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Complex Structures on SO, (M).

TomMMASO PACINI

Sunto. — Data una varieta Riemanniona orientata (M, g), il fibrato principale
SO, (M) di basi ortonormali positive su (M, g) ha una parallelizzazione canonica
dipendente dalla connessione di Levi-Civita. Questo fatto suggerisce la definizione
di una classe molto naturale di strutture quasi-complesse su (M, g). Dopo le neces-
sarie definizioni, discutiamo qui Uintegrabilita di queste strutture, esprimendola
m termini della struttura Riemanniana ¢.

1. — Introduction.

Let M be a smoothly parallelizable m-dimensional differentiable manifold.
A parallelization of M is, basically, the choice of an isomorphism between the
tangent plane 7, M and R™ that varies smoothly with respect to the parameter
x e M. Such a choice allows one to smoothly transfer a fixed structure, such as
a complex structure, from R™ to the tangent bundle M over M, thus giving M
the additional structure of, for example, an almost complex manifold.

This is enough to prove that any even-dimensional parallelizable manifold
admits an almost complex structure.

Let us now consider, for a fixed oriented m-dimensional Riemannian mani-
fold (M, g), the SO(m)-principal fibre bundle of positively oriented orthonor-
mal frames on (M, g): call it SO,(M), and let 7: SO, (M) — M be the usual
projection.

It is well known that SO, (M) possesses a standard parallelization. It is de-
fined as follows.

Given a principal fibre bundle P()M, G), the action of the Lie group G on
the total space P induces a homomorphism o of the Lie algebra g of G into the
Lie algebra A°(TP) of vector fields on P.

For A e g, we will denote o(A) by A*.

For ue P, let V, be the tangent space to the fibre in u.

Since the action of G sends each fibre into itself, for each u € P o induces a
homomorphism o,: g —7V,, defined by A~ A which is an isomorphism be-
cause G acts freely on P and dim (g) = dim (V).

We have thus proved that for each u € SO,(M), V,, is canonically isomorphic
to the Lie algebra o(m) of SO(m).
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Consider now a connection on SO,(M), i.e. a right-invariant distribution
H on SO,(M) such that for all uweSO,M), H,®V,=T,S0,(M).

The differential of & at u, 7, [ul: T, SO,(M) — T, M, restricts to an iso-
morphism between H, and 7T, M, which we will continue to denote by 7. [«].
Remember that each u € SO, (M) is a basis of T, M; the frame u = {u,} pulls
back to a frame of H, and thus defines the isomorphism

BH: Rﬂb%Hﬂ’
e;i—> 1 [ul M (uy),

where {e;} is the standard basis of R™.

We have thus shown that any connection defines an isomorphism (which is
smoothly dependent on u) between 7', SO,(M) = H,®V, and R" ® o(m), i.e. a
parallelization of SO,(M).

In what follows we will sometimes not specify the subscripts of the above
isomorphisms, so as to avoid a too cumbersome notation.

The particular structure of this parallelization suggests a refinement of the
previous construction. Namely, we define an almost complex structure on
SO,(M) by transfering a fixed structure on R™ to H, and a fixed structure on
o(m) to V,, via the above isomorphisms. This requires, as only additional hy-
potheses, that R™ and o(m) admit complex structures, i.e. that they be even-
dimensional. A quick calculation shows this to be true when m = 4n.

The goal of this article is to examine the integrability of such a class of al-
most complex structures. To do this, we fix the connection to be the Levi-Civi-
ta connection on SO, (M) induced by g and the structure on R*" to be the stan-
dard complex structure J,. The structure J on 0(4#n) has, instead, no a priori
restrictions.

It quickly becomes apparent that integrability requires additional hy-
potheses on J, i.e. that J be compatible both with J, and with g in the sense de-
fined by theorem 1. Though clearly expressed, these conditions are of a fairly
technical nature. We therefore proceed to show how a natural strengthening
of our initial hypotheses suffices to express the above conditions in a much
more elegant manner: theorem 2 basically states that, under the right hy-
potheses, the class of almost complex structures on SO,(M) is integrable if
and only if

n=1:(M, g) is an autodual Einstein manifold ,
{ n>1:(M, g) has constant sectional curvature .

