(2 n):[\operatorname{ad}(g), J] X=0\}, \forall g \in U(2 n)$.
It is easy to show that $\tilde{\Delta}$ is an ideal of $\mathfrak{u}(2 n)$ and that $J(\tilde{\Delta}) \subseteq \tilde{\Delta}$. In particular, $\tilde{\Delta}$ has even dimension. As $\mathfrak{u}(2 n)$ is reductive with decomposition
$\mathfrak{u}_{0}(2 n) \oplus \mathbb{R} J_{0}$ and $\mathfrak{u}_{0}(2 n)$ is a simple odd-dimensional ideal, $\tilde{\Delta}=\mathfrak{v}(2 n)$ or $\widetilde{\Delta}=0$.

Suppose $\tilde{\Delta}=\mathfrak{D}(2 n)$, so that the Lie group associated to $\tilde{\Delta}$ would be $U(2 n)$. J would define on $U(2 n)$ a (left invariant) complex structure which, because $[\operatorname{ad}(g), J] \equiv 0$, would make $U(2 n)$ a complex Lie group. This is impossible, as $U(2 n)$ is compact and any compact complex Lie group is abelian.

If follows that $\tilde{\Delta}=0$, so, in particular, $\Delta=0$.
This proves that $\Omega_{u}(s(2 n)) \subseteq s(2 n), \forall u \in P$.
In particular,

$$
\Omega_{u g}(s(2 n)) \subseteq s(2 n), \quad \forall g \in S O(4 n)
$$

i.e. $\quad \Omega_{u}(\operatorname{ad}(g) s(2 n)) \subseteq \operatorname{ad}(g) s(2 n), \quad \forall g \in S O(4 n)$.
2) Remembering that Ω is symmetric, it is essentially the content of the final lemma.

Lemma 4. - Let $\Omega \in \operatorname{End}(\mathfrak{D}(4 n))$ be symmetric with respect to the standard metric on $\mathfrak{D}(4 n)$. Then the following conditions are equivalent:

1. $\Omega(\operatorname{ad}(g) s(2 n)) \subseteq \operatorname{ad}(g) s(2 n), \quad \forall g \in S O(4 n)$.
2. $\left\{\begin{array}{l}n=1: \Omega_{l_{0-(4)}}=\lambda I d, \\ n>1: \Omega=\lambda I d .\end{array}\right.$

Proof. - $1 \Rightarrow 2$: Let us define

$$
P: \mathfrak{D}(4 n) \rightarrow \mathfrak{l}(2 n) \quad \text { orthogonal projection. }
$$

The definition of $\mathfrak{u}(2 n)$ shows that $P=\frac{1}{2}\left[I+\operatorname{ad}\left(J_{0}\right)\right]$.
Since $\operatorname{ad}(g)$ is an isometry of $\mathfrak{D}(4 n), \Omega$ is symmetric and $\mathfrak{u}(2 n) \perp s(2 n)$,

$$
\Omega(\operatorname{ad}(g) s(2 n)) \subseteq \operatorname{ad}(g) s(2 n) \Rightarrow \Omega(\operatorname{ad}(g) \mathfrak{u}(2 n)) \subseteq \operatorname{ad}(g) \mathfrak{u}(2 n)
$$

It follows that $s(2 n)$ and $\mathfrak{u}(2 n)$ are invariant for the family $\operatorname{ad}\left(g^{-1}\right) \circ \Omega \circ \operatorname{ad}(g)$, i.e.
$\left[\operatorname{ad}\left(g^{-1}\right) \circ \Omega \circ \operatorname{ad}(g), P\right]=0, \quad$ i.e.
$\left[\Omega, \operatorname{ad}(g) \circ P \circ \operatorname{ad}\left(g^{-1}\right)\right]=0, \quad$ i.e.
$\left[\Omega, \operatorname{ad}\left(g J_{0} g^{-1}\right)\right]=0, \quad \forall g \in S O(4 n)$
Let $H:=\left\langle\left\{g J_{0} g^{-1}: g \in S O(4 n)\right\}\right\rangle$.
H is, algebraically, a normal subgroup of $S O(4 n)$ so \bar{H} is a normal Lie subgroup of $S O(4 n)$.

