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Complex Structures on SOg (M).

TOMMASO PACINI

Sunto. – Data una varietà Riemanniana orientata (M , g), il fibrato principale
SOg (M) di basi ortonormali positive su (M , g) ha una parallelizzazione canonica
dipendente dalla connessione di Levi-Civita. Questo fatto suggerisce la definizione
di una classe molto naturale di strutture quasi-complesse su (M , g). Dopo le neces-
sarie definizioni, discutiamo qui l’integrabilità di queste strutture, esprimendola
in termini della struttura Riemanniana g.

1. – Introduction.

Let M be a smoothly parallelizable m-dimensional differentiable manifold.
A parallelization of M is, basically, the choice of an isomorphism between the
tangent plane Tx M and Rm that varies smoothly with respect to the parameter
x�M. Such a choice allows one to smoothly transfer a fixed structure, such as
a complex structure, from Rm to the tangent bundle TM over M, thus giving M
the additional structure of, for example, an almost complex manifold.

This is enough to prove that any even-dimensional parallelizable manifold
admits an almost complex structure.

Let us now consider, for a fixed oriented m-dimensional Riemannian mani-
fold (M , g), the SO(m)-principal fibre bundle of positively oriented orthonor-
mal frames on (M , g): call it SOg (M), and let p : SOg (M) KM be the usual
projection.

It is well known that SOg (M) possesses a standard parallelization. It is de-
fined as follows.

Given a principal fibre bundle P(M , G), the action of the Lie group G on
the total space P induces a homomorphism s of the Lie algebra S of G into the
Lie algebra L 0 (TP) of vector fields on P.

For A�S, we will denote s(A) by A *.
For u�P, let Vu be the tangent space to the fibre in u.
Since the action of G sends each fibre into itself, for each u�P s induces a

homomorphism s u : SKVu defined by A O A *u which is an isomorphism be-
cause G acts freely on P and dim (S) 4dim (Vu ).

We have thus proved that for each u�SOg (M), Vu is canonically isomorphic
to the Lie algebra [(m) of SO(m).
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Consider now a connection on SOg (M), i.e. a right-invariant distribution
H on SOg (M) such that for all u�SOg (M), Hu 5Vu 4Tu SOg (M).

The differential of p at u, p*[u]: Tu SOg (M) KTp(u) M, restricts to an iso-
morphism between Hu and Tp(u) M, which we will continue to denote by p*[u].
Remember that each u�SOg (M) is a basis of Tp(u) M; the frame u4 ]ui ( pulls
back to a frame of Hu and thus defines the isomorphism

Bu : Rm KHu ,

ei O p*[u]21 (ui ) ,

where ]ei ( is the standard basis of Rm.
We have thus shown that any connection defines an isomorphism (which is

smoothly dependent on u) between Tu SOg (M) 4Hu 5Vu and Rm 5[(m), i.e. a
parallelization of SOg (M).

In what follows we will sometimes not specify the subscripts of the above
isomorphisms, so as to avoid a too cumbersome notation.

The particular structure of this parallelization suggests a refinement of the
previous construction. Namely, we define an almost complex structure on
SOg (M) by transfering a fixed structure on Rm to Hu and a fixed structure on
[(m) to Vu , via the above isomorphisms. This requires, as only additional hy-
potheses, that Rm and [(m) admit complex structures, i.e. that they be even-
dimensional. A quick calculation shows this to be true when m44n.

The goal of this article is to examine the integrability of such a class of al-
most complex structures. To do this, we fix the connection to be the Levi-Civi-
ta connection on SOg (M) induced by g and the structure on R4n to be the stan-
dard complex structure J0 . The structure J on [(4n) has, instead, no a priori
restrictions.