The author wishes to thank professor de Bartolomeis for suggesting the

problem and for his help in reaching this solution.
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2. — Preliminaries.

Let (M, g) be an oriented 4n-dimensional Riemannian manifold.

Let SO,(M) be the associated SO(4n)-bundle of positive orthonormal
frames.

We will adopt the following notation:

P:=80,(M),

0(4n): = Lie algebra of SO(4n): antisymmetric R-valued matrices .
R: SO(4n)— Diff (P) action of SO(4n) on P,

g Rg.
Let B and 7., be the isomorphisms defined in par. 1 and let « : = [« ]. Then
the following diagram is commutative:

H, —T.,M

e

R4 n i > R4n

! simply associates to each vector in 7, M its coordinates with re-

where u ~
spect to u.

Notice that, as » is an orthonormal frame, u ~" is an isometry between
(T,M, g,) and R*" with the standard euclidean metric.

Let H be the Levi-Civita connection on P and £ be its curvature. We recall
that Qe A%2(P)®0(4n), i.e. is a o(4n)-valued 2-form on P.

In a standard way, each £, can be alternatively viewed as an element of
End(0(4n)). Let us review the reasoning.

£ has the property that 2,(X, Y) =0 if YeV,. It follows that 2, can be
viewed, with no loss of information, as Q, e A%(H,*) ® o(4n) or, through the
isomorphism B, as 2, e A2(R*)* @ o(4n).

If we now identify A4%(R*") with 0(4n) via the canonical isomorphism

1

A2(R¥™)—0(4n)
1
ENn— > (E'p—7n'E)  (matrix multiplication),
we get Q,e0(4n)* ®o(4n), i.e. 2,cEnd(o(4n)).

It may be useful to underline the fact that, according to the above conven-
tions, Q,(BE, By) = Q,(EAnR), VE, neR™
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The following lemma translates the usual properties of Q into this new
setting:

LEMMA 1. - 1. Vge SO(4n), 2, cad(g) = ad(g) - 2,,.

2. Q, is symmetric with respect to the standard metric on o(4n).

PrOOF. — 1) Let us first prove that (R,).[«] B, & = B,,(g ~1£): the fact that
the connection H is R-invariant shows that

(R,)[u] B,&=B,,n for some neR"
the fact that & - R, =7 shows that
ylul B, & = mwy[ugl(Ry)s[u] B, & = i [ugl B,yn
finally, the commutativity of the above diagram implies that
n=(ug) ‘7 [ugl Byn = (ug) 'mylulB,E=g ‘u 'm,[ulB,E=g '&.

The proof of the first claim is then based upon the fact (cfr. [KN]) that Q
has the property that

Vg e SO(4n), VX, YeT,P,
Q.,,(R)[u] X,(R)[u]Y)=ad(g ™) 2,X,Y).
This leads to:
ad(g) OQM(EAU) = 3d(g) Qu(BE? B77) =

'ng’I ((Rgfl)* [u] Bu E’ (Rgfl)* [u] Bun) = ng’l (Bugfl(gg)y Bugfl(gn)) =

Q. 1(gENGN) = Q51 0ad (9UENAY).

2) The standard metric on o(4n) is (M, N):= —trMN. It is easy to
check that

VMeo(dn), Va,BeR*™, (M,aAB)=—Ma,p)

where the product on the right-hand side is now the usual metric on
R*",

Let &, 5,0, BeR* and let X, Y, A, B be the corresponding vectors in
Ty M.

Let R be the curvature tensor on (M, g) of type (4,0), so that
R(X,Y,A,B)=(Q,(EAD a, ).
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The proof of the second claim is then based upon the well known fact that
RX,Y,A,B)=R(A,B, X, Y):

(974(5/\77), a/\ﬁ) = - ('Qu(g/\”) a, ﬁ) =
_R(X) Y’A5 B) = _R(A, B7Xa Y)=- (-Qu(a/\ﬁ) E, 77)2
(QuaAB), EAD=ENAR, L, (aNp). =

It is well known that (M, ¢g) has constant sectional curvature c if and only
if

RX, V) Z=cgZ, VX~ g(Z,X)T)

where R is now the curvature tensor of type (3,1) on (M, g).
The following lemma translates this in terms of 2, End(0(4n)).

