Rivière, Tristan: 
Asymptotic analysis for the Ginzburg-Landau equations
 Bollettino dell'Unione Matematica Italiana Serie 8 2-B (1999), fasc. n.3, p. 537-575, Unione Matematica Italiana (English)
pdf (363 Kb), djvu (446 Kb).  | MR1719570  | Zbl 0939.35199  
Sunto
Questo lavoro costituisce un survey sui problemi di limite asintotico per le soluzioni delle equazioni di Ginzburg-Landau in dimensione due. Vengono presentati essenzialmente i risultati di [BBH] e [BR] sulla formazione ed il comportamento asintotico dei vortici in un dominio bidimensionale nel caso fortemente repulsivo (large $K$ limit).
Referenze Bibliografiche
[1] 
                     L. 
                     ALMEIDA
                  -
                     F. 
                     BETHUEL
                  , 
Multiplicity results for the Ginzburg-Landau equation in presence of symmetries, 
Houston J. Math., 
23 (
1997), 733-764. | 
MR 1687389 | 
Zbl 0901.35029[2] 
                     L. 
                     ALMEIDA
                  -
                     F. 
                     BETHUEL
                  , 
Topological Methods for the Ginzburg-Landau Equations, 
J. Math. Pures Appl., 
77 (
1998), 1-49. | 
MR 1617594 | 
Zbl 0904.35023[3] 
                     F. 
                     BETHUEL
                  -
                     H. 
                     BREZIS
                  -
                     F. 
                     HÉLEIN
                  , 
Asymptotics for the minimization of a Ginzburg-Landau functional, 
Calculus of variations and PDE 
                  1 (
1993), 123-148. | 
MR 1261720 | 
Zbl 0834.35014[5] 
                     F. 
                     BETHUEL
                  -
                     T. 
                     RIVIÈRE
                  , 
Vortices for a variational problem related to supraconductivity, 
Ann. Inst. Henri Poincaré (analyse non linéaire), 
12, 3 (
1995), 243-303. | 
fulltext mini-dml | 
MR 1340265 | 
Zbl 0842.35119[8] 
                     R. 
                     JERRARD
                  -
                     M. 
                     SONER
                  , 
Dynamics of Ginzburg-Landau Vortices, to appear in 
Arch. Rat. Mech. Anal.
                | 
Zbl 0923.35167[9] 
                     F. H. 
                     LIN
                  , 
Some Dynamical properties of Ginzburg-Landau Vortices, 
Comm. Pure and App. Math (
1996), 323-359. 
A remark on the previous paper..., 
Comm. Pure and App. Math. (
1996), 361-364. | 
MR 1376654 | 
Zbl 0853.35059[10] 
                     F. H. 
                     LIN
                  , 
Complex Ginzburg-Landau Equations and Dynamics of Vortices, Filaments and Codimension 2 Submanifolds, preprint (
1997). | 
MR 1491752 | 
Zbl 0932.35121[11] 
                     F. H. 
                     LIN
                  -
                     T. C. 
                     LIN
                  , 
Minimax solutions of the Ginzburg-Landau equations, preprint (
1996). | 
Zbl 0876.49006[12] 
                     F. H. 
                     LIN
                  -
                     T. 
                     RIVIÈRE
                  , 
Complex Ginzburg-Landau Equations in High Dimensions and Codimension two Area Minimizing Currents, to appear. | 
Zbl 0939.35056[13] 
                     F. 
                     PACARD
                  -
                     T. 
                     RIVIÈRE
                  , Construction of Ginzburg-Landau solutions having regular zero-set for large coupling constant, preprint CMLA ENS-Cachan (1998).
[14] 
                     F. 
                     PACARD
                  -
                     T. 
                     RIVIÈRE
                  , A uniqueness result for the minimizers of the Ginzburg-Landau Functional, preprint CMLA ENS-Cachan (1998).
[16] 
                     D. 
                     SAINT-JAMES
                  -
                     G. 
                     SARMA
                  -
                     E. J. 
                     THOMAS
                  , Type II Superconductivity, Pergamon Press (1969).
[17] 
                     S. 
                     SERFATY
                  , 
Local minimizers for the Ginzburg-Landau energy near Critical Magnetic Field, preprint Orsay (
1997). | 
Zbl 0944.49007[18] 
                     M. 
                     STRUWE
                  , 
On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2-dimensions, 
J. Diff. Int. Equations, 
7 (
1994), 1613-1624 and 
Erratum in 
J. Diff. Int.
                | 
MR 1269674 | 
Zbl 0809.35031