It quickly becomes apparent that integrability requires additional hy-
potheses on J, i.e. that J be compatible both with J0 and with g in the sense de-
fined by theorem 1. Though clearly expressed, these conditions are of a fairly
technical nature. We therefore proceed to show how a natural strengthening
of our initial hypotheses suffices to express the above conditions in a much
more elegant manner: theorem 2 basically states that, under the right hy-
potheses, the class of almost complex structures on SOg (M) is integrable if
and only if

.
/
´

n41: (M , g) is an autodual Einstein manifold ,

nD1: (M , g) has constant sectional curvature .

The author wishes to thank professor de Bartolomeis for suggesting the
problem and for his help in reaching this solution.
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2. – Preliminaries.

Let (M , g) be an oriented 4n-dimensional Riemannian manifold.
Let SOg (M) be the associated SO(4n)-bundle of positive orthonormal

frames.
We will adopt the following notation:

P :4SOg (M) ,

[(4n) :4Lie algebra of SO(4n): antisymmetric R-valued matrices .

R : SO(4n) KDiff (P) action of SO(4n) on P ,

g O Rg .

Let B and p* be the isomorphisms defined in par. 1 and let x :4p[u]. Then
the following diagram is commutative:

Hu K
p*[u]

Tx M

BuH Iu 21

R4n K
id

R4n

where u 21 simply associates to each vector in Tx M its coordinates with re-
spect to u.

Notice that, as u is an orthonormal frame, u 21 is an isometry between
(Tx M , gx ) and R4n with the standard euclidean metric.

Let H be the Levi-Civita connection on P and V be its curvature. We recall
that V�L 2 (P)7[(4n), i.e. is a [(4n)-valued 2-form on P.

In a standard way, each V u can be alternatively viewed as an element of
End ([(4n) ). Let us review the reasoning.

V has the property that V u (X , Y) 40 if Y�Vu . It follows that V u can be
viewed, with no loss of information, as V u �L 2 (Hu*)7[(4n) or, through the
isomorphism B, as V u �L 2 (R4n )*7[(4n).

If we now identify L 2 (R4n ) with [(4n) via the canonical isomorphism

L 2 (R4n )

jRh

K

O

[(4n)

1

2
(j t h2h t j) (matrix multiplication) ,

we get V u �[(4n)*7[(4n), i.e. V u �End([(4n) ).
It may be useful to underline the fact that, according to the above conven-

tions, V u (Bj , Bh) 4V u (jRh), (j , h�R4n.
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The following lemma translates the usual properties of V into this new
setting:

LEMMA 1. – 1. (g�SO(4n), V u i ad(g) 4ad(g) iV ug .

2. V u is symmetric with respect to the standard metric on [(4n).

PROOF. – 1) Let us first prove that (Rg )*[u] Bu j4Bug (g 21 j): the fact that
the connection H is R-invariant shows that

(Rg )*[u] Bu j4Bug h for some h�R4n

the fact that p i Rg 4p shows that

p*[u] Bu j4p*[ug](Rg )*[u] Bu j4p*[ug] Bug h

finally, the commutativity of the above diagram implies that

h4 (ug)21 p*[ug] Bug h4 (ug)21 p*[u] Bu j4g 21 u 21 p*[u] Bu j4g 21 j .

The proof of the first claim is then based upon the fact (cfr. [KN]) that V
has the property that

(g�SO(4n), (X , Y�Tu P ,

V ug ((Rg )*[u] X , (Rg )*[u] Y)4ad (g 21 ) V u (X , Y) .

This leads to:

ad (g) iV u (jRh) 4ad (g) V u (Bj , Bh) 4

V ug 21 ((Rg 21 )* [u] Bu j , (Rg 21 )* [u] Bu h)4V ug 21 (Bug 21 (gj), Bug 21 (gh) )4

V ug 21 (gjRgh) 4V ug 21 i ad (g)(jRh) .

2) The standard metric on [(4n) is (M , N) :42 tr MN. It is easy to
check that

(M�[(4n) , (a , b�R4n , (M , aRb) 42 (Ma , b)

where the product on the right-hand side is now the usual metric on
R4n.