LEMMA 2. — (M, g) has constant sectional curvature if and only if
Q= Ald.

PROOF. — Recall that, according to the usual definitions, if &, 7, { e R*" are
the coordinates of X, Y, Z e T, M with respect to the basis u, then Q ,(EAn)
is simply the matrix with respect to u of R(X, Y) e End(T,M).

It follows that v 'R(X,Y)Z =2 ,(EAn)E, so that

QEND =MENAD < QEANE=MEAN L, VieR™
< u 'RX,Y) Z=M2E"nE —n'E) =42E9Y, Z) - n9(X, Z)), VieR"
s RX,VZ=120Z, VX-9Z,X)Y). =

Let us end this section with the following

DEFINITION 1. — (M, g) is an Einstein manifold if Ric = Ag, where Ric is
the Ricci tensor and A is a constant.

It is a well known fact that, if dim M =4, (M, ¢) is an Einstein manifold if
and only if Ric =g where Ae C”(M).
3.—Some almost complex structures on SO, (M) and their integrability.

0-1I
Let J, denote both the 4n X 4n (or 2n X 27, as needed) matrix [1 o ] and
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the complex structure on R*" defined by:

R4n N R4'n
x—Jyx  (matrix multiplication).
Let J be any complex structure on o(4n).
As seen in the introduction, we define an almost complex structure J§ on P
in the following way:
51T,P—T,P,
JlHu: = BH OJO OBZL_17
Ji=0go0d ooyt
We will call ;f the «constant almost complex structure induced by a complex
structure of type (Jy, J)».
We want to investigate the integrability of ;. The main tool for this is pro-
vided by a classical theorem by Newlander and Nirenberg (cfr. [NN]), which

states that an almost complex structure [ on a manifold is integrable if and
only if Ny= 0, where N, is the Nijenhuis tensor defined by

Ny(X, Y):=[3X, Y] - [X, Y] = Jl3X, Y] = JIX, §Y].

Performing this calculation in our case requires a closer look at the struec-
ture of 0(4n) and of the curvature tensor. For this purpose, we introduce the
following notation.

Sym(n):= {n x n real symmetric matrices},

Symy(n):={AeSym(n):trA=0},

u(n):={Aeo(@n):AJy=JyA} = {[i ST]: Seo(n), TeSym (n)},

wm:= 2 7T seom), Tesympm)
On.—ﬂ:T S:|. e b(n), Eyn'lon},

S T
s(n):={Aeo(2n): AJy= — JyA} = {[T S]: S, Te 0(%)}.

It is well known that 11(%) is the Lie algebra of the group of unitary matri-
ces U(n) and that 115(n) is the Lie algebra of the group of special unitary ma-
trices SU(n).

Let 0(4n) have the usual metric:

(A,B):=trA'B= —trAB.
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Then the equality

A= A_ZJOA + A+2J°A . VAco(2n)

shows that
0(2n) =u(n)Psn), orthogonal decomposition .
Notice also that
u(n) =1uy(n) BRI, orthogonal decomposition .

The algebra 115(n) is simple.
The algebra o(n) is simple if and only if » = 4.
The algebra 0(4) is semisimple with orthogonal decomposition

0(4) =0, (4)D0o_(4)

where 0, (4) and o_(4) are simple ideals defined as the eigenspaces of the
involution

¢:0(4) — 0(4)

0 a b ¢ 0 f —e d
—a 0 d e -f 0 c -b
— .
-b —c¢ 0 f e —-c 0 a
-¢c —e —f O -d b -a 0

It can easily be seen that 0, (4) =1,(4) and that 0_(4) = RJ,® s(2); this
leads us quickly to a characterization of the corresponding normal subgroups
of SO(4).

The subgroup corresponding to 0, (4) is obviously SU(2).

Let SU(2) be the subgroup corresponding to o_ (4).

Since e ™0 =], Joeexp(0_(4)) so Jye SU(2).

As SU(2) is normal in SO(4), ad (g) J, € SU(2), Vg € SO(4).

As SU(2) is simple, it can thus be described as the closure of the Lie sub-
group generated by {ad(g) Jy: g€ SO(4)}.