We must now distinguish between the cases $n=1, n>1$.
If $n>1, S O(4 n)$ is a simple Lie group so $\bar{H}=S O(4 n)$. It is easy to see that

$$
[\Omega, \operatorname{ad}(h)]=0, \quad \forall h \in \bar{H}, \quad \text { i.e. }[\Omega, \operatorname{ad}(g)]=0, \quad \forall g \in S O(4 n) .
$$

By Shur's lemma, $\Omega=\lambda I+\mu J$ for some $J: J^{2}=-I d$.
Since Ω is symmetric, Ω is diagonalizable; as J isn't diagonalizable, it must be $\mu=0$, i.e. $\Omega=\lambda I$.

If instead $n=1$, as seen above, \bar{H} is the normal proper subgroup of $S O(4)$ corresponding to \mathfrak{D}_{-}(4).

As before, this implies that

$$
[\Omega, \operatorname{ad}(h)]=0, \quad \forall h \in \bar{H}
$$

Notice now that

$$
\operatorname{span}\{\operatorname{ad}(g) s(2 n): g \in S O(4)\}=\mathfrak{o}_{-}(4),
$$

as $s(2 n) \subseteq \mathfrak{D}_{-}(4)$ and $\mathfrak{D}_{-}(4)$ is a simple ideal of $\mathfrak{p}(4)$. It follows that $\Omega\left(\mathfrak{D}_{-}(4)\right) \subseteq$ $\mathrm{D}_{-}(4)$, so that

$$
\left[\Omega_{\mid 0_{-}(4)}, \operatorname{ad}(h)_{\mid 0_{-}(4)}\right]=0, \quad \forall h \in \bar{H}
$$

Applying Shur's lemma to $\Omega_{\mid \mathfrak{0}_{-}(4)}$, we find $\Omega_{\mid \mathfrak{0}_{-}(4)}=\lambda I$.

$$
2 \Rightarrow 1: \text { Obvious, because } \operatorname{ad}(g) s(2) \subseteq \mathfrak{D}_{-}(4), \forall g \in S O(4)
$$

The second condition of theorem 2 requires a final consideration.
Up to Riemannian covering space equivalence and connectedness, complete Riemannian manifolds with constant sectional curvature k have been classified: depending on the sign of k (and disregarding an eventual normalization of the metric), they are either S^{n}, \mathbb{R}^{n}, or the hyperbolic space with their standard metrics.

When (M, g) is one of these three models, it is well known that $S O_{g}(M)$ is a Lie group, as it is diffeomorphic to the group of isometries of (M, g).

In general, when (M, g) is a generic Riemannian manifold with constant sectional curvature, $S O_{g}(M)$ is modelled on a Lie group, in the sense of having an atlas in which the transition functions are Lie group isomorphisms.

Regarding autodual Einstein manifolds, note that the scalar curvature s is constant. In the compact case (again disregarding metric normalization),

Hitchin provides a classification when $s \geqslant 0$:
$\left\{\begin{array}{l}s>0:(M, g) \text { is isometric to } S^{4} \text { or } C P^{2} \text { with their standard metrics, } \\ s=0:(M, g) \text { is either flat or its universal covering space is a } K 3 \\ \text { surface with the Calabi-Yau metric }\end{array}\right.$
For further details, cfr. [Be].
No such classification is known for the case $s<0$; the only known examples of such manifolds are the compact quotients of the real and complex hyperbolic spaces.

REFERENCES

[Be] A. Besse, Einstein Manifolds, Springer-Verlag, Berlin (1987).
[KN] S. Kobayashi - K. Nomizu, Foundations of differential geometry, John Wiley and Sons, N.Y. (1969).
[Mo] A. Morimoto, Structures complexes sur le groups de Lie semi-simples, C.R., 242 (1956), 1101-1103.
[NN] A. Newlander - L. Nirenberg, Complex analytic coordinates on almost complex manifolds, Ann. of Math., 65 (1957).
[Sn] D. Snow, Invariant complex structures on reductive Lie groups, J. reine angew. Math., 371 (1986), 191-215.

> Dept. of Mathematics, Pisa University, Italy e-mail: pacini@dm.unipi.it.