Let j , h , a , b�R4n and let X , Y , A , B be the corresponding vectors in
Tp(u) M.

Let R be the curvature tensor on (M , g) of type (4 , 0 ), so that
R(X , Y , A , B) 4 (V u (jRh) a , b).
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The proof of the second claim is then based upon the well known fact that
R(X , Y , A , B) 4R(A , B , X , Y):

(V u (jRh), aRb)42 (V u (jRh) a , b)4

2R(X , Y , A , B) 42 R(A , B , X , Y) 42 (V u (aRb) j , h)4

(V u (aRb), jRh)4 (jRh , V u (aRb) ) . r

It is well known that (M , g) has constant sectional curvature c if and only
if

R(X , Y) Z4c(g(Z , Y) X2g(Z , X) Y)

where R is now the curvature tensor of type (3, 1) on (M , g).
The following lemma translates this in terms of V u �End ([(4n) ).

LEMMA 2. – (M , g) has constant sectional curvature if and only if
V4lId.

PROOF. – Recall that, according to the usual definitions, if j , h , z�R4n are
the coordinates of X , Y , Z�Tx M with respect to the basis u, then V u (jRh)
is simply the matrix with respect to u of R(X , Y) �End (Tx M).

It follows that u 21 R(X , Y) Z4V u (jRh) z, so that

V(jRh) 4l(jRh) ` V(jRh) z4l(jRh) z , (z�R4n

` u 21 R(X , Y) Z4l/2(j t hz2h t jz) 4l/2(jg(Y , Z)2hg(X , Z) ) , (z�R4n

` R(X , Y) Z4l/2(g(Z , Y) X2g(Z , X) Y) . r

Let us end this section with the following

DEFINITION 1. – (M , g) is an Einstein manifold if Ric4lg, where Ric is
the Ricci tensor and l is a constant.

It is a well known fact that, if dim MF4, (M , g) is an Einstein manifold if
and only if Ric4lg where l�C Q (M).

3. – Some almost complex structures on SOg(M) and their integrability.

Let J0 denote both the 4n34n (or 2n32n, as needed) matrix yO

I

2I

O
z and
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the complex structure on R4n defined by:

R4n

x

K

O

R4n

J0 x ( matrix multiplication ) .

Let J be any complex structure on [(4n).
As seen in the introduction, we define an almost complex structure J on P

in the following way:

J : Tu PKTu P ,

JNHu
:4Bu i J0 i Bu

21 ,

JNVu
:4s u i J is u

21 .

We will call J the «constant almost complex structure induced by a complex
structure of type (J0 , J)».

We want to investigate the integrability of J. The main tool for this is pro-
vided by a classical theorem by Newlander and Nirenberg (cfr. [NN]), which
states that an almost complex structure J on a manifold is integrable if and
only if NJ f0, where NJ is the Nijenhuis tensor defined by

NJ (X , Y) :4 [JX , JY]2 [X , Y]2 J[JX , Y]2 J[X , JY] .

Performing this calculation in our case requires a closer look at the struc-
ture of [(4n) and of the curvature tensor. For this purpose, we introduce the
following notation.

Sym (n) :4 ]n3n real symmetric matrices( ,

Sym0 (n) :4 ]A�Sym (n) : tr A40( ,

c(n) :4 ]A�[(2n) : AJ0 4J0 A( 4
.
/
´
yS

T

2T

S
z: S�[(n), T�Sym (n)

ˆ
¨
˜

,

c0 (n) :4
.
/
´
yS

T

2T

S
z: S�[(n), T�Sym0 (n)

ˆ
¨
˜

,

s(n) :4 ]A�[(2n): AJ0 42 J0 A( 4
.
/
´
yS

T

T

2S
z: S , T�[(n)

ˆ
¨
˜

.

It is well known that c(n) is the Lie algebra of the group of unitary matri-
ces U(n) and that c0 (n) is the Lie algebra of the group of special unitary ma-
trices SU(n).