Finally, it is interesting that neither the adjoint action of SU(2) on 0_(4)
nor of SU(2) on 0, (4) are irriducible.

Let us now go back to the curvature tensor €.

Let Sym (0(4n)) : = {¢ € End (0(4n)) symmetric with respect to the stan-
dard metric on 0(4n)}.

Lemma 1 shows that Q, € Sym (0(4n)).

Referring the reader to [Be] for further details, we recall that £, admits
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a canonical decomposition as sum of three elements in Sym (0(4%)); we will
write Q ,=E,+Z,+W,.

The decomposition shows that £, = AId while Z, and W, are traceless. Fur-
thermore, it shows that Z, = 0 if and only if (M, g) is an Einstein manifold,
and that W, = Z, = 0 if and only if (M, ¢g) has constant sectional curvature. W,
is known as the Weyl tensor.

When % =1 and one considers the splitting 0(4) =0, (4) @ 0_(4), it can be
shown that W,(0,(4))co,(4), W,(0_(4))co_(4), Z,(0,(4))co_(4),
Z,(0_(4))co,(4). Furthermore, Zgo. o =tZu|07(4).

If follows that, with respect to the above splitting of 0(4) and omitting the
subscripts, £, admits the block-matrix representation

o W+ + Ald Z
tz W~ +ald]|’

where W' :=W, ), W :=W]|oy and Z :=Z, 4.

It is also true that W+ and W~ are traceless operators; they are the positi-
ve and negative Weyl tensors, respectively.

We can now go back to our initial problem of studying the integrability of .

DEFINITION 2. — A complex structure J on a Lie algebra g is integrable if
the left-invariant almost complex structure induced by J on the correspond-
g Lie group G is integrable, or, equivalently, if

N; X, Y):=[JX,JY]-[X,Y]-J[JX, Y] -J[X,JY]=0, VX, Yegqg.

We can now prove the following

THEOREM 1. — Let (M, g) be a 4n-dimensional oriented Riemannian
manifold.

Let J be the constant almost complex structure on SO,(M) induced by a
structure of type (Jy, J).

Then 4 is integrable if and only if the following two conditions are
satisfied:

1. J is ntegrable and satisfies the following compatibility condition
with respect to J,:

VXeo(dn), [Jo, X]=JX)+JoJ(X)Jy.

2. 2, X)=JR2,X) VueP, VXes(2n).

PRrOOF. — The proof is basically the calculation of the Nijenhuis tensor N,
on P defined above.
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As Ny is a tensor, Ny=0 if and only if the following three cases
are true:
1. Ny(X*,Y*)=0, VX, Yeo(4n).
2. Ny(X*, BE) =0, VEeR", VX e n(4n).
3. Ny(BE, By) =0, V&, neR"™
We will consider the three cases separately.
1) N(X*, V¥) = [3X*, 57*] = [X*, V*] = J[4X*, V*] - J[X*, V*] =
[((JXO*, (JY)*] = [X*, Y*] = J[(JX)*, Y*] - J(X*,(JY)*] =
[JX, JYI* - [X, Y]* = (JIJX, YD)* — (JIX, JYD*,

where the final identity follows from the fact that the above mentioned
o: 0(4n) > A°(TP) is a Lie algebra homomorphism.
Therefore

N(X*, Y*)=0 = [JX, JY]- [X, Y]-J[X, JY]-J[JX, Y]=0
so that
N(X*,Y*)=0, VX, Yeon(4n)<J is integrable .
2) We first show that [X*, BE] = B(XE&).

Let a;:=exp (tX).

Notice that X* is, by definition, the vector field induced by the 1-par-
ameter group of diffeomorphisms E,,.

Remember (cfr. proof of lemma 1) that dR,[u](B,&) =B, (g *&).
Then:

BE—dR, [a(—1)](BE) _ lim BE — B(a(t) ™' &) _
t t—0 t

[X*, BE] = lim

B (lim s-exp(Zt) ¢ eXpt( —t0¢ )

t—0

d
:BE( —exp(—tX) &)|;-o=B(XE).

