Bollettino

Unione Matematica Italiana

G. Troi, U. Zannier

Note on the density constant in the distribution of self-numbers. II

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B (1999), n.2, p. 397-399.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1999_8_2B_2_397_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Note on the Density Constant in the Distribution of Self-Numbers - II.

G. Troi - U. Zannier

Abstract

Sunto. - Dimostriamo che la costante che regola la distribuzione dei cosiddetti self numbers è un numero trascendente. Ciò precisa un risultato dimostrato in un precedente articolo dal medesimo titolo, ossia che tale costante sia irrazionale. Il metodo fa uso di una curiosa formula per l'espansione 2-adica di tale numero (già utilizzata nell'altro lavoro) e del profondo Teorema del Sottospazio.

The present note is an addendum to [TZ]. In that paper we were concerned with the set S of integers which may be represented as sums of distinct terms of type $2^{k}+1, k \in \boldsymbol{N}$. We agree that $0 \in \mathcal{S}$. These numbers appear in connection with digitaddition sequences and the complement of S in \boldsymbol{N} is the set of the socalled Self-Numbers in the scale of 2 (see e.g. [S], [Z]).

It was proved in [Z] that $S(x)=l x+O\left(\log ^{2} x\right)$ for large x, where $S(x)$ denotes the number of elements of s up to x and $0<l<1$. In [TZ] the following rather curious formula was obtained (see equation (5) in [TZ])

$$
\begin{equation*}
l=1-\frac{1}{8} \alpha^{2} \quad \text { where } \alpha:=\sum_{a \in \mathcal{S}} \frac{1}{2^{a}} . \tag{1}
\end{equation*}
$$

The formula was then applied to show that l is irrational, by means of classical results in Pell's Equation theory and Diophantine Approximation.

In [TZ] we expressed the opinion that a possible proof of the transcendence of l (or α) could have been difficult, especially in view of the fact that it seems not easy to produce particularly good rational approximations to these numbers. (For instance we pointed out that α is not a Liouville number.) However we overlooked that the special form of the approximations found in [TZ] allows an application of the celebrated Schmidt Subspace Theorem. It is the purpose of this short note to outline such argument and prove the following

Theorem. - The numbers l and α are transcendental.

Proof. - By (1) it is sufficient to prove that α is transcendental. In [TZ] it was shown that there exists an infinite sequence \mathfrak{N} of positive integers such that, for $m \in \mathfrak{M}$,

$$
\begin{equation*}
\left|\alpha\left(2^{m}-1\right)-B_{m}\right| \ll 2^{-m} \tag{2}
\end{equation*}
$$

where the B_{m} are suitable positive integers. (See the calculations at p. 146 of [TZ], where α was denoted by $\sqrt{r / s}$. If E is the sequence in the statement of Lemma 2 of [TZ], we may take $\mathbb{K}=\left\{2^{k}+1: k \in E\right\}$.)

Now an application of Lemma 2 of [CZ] would be sufficient to conclude at once. For the sake of completeness we give however the short argument in the present case.

For the reader's convenience we state a version of Schmidt's Subspace Theorem due to H. P. Schlickewei; we have borrowed it from [Sch2, Thm. 1E, p. 178] (a complete proof requires also [Sch1]).

SUBSPACE TheOrem. - Let S be a finite set of absolute values of \boldsymbol{Q}, including the infinite one and normalized in the usual way (i.e. $|p|_{v}=p^{-1}$ if $v \mid p$). Extend each $v \in S$ to $\overline{\boldsymbol{Q}}$ in some way. For $v \in S$ let $L_{1, v}, \ldots, L_{N, v}$ be N linearly independent linear forms in N variables with algebraic coefficients and let $\varepsilon>0$. Then the solutions $\boldsymbol{x}:=\left(x_{1}, \ldots, x_{N}\right) \in \boldsymbol{Z}^{N}$ to the inequality