Let [(4n) have the usual metric:

(A , B) :4 tr A t B42 tr AB .
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Then the equality

A4
A2J0 A

2
1

A1J0 A

2
, (A�[(2n)

shows that

[(2n) 4c(n)5s(n) , orthogonal decomposition .

Notice also that

c(n) 4c0 (n)5RJ0 , orthogonal decomposition .

The algebra c0 (n) is simple.
The algebra [(n) is simple if and only if nc4.
The algebra [(4) is semisimple with orthogonal decomposition

[(4) 4[1 (4)5[2 (4)

where [1 (4) and [2 (4) are simple ideals defined as the eigenspaces of the
involution

f : [(4) K [(4)

y 0

2a

2b

2c

a

0

2c

2e

b

d

0

2f

c

e

f

0

zO y 0

2f

e

2d

f

0

2c

b

2e

c

0

2a

d

2b

a

0

z .

It can easily be seen that [1 (4) 4c0 (4) and that [2 (4) 4RJ0 5s(2); this
leads us quickly to a characterization of the corresponding normal subgroups
of SO(4).

The subgroup corresponding to [1 (4) is obviously SU(2).
Let SU(2) be the subgroup corresponding to [2 (4).
Since e (p/2 ) J0 4J0 , J0 �exp ([2 (4) ) so J0 � SU(2).
As SU(2) is normal in SO(4), ad (g) J0 � SU(2), (g�SO(4).
As SU(2) is simple, it can thus be described as the closure of the Lie sub-

group generated by ]ad (g) J0 : g�SO(4)(.
Finally, it is interesting that neither the adjoint action of SU(2) on [2 (4)

nor of SU(2) on [1 (4) are irriducible.
Let us now go back to the curvature tensor V.
Let Sym ([(4n) ) :4]f�End ([(4n) ) symmetric with respect to the stan-

dard metric on [(4n)(.
Lemma 1 shows that V u �Sym ([(4n) ).
Referring the reader to [Be] for further details, we recall that V u admits
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a canonical decomposition as sum of three elements in Sym ([(4n) ); we will
write V u 4Eu 1Zu 1Wu .

The decomposition shows that Eu 4lId while Zu and Wu are traceless. Fur-
thermore, it shows that Zu 40 if and only if (M , g) is an Einstein manifold,
and that Wu 4Zu 40 if and only if (M , g) has constant sectional curvature. Wu

is known as the Weyl tensor.
When n41 and one considers the splitting [(4) 4[1 (4)5[2 (4), it can be

shown that Wu ([1 (4) )’[1 (4), Wu ([2 (4) )’[2 (4), Zu ([1 (4) )’[2 (4),
Zu ([2 (4) )’[1 (4). Furthermore, ZuN[1 (4)

4t ZuN[2 (4)
.

If follows that, with respect to the above splitting of [(4) and omitting the
subscripts, V u admits the block-matrix representation

VC yW 11lId
tZ

Z

W 21lId
z ,

where W 1 :4WN[1 (4), W 2 :4WN[(4) and Z :4ZN[2 (4) .
It is also true that W 1 and W 2 are traceless operators; they are the positi-

ve and negative Weyl tensors, respectively.
We can now go back to our initial problem of studying the integrability of J.

DEFINITION 2. – A complex structure J on a Lie algebra S is integrable if
the left-invariant almost complex structure induced by J on the correspond-
ing Lie group G is integrable, or, equivalently, if

NJ (X , Y) :4 [JX , JY]2 [X , Y]2J[JX , Y]2J[X , JY] 40 , (X , Y�S .

We can now prove the following

THEOREM 1. – Let (M , g) be a 4n-dimensional oriented Riemannian
manifold.

Let J be the constant almost complex structure on SOg (M) induced by a
structure of type (J0 , J).

Then J is integrable if and only if the following two conditions are
satisfied:

1. J is integrable and satisfies the following compatibility condition
with respect to J0 :

(X�[(4n), [J0 , X] 4J(X)1J0 J(X) J0 .