Consequently:
Ny(X*, BE) = [JX*, JBE] — [X*, BE] = JlaX*, BE] — JIX ™, yBE] =
[(JX)*, B(Jy&)] — B(XE) — I(JX)*, BE] — X *, B(Jy8)] =

B(J(X) Jy &) — B(X§) — B(JyJ(X) §) — B(Jy X/ &).
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Therefore
N(X*, B =0 < J(X) Jy& - XE—JoJ(X) §E—Jy X E=0
so that
N(X*, B =0, V&= JX)J,—X—-JyJ(X)—JyXJ,=0.
Left multiplication by J, proves that
N(X*, B§) =0, V& VX = [Jy, X]=JX)+J,J(X)Jy,, VX.

3) We first prove that [BE, Byl eV,.
Let 6 be the unique R*"-valued 1-form on P such that

0X)=0, VXeV, and 6(B&=¢§.

0 defines a R*"-valued 2-form, called the torsion of the connection, in the fol-
lowing way:

OX, Y):=doX", Y")

or, equivalently,
1
OX,Y):= 3 {X"o(y" - vhox" - ox", Y"1,

where X", Y" denote the horizontal components of X, Y.
Recall that, by definition, the Levi-Civita connection has @ = 0.
Since O(B&) and 6(Bn) are constant, it then follows that

Q[B‘S’ B']] = - 2@(35’ B’]) =0
that is,
[BE, BnleV,.

Let w be the o(4n)-valued 1-form defined on P by the connection. We re-
call that

wX)=0, VXeH,
and that

QX,Y)=do(X", Y") = %{X’M)(Y’Z) —Y'o(X") - olX", Y"]}.

From the preceding result it follows that N,(B&, Bn)eV,, so that
N,(B&, Bn) =0 < oN(B&, Bn) =0.
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Noticing that w[BE, Byl = — 2Q(BE&, Bn) and w}=Jw proves that
Ny(BE, By) =0 < Q(BJy&, BJyn) — 2(BE, By) —

JQBJy&, By) — JQABE, BJyn) =0.

Let us now use the identification described in par. 1, viewing Q, as
Q,: A2(R*¥™) = 0(4n).
The above translates as

Ny(BE, By) =0 < QJoENJon —ENN) =JQJoENR+ENTo1).

We now, as before, identify A2(R*") with o(4n). Then JoEAJon —EAR
corresponds to an element X e s(27n), as can easily be seen by proving that it
anticommutes with Jy, and JoEAn +ENJyn = —Jy X, so that

N,(BE, Bn) =0 < QX) =JQ(-JyX)
We can then conclude that
N(BE&, By) =0 V&, n < QJyX) =JQ2(X) VXes(2n). ]

The two conditions appearing in theorem 1 are of different nature. The
first is algebraic, in the sense that, being ./, fixed, it concerns only the complex
structure J on the Lie algebra 0(4n). The second is twistor-like, in the sense
that it implies a compatibility between the metric g and the complex structure 1.

The canonical splitting 0(4n) = u(2n) P s(2n) suggests restricting our at-
tention to those J’s such that J(11(2%)) cu(2n), J(s(2n)) c s(2n), i.e. defined as
the sum of a complex structure J; on 11(2n) and a complex structure J, on
s(2n): we will say that J is of type (Jy, J5).

The following lemma shows that, when J is of type (J;, J5), condition (1) of
theorem 1 can be reformulated in a much simpler manner:

LEMMA 3. — Let J be a complex structure on o(4n) of type (J1, J3).
The following conditions are equivalent:

1. J; is integrable;
VAes(2n), Jy(A)=J,A (matric multiplication).
2. VA eo(dn), [Jy, Al =J(A) + JyJ(A)Jy; J is integrable.
Proor. - 1=2:
VAes(2n), [Jy, Al=JyA—AJy=J(A)+J§AJy=J(A)+ JyJ(A) J,,

VAeuZn), [Jy,Al=0=JA)+JyJ(A)J,,
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VA, Bes(2n), N;A, B)=1[J,4A, JyB]l—-1[A, B]-J[J,A, BI-JIA, JyB] =
JyAJyB —JyBJyA —AB + BA - J(JyAB — BJyA+AJyB —JyBA) =0,
VA, Beu(2n), N;(A, B) =0 by hypothesis,
VA eu(2n), VBes(2n),
N;(A, B) =[J,(4), JyB] = [A, B] - Jy[J1(A), B] = JylA, JyB] =
J1(A)JyB —JyBJ,(A) —AB + BA — JyJ,(A) B+ JyBJ,(A) —
JyAJyB—BA=0.
2=1: as Nj = Njju2n, J1 is obviously integrable;