$$
\prod_{v \in S} \prod_{i=1}^{N}\left|L_{i, v}(\boldsymbol{x})\right|_{v}<\|\boldsymbol{x}\|^{-\varepsilon}
$$

where $\|\boldsymbol{x}\|:=\max \left\{\left|x_{i}\right|\right\}$, are contained in finitely many proper subspaces of \boldsymbol{Q}^{N}.
Now suppose by contradiction that α is algebraic. We apply the Subspace Theorem with the following data. We let S consist of ∞ and the 2 -adic valuation, denoted w. We put $N=3$ and

$$
L_{i, \infty}=L_{i, w}:=x_{i} \quad \text { for } i=1,2, \quad L_{3, \infty}:=x_{1}+\alpha x_{2}-\alpha x_{3}, \quad L_{3, w}:=x_{3} .
$$

Put now, for $m \in \mathfrak{M}, \boldsymbol{x}_{m}:=\left(B_{m}, 1,2^{m}\right)$. By (2) we have $B_{m} \ll 2^{m}$, whence $\left\|\boldsymbol{x}_{m}\right\| \ll$ 2^{m}. Again by (2) we have $\left|L_{3, \infty}\left(\boldsymbol{x}_{m}\right)\right| \ll 2^{-m}$, whence $\prod_{i=1}^{3}\left|L_{i, \infty}\left(\boldsymbol{x}_{m}\right)\right| \ll 1$.

Also, we have plainly $\left|L_{1, w}\left(\boldsymbol{x}_{m}\right)\right|_{w} \leqslant 1, \quad\left|L_{2, w}\left(\boldsymbol{x}_{m}\right)\right|_{w}=1 \quad$ while $\left|L_{3, w}\left(\boldsymbol{x}_{m}\right)\right|_{w}=2^{-m}$. Hence $\prod_{i=1}^{3}\left|L_{i, w}\left(\boldsymbol{x}_{m}\right)\right|_{w} \leqslant 2^{-m}$.

We conclude that for $m \in \mathfrak{N}, \prod_{v \in S} \prod_{i=1}^{3}\left|L_{i, v}\left(\boldsymbol{x}_{m}\right)\right|_{v} \ll 2^{-m} \ll\left\|\boldsymbol{x}_{m}\right\|^{-1}$.
By the Subspace Theorem there exist an infinite subsequence \mathscr{K}^{\prime} of \mathfrak{N} and rational numbers a, b, c, not all zero, such that for $m \in \mathfrak{N}^{\prime}$ we have

$$
a B_{m}+b+c 2^{m}=0
$$

Necessarily $a \neq 0$ for otherwise also b and c would have to vanish. Hence we may substitute for B_{m} in (2), obtaining $\left|2^{m}(\alpha+c / a)+b / a-\alpha\right| \ll 2^{-m}$. For large m this inequality implies $\alpha=-c / a \in \boldsymbol{Q}$. However we have proved in [TZ] that α is irrational (see the beginning of p.147).

REFERENCES

[CZ1] P. Corvaja - U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets, preprint (1997).
[Sch1] W. M. Schmidt, Diophantine Approximation, Springer-Verlag, Lecture Notes in Mathematics, 785 (1980).
[Sch2] W. M. Schmidt, Diophantine Approximations and Diophantine Equations, Springer-Verlag, Lecture Notes in Mathematics, 1467 (1991).
[S] K. B. Stolarsky, The sum of a digitaddition sequence, Proc. Amer. Math. Soc., 59 (1976), 1-5.
[TZ] G. Troi - U. Zannier, Note on the Density Constant in the Distribution of SelfNumbers, Boll. Un. Mat. Ital. (7), 9-A (1995), 143-148.
[Z] U. Zannier, On the distribution of self numbers, Proc. Amer. Math. Soc., 85, 1 (1982), 10-14.

Ist. Univ. Arch. D.C.A., S. Croce 191, 30135 Venezia
e-mail: troi@brezza.iuav.unive.it - zannier@dimi.uniud.it

Pervenuta in Redazione
il 28 agosto 1997