2. V u (J0 X) 4JV u (X) (u�P , (X�s(2n).

PROOF. – The proof is basically the calculation of the Nijenhuis tensor NJ

on P defined above.
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As NJ is a tensor, NJ f0 if and only if the following three cases
are true:

1. NJ (X *, Y *) 40, (X , Y�[(4n).

2. NJ (X *, Bj) 40, (j�R4n , (X�[(4n).

3. NJ (Bj , Bh) 40, (j , h�R4n.

We will consider the three cases separately.

1) NJ (X *, Y *) 4 [JX *, JY *]2 [X *, Y *]2 J[JX *, Y *]2 J[X *, JY *] 4

[ (JX)* , (JY)*]2 [X *, Y *]2 J[ (JX)* , Y *]2 J[X *, (JY)*] 4

[JX , JY]*2 [X , Y]*2 (J[JX , Y] )*2 (J[X , JY] )* ,

where the final identity follows from the fact that the above mentioned
s : [(4n) KL 0 (TP) is a Lie algebra homomorphism.

Therefore

NJ (X *, Y *) 40 ` [JX , JY]2 [X , Y]2J[X , JY]2J[JX , Y] 40

so that

NJ (X *, Y *) 40 , (X , Y�[(4n) `J is integrable .

2) We first show that [X *, Bj] 4B(Xj).

Let a t :4exp (tX).
Notice that X * is, by definition, the vector field induced by the 1-par-

ameter group of diffeomorphisms Ra t
.

Remember (cfr. proof of lemma 1) that dRg [u](Bu j) 4Bug (g 21 j).
Then:

[X *, Bj] 4 lim
tK0

Bj2dRa t
[a(2t) ](Bj)

t
4 lim

tK0

Bj2B(a(t)21 j)

t
4

Bglim
tK0

j2exp (2tX) j

t
h4B

d

dt
(2exp (2tX) j)Nt40 4B(Xj) .

Consequently:

NJ (X *, Bj) 4 [JX *, JBj]2 [X *, Bj]2 J[JX *, Bj]2 J[X *, JBj] 4

[ (JX)* , B(J0 j) ]2B(Xj)2 J[ (JX)* , Bj]2 J[X *, B(J0 j) ] 4

B(J(X) J0 j)2B(Xj)2B(J0 J(X) j)2B(J0 XJ0 j) .
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Therefore

NJ (X *, Bj) 40 ` J(X) J0 j2Xj2J0 J(X) j2J0 XJ0 j40

so that

NJ (X *, Bj) 40 , (j ` J(X) J0 2X2J0 J(X)2J0 XJ0 40 .

Left multiplication by J0 proves that

NJ (X *, Bj) 40, (j , (X ` [J0 , X] 4J(X)1J0 J(X) J0 , (X .

3) We first prove that [Bj , Bh]u �Vu .
Let u be the unique R4n-valued 1-form on P such that

u(X) 40 , (X�Vu and u(Bj) 4j .

u defines a R4n-valued 2-form, called the torsion of the connection, in the fol-
lowing way:

U(X , Y) :4du(X h , Y h )

or, equivalently,

U(X , Y) :4
1

2
]X h u(Y h )2Y h u(X h )2u[X h , Y h ]( ,

where X h , Y h denote the horizontal components of X , Y.
Recall that, by definition, the Levi-Civita connection has Uf0.
Since u(Bj) and u(Bh) are constant, it then follows that

u[Bj , Bh] 42 2U(Bj , Bh) 40

that is,

[Bj , Bh] �Vu .

Let v be the [(4n)-valued 1-form defined on P by the connection. We re-
call that

v(X) 40 , (X�Hu

and that

V(X , Y) 4dv(X h , Y h ) 4
1

2
]X h v(Y h )2Y h v(X h )2v[X h , Y h ]( .