VAes(Zn), 2J0A=1[Jy, Al=JA)+ JyJ(A)Jy=2J(A) =2J5(A). ]

DEFINITION 3. — A complex structure on R*" @ o(4n) is of type (Jy, J1, J5)
if it is given by the sum of the standard complex structure on R*", of any com-
plex structure J, on 1(2n) and of any complex structure J, on s(2n).

A complex structure (Jy, J1, J3) is of integrable type if J; is integrable and
Jy 1s the standard structure on s(2n) defined by Jo(X) =J,X (matrix
multiplication,).

It is important to mention that integrable structures on u(2#%) exist (cfr.
[Mo]) and have been extensively studied (cfr. [Sn]).

We will now examine the integrability of constant almost complex struc-
tures on SO,(M) induced by structures of type (Jy, Ji, J2).

THEOREM 2. — Let (M, g) be a 4n-dimensional oriented Riemannian
mamnifold.

Let J be the constant almost complex structure on SO,(M) induced by a
structure of type (Jy, J1, J5).

Then j s integrable if and only if

1. (Jy, J1, J2) s of integrable type.
2. (M, g) has the following property:
n=1:(M, g) is an autodual Einstein manifold (t.e. Z=W~ =0).

n>1:(M, g) has constant sectional curvature.

ProoF. — Given the additional hypotheses on 4, the preceding lemma shows
that condition (1) is equivalent to the first condition of theorem 1. We there-
fore only need to prove that condition (2) is equivalent to the second condition
of theorem 1.
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As usual, let J :=J;®J, denote the complex structure on o(4n).

Notice that, as J(s(2n)) Cs(2n) the second condition of theorem 1 may be
simply expressed by [2, /], =

On the other hand, lemma 2 shows that (M, ¢g) has constant sectional cur-
vature if and only if Q = Ald, while previous considerations prove that, in the
case n=1, (M, g) is an Einstein manifold with W~ =0 if and only if
Q [o_(4) = i]d

To prove the theorem, it is thus sufficient to prove that [2, J] |z, =0 if
and only if

n=1: 9‘07(4)=ild,

n>1: Q=21d.

One of the two implications is obvious: that Q| = Ald and £ = Ald imply
[Q J]li(Zn)
We will prove the viceversa in two steps, by showing

1. [Q,J]|s(2”)=0:>9(ad(g) s(2n))cad(g) s(2n), VgeSO(4n).

n=1: 2, , =4id,

2. Qad(g) s(2 d(g) s(2
(ad (9) s(2n)) cad(g) s( n)c){n>1;9=ﬂd-

1) Let [Qu; J]|s(2n)=0v VYueP.

In particular, [£2,,, /142, =0, Vg SO(4n).
We saw that Q,,=ad(g ') «Q, cad(g), Vg e SO(4n).
Let Xes(2n) and ge U(2n). Then

ad(g) Xes(2n) and ad(g)J(X)=ad(g)JyX=Jyad(g) X=Jad(g) X
so that, combining the above expressions,
0=1[Q.5, Ijsem = [ad(g ") 2,2d(9), J]js2n = [ad (g 1), T]0, 20>
Vge U(2n).

This is enough to prove that 2(s(2n)) ¢ s(2n): by denoting with A the pro-
jection of Q(s(2n)) onto 11(2%) with respect to the decomposition 0(4n) =
u(2n) @ s(2n), all we must do is to show that 4 =0.

As [ad(g), J ]|9(2n) 0, the above expression implies that

[ad(9), J14,=0, VgeU(2n).

Let A: = {XelI(Zn):[ad(g)LJ]XzO}, VgeU(2n). L
It is easy to show that A is an ideal of 1(2%) and that J(A)cA.
In particular, 4 has even dimension. As 11(2#%) is reductive with decomposition
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Eo(zm@RJo and 1,(2n) is a simple odd-dimensional ideal, A =0(2n) or
A4 =0.