From the preceding result it follows that NJ (Bj , Bh) �Vu , so that

NJ (Bj , Bh) 40 ` vNJ (Bj , Bh) 40 .



COMPLEX STRUCTURES ON SOg (M) 649

Noticing that v[Bj , Bh] 42 2V(Bj , Bh) and vJ 4Jv proves that

NJ (Bj , Bh) 40 ` V(BJ0 j , BJ0 h)2V(Bj , Bh)2

JV(BJ0 j , Bh)2JV(Bj , BJ0 h) 40 .

Let us now use the identification described in par. 1, viewing V u as
V u : L 2 (R4n ) K[(4n).

The above translates as

NJ (Bj , Bh) 40 ` V(J0 jRJ0 h2jRh) 4JV(J0 jRh1jRJ0 h) .

We now, as before, identify L 2 (R4n ) with [(4n). Then J0 jRJ0 h2jRh
corresponds to an element X�s(2n), as can easily be seen by proving that it
anticommutes with J0, and J0 jRh1jRJ0 h42J0 X, so that

NJ (Bj , Bh) 40 ` V(X) 4JV(2J0 X)

We can then conclude that

NJ (Bj , Bh) 40 (j , h ` V(J0 X) 4JV(X) (X�s(2n) . r

The two conditions appearing in theorem 1 are of different nature. The
first is algebraic, in the sense that, being J0 fixed, it concerns only the complex
structure J on the Lie algebra [(4n). The second is twistor-like, in the sense
that it implies a compatibility between the metric g and the complex structure J.

The canonical splitting [(4n) 4c(2n)5s(2n) suggests restricting our at-
tention to those J’s such that J(c(2n) )’c(2n), J(s(2n) )’s(2n), i.e. defined as
the sum of a complex structure J1 on c(2n) and a complex structure J2 on
s(2n): we will say that J is of type (J1 , J2 ).

The following lemma shows that, when J is of type (J1 , J2 ), condition (1) of
theorem 1 can be reformulated in a much simpler manner:

LEMMA 3. – Let J be a complex structure on [(4n) of type (J1 , J2 ).
The following conditions are equivalent:

1. J1 is integrable;

(A�s(2n), J2 (A) 4J0 A (matrix multiplication) .

2. (A�[(4n), [J0 , A] 4J(A)1J0 J(A)J0 ; J is integrable.

PROOF. – 1 ¨2:

(A�s(2n), [J0 , A] 4J0 A2AJ0 4J(A)1J0
2 AJ0 4J(A)1J0 J(A) J0 ,

(A�c(2n), [J0 , A] 40 4J(A)1J0 J(A)J0 ,
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(A , B�s(2n), NJ (A , B) 4 [J0 A , J0 B]2 [A , B]2J[J0 A , B]2J[A , J0 B] 4

J0 AJ0 B2J0 BJ0 A2AB1BA2J(J0 AB2BJ0 A1AJ0 B2J0 BA) 40 ,

(A , B�u(2n), NJ (A , B) 40 by hypothesis ,

(A�u(2n), (B�s(2n),

NJ (A , B) 4 [J1 (A), J0 B]2 [A , B]2J0 [J1 (A), B]2J0 [A , J0 B] 4

J1 (A)J0 B2J0 BJ1 (A)2AB1BA2J0 J1 (A) B1J0 BJ1 (A)2

J0 AJ0 B2BA40 .

2 ¨1: as NJ1
4NJNu(2n) , J1 is obviously integrable;

(A�s(2n), 2J0 A4 [J0 , A] 4J(A)1J0 J(A)J0 42J(A) 42J2 (A) . r

DEFINITION 3. – A complex structure on R4n 5[(4n) is of type (J0 , J1 , J2 )
if it is given by the sum of the standard complex structure on R4n, of any com-
plex structure J1 on c(2n) and of any complex structure J2 on s(2n).

A complex structure (J0 , J1 , J2 ) is of integrable type if J1 is integrable and
J2 is the standard structure on s(2n) defined by J2 (X) 4J0 X (matrix
multiplication).

It is important to mention that integrable structures on c(2n) exist (cfr.
[Mo]) and have been extensively studied (cfr. [Sn]).

We will now examine the integrability of constant almost complex struc-
tures on SOg (M) induced by structures of type (J0 , J1 , J2 ).

THEOREM 2. – Let (M , g) be a 4n-dimensional oriented Riemannian
manifold.

Let J be the constant almost complex structure on SOg (M) induced by a
structure of type (J0 , J1 , J2 ).

Then J is integrable if and only if

1. (J0 , J1 , J2 ) is of integrable type.

2. (M , g) has the following property:

n41: (M , g) is an autodual Einstein manifold (i.e. ZfW 2
f0).

nD1: (M , g) has constant sectional curvature .

PROOF. – Given the additional hypotheses on J, the preceding lemma shows
that condition (1) is equivalent to the first condition of theorem 1. We there-
fore only need to prove that condition (2) is equivalent to the second condition
of theorem 1.
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As usual, let J :4J1 5J2 denote the complex structure on [(4n).
Notice that, as J(s(2n) )’s(2n), the second condition of theorem 1 may be

simply expressed by [V , J]Ns(2n)
40.

On the other hand, lemma 2 shows that (M , g) has constant sectional cur-
vature if and only if V4lId, while previous considerations prove that, in the
case n41, (M , g) is an Einstein manifold with W 2

f0 if and only if
V N[2 (4) 4lId.

To prove the theorem, it is thus sufficient to prove that [V , J]Ns(2n) 40 if
and only if

n41: V N[2 (4) 4lId ,

nD1: V4lId .

One of the two implications is obvious: that V N[2 (4)
4lId and V4lId imply

[V , J]Ns(2n)
40.

We will prove the viceversa in two steps, by showing

1. [V , J]Ns(2n)
40 ¨V(ad (g) s(2n) )’ad (g) s(2n), (g�SO(4n) .

2 . V(ad (g) s(2n) )’ad (g) s(2n) `
.
/
´

n41: V N[2 (4)
4lId ,

nD1: V4lId .

1) Let [V u , J]Ns(2n) 40, (u�P.

In particular, [V ug , J]Ns(2n) 40, (g�SO(4n).
We saw that V ug 4ad(g 21 ) iV u i ad(g), (g�SO(4n).
Let X�s(2n) and g�U(2n). Then

ad (g) X�s(2n) and ad (g) J(X) 4ad (g) J0 X4J0 ad (g) X4J ad (g) X

so that, combining the above expressions,

0 4 [V ug , J]Ns(2n) 4 [ ad (g 21 ) V u ad (g), J]Ns(2n) 4 [ ad (g 21 ), J]NV u (s(2n) ) ,

(g�U(2n) .

This is enough to prove that V(s(2n) )’s(2n): by denoting with D the pro-
jection of V(s(2n) ) onto c(2n) with respect to the decomposition [(4n) 4

c(2n)5s(2n), all we must do is to show that D40.
As [ad (g), J]Ns(2n) 40, the above expression implies that

[ ad (g), J]ND40 , (g�U(2n) .

Let D
A:4 ]X�c(2n): [ad (g), J] X40(, (g�U(2n).

It is easy to show that D
A is an ideal of c(2n) and that J(DA) ’ D

A.
In particular, D

A has even dimension. As c(2n) is reductive with decomposition
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c0 (2n)5RJ0 and c0 (2n) is a simple odd-dimensional ideal, D
A

4[(2n) or
D
A

40.
Suppose D

A
4[(2n), so that the Lie group associated to D

A would be U(2n).
J would define on U(2n) a (left invariant) complex structure which, because
[ ad (g), J] f0, would make U(2n) a complex Lie group. This is impossible, as
U(2n) is compact and any compact complex Lie group is abelian.