Suppose A= 0(2mn), so that the Lie group associated to A would be U(2n).
J would define on U(2nr) a (left invariant) complex structure which, because
[ad (g), J]1 =0, would make U(2n) a complex Lie group. This is impossible, as
U(2n) is compact and any compact complex Lie group is abelian.

If follows that A =0, so, in particular, 4 = 0.

This proves that ,(s(2n))cs(2n), Vu e P.

In particular,

Q,,(s(2n))cs(2n),  VgeSO(4n),
te. ,d(g) s(2n))cad(g)s(2n), VgeSO(4n).

2) Remembering that 2 is symmetric, it is essentially the content of the
final lemma. ®

LEMMA 4. — Let Q2 eEnd(0(4n)) be symmetric with respect to the stan-
dard metric on 0(4n). Then the following conditions are equivalent:

1. Q(ad(g)s(2n))cad(g) s(2n), VgeSO(4n).

n=1: Q2 , =4iMd,
n>1: Q=71d.

ProoF. — 1 = 2: Let us define
P: o(4n)—u(2n) orthogonal projection .

1
The definition of 11(2%) shows that P = E[I+ ad (Jy)].

Since ad(g) is an isometry of 0(4n), £ is symmetric and
u(2n) L s(2n),

Q(ad(g) s(2n)) cad (g) s(2rn)=Q2(ad (g)1(2n)) cad (g) u(2n).

It follows that s(2n) and u(2n) are invariant for the family
ad(g 1) o Qoad(g), ie.

[ad(g ") o Qoad(g), P1=0, ie.

[2,ad(g) oPoad(g 1)]=0, e

[Q,ad(gJog D=0, VgeSO(4n)
Let H: = ({gJog ': geS0(4n)}).



COMPLEX STRUCTURES ON SO, (M) 653

H is, algebraically, a normal subgroup of SO(4n) so H is a normal
Lie subgroup of SO(4n).

We must now distinguish between the cases n=1, n> 1.

If n>1, SO(4n) is a simple Lie group so H =S0(4n). It is easy to see
that

[2,ad(R)]=0, VheH, e [2,ad(9)]=0, VYgeSO(4n).

By Shur’s lemma, Q = Al + uJ for some J: J%>= — Id.

Since £ is symmetric, 2 is diagonalizable; as J isn’t diagonalizable, it must
be u =0, ie. 2 =A11I.

If instead n = 1, as seen above, H is the normal proper subgroup of SO(4)
corresponding to o_(4).

As before, this implies that

[£2,ad(R)] =0, VheH.
Notice now that
span{ad(g) s(2n): ge SO(4)} =0_(4),

as s(2n) co_(4) and o_(4) is a simple ideal of 0(4). It follows that Q(0_(4))c
0_(4), so that

(20 ), ad(h)|y_)] =0, VheH.

Applying Shur’s lemma to 2|, (4), we find 2, 4 =41.
2 = 1: Obvious, because ad(g) s(2)co_(4), VgeSO(4). =

The second condition of theorem 2 requires a final consideration.

Up to Riemannian covering space equivalence and connectedness, com-
plete Riemannian manifolds with constant sectional curvature k& have been
classified: depending on the sign of k& (and disregarding an eventual normal-
ization of the metric), they are either S”, R", or the hyperbolic space with their
standard metrics.

When (M, g) is one of these three models, it is well known that SO, (M) is a
Lie group, as it is diffeomorphic to the group of isometries of (M, g).

In general, when (M, g) is a generic Riemannian manifold with constant
sectional curvature, SO, (M) is modelled on a Lie group, in the sense of having
an atlas in which the transition functions are Lie group isomorphisms.

Regarding autodual Einstein manifolds, note that the scalar curvature s is
constant. In the compact case (again disregarding metric normalization),
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Hitchin provides a classification when s = 0:

s>0:(M, g) is isometric to S*or CP? with their standard metrics,
s=0:(M, g) is either flat or its universal covering space is a K3

surface with the Calabi-Yau metric

For further details, cfr. [Be].

No such classification is known for the case s < 0; the only known examples
of such manifolds are the compact quotients of the real and complex hyperbol-
ic spaces.
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