If follows that D
A

40, so, in particular, D40.
This proves that V u (s(2n) )’s(2n), (u�P.
In particular,

V ug (s(2n) )’s(2n), (g�SO(4n),

i.e. V u (ad (g) s(2n) )’ad (g) s(2n), (g�SO(4n) .

2) Remembering that V is symmetric, it is essentially the content of the
final lemma. r

LEMMA 4. – Let V�End ([(4n) ) be symmetric with respect to the stan-
dard metric on [(4n). Then the following conditions are equivalent:

1 . V(ad (g) s(2n) )’ad (g) s(2n), (g�SO(4n) .

2 .
.
/
´

n41: V N[2 (4)
4lId ,

nD1: V4lId .

PROOF. – 1 ¨ 2: Let us define

P : [(4n) Kc(2n) orthogonal projection .

The definition of c(2n) shows that P4
1

2
[I1ad (J0 ) ].

Since ad (g) is an isometry of [(4n), V is symmetric and
c(2n) »s(2n),

V(ad (g) s(2n) )’ad (g) s(2n) ¨V(ad (g)c(2n) )’ad (g) c(2n) .

It follows that s(2n) and c(2n) are invariant for the family
ad (g 21 ) iV i ad (g), i.e.

[ ad (g 21 ) iV i ad (g), P] 40, i.e.

[V , ad (g) i P i ad (g 21 ) ] 40, i.e.

[V , ad (gJ0 g 21 ) ] 40 , (g�SO(4n)

Let H :4 a]gJ0 g 21 : g�SO(4n)(b.
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H is, algebraically, a normal subgroup of SO(4n) so H is a normal
Lie subgroup of SO(4n).

We must now distinguish between the cases n41, nD1.
If nD1, SO(4n) is a simple Lie group so H 4SO(4n). It is easy to see

that

[V , ad (h) ] 40, (h� H, i.e. [V , ad (g) ] 40, (g�SO(4n) .

By Shur’s lemma, V4lI1mJ for some J : J 2 42 Id.
Since V is symmetric, V is diagonalizable; as J isn’t diagonalizable, it must

be m40, i.e. V4lI.
If instead n41, as seen above, H is the normal proper subgroup of SO(4)

corresponding to [2 (4).
As before, this implies that

[V , ad (h) ] 40, (h� H .

Notice now that

span ]ad (g) s(2n): g�SO(4)( 4[2 (4) ,

as s(2n) ’[2 (4) and [2 (4) is a simple ideal of [(4). It follows that V([2 (4) )’
[2 (4), so that

[V N[2 (4) , ad (h)N[2 (4) ] 40 , (h� H .

Applying Shur’s lemma to V N[2 (4), we find V N[2 (4) 4lI.

2 ¨ 1: Obvious, because ad (g) s(2) ’[2 (4), (g�SO(4). r

The second condition of theorem 2 requires a final consideration.
Up to Riemannian covering space equivalence and connectedness, com-

plete Riemannian manifolds with constant sectional curvature k have been
classified: depending on the sign of k (and disregarding an eventual normal-
ization of the metric), they are either S n, Rn, or the hyperbolic space with their
standard metrics.

When (M , g) is one of these three models, it is well known that SOg (M) is a
Lie group, as it is diffeomorphic to the group of isometries of (M , g).

In general, when (M , g) is a generic Riemannian manifold with constant
sectional curvature, SOg (M) is modelled on a Lie group, in the sense of having
an atlas in which the transition functions are Lie group isomorphisms.

Regarding autodual Einstein manifolds, note that the scalar curvature s is
constant. In the compact case (again disregarding metric normalization),
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Hitchin provides a classification when sF0:

.
/
´

sD0: (M , g) is isometric to S 4 or CP 2 with their standard metrics ,

s40: (M , g) is either flat or its universal covering space is a K3

surface with the Calabi-Yau metric

For further details, cfr. [Be].
No such classification is known for the case sE0; the only known examples

of such manifolds are the compact quotients of the real and complex hyperbol-
ic spaces.
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