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Fourier Transform, L 2 Restriction Theorem, and Scaling.

ALEX IOSEVICH

Sunto. – In questo lavoro facciamo vedere, con un argomento di omogeneità di tipo
Knapp, che se vale un teorema di restrizione (L p , L 2 ) per una ipersuperficie com-
patta, convessa e di tipo finito, allora si possono provare stime isotropiche ottimali
per la trasformata di Fourier della misura di indotta dalla misura di Lebesgue
sulla superficie.

Introduction.

Let S be a smooth compact finite type hypersurface. Let FS (j) 4

s
S

e 2iax , jb ds(x), where ds denotes the Lebesgue measure on S . Let Rf4 f×NS ,

where f×(j) denotes the standard Fourier transform of f . It is well known
(see [T], [Gr]) that if NFS (j)NGC(11NjN)2r , rD0, then R : L p (Rn ) KL 2 (S)
for pG(2(r11))O(r12). A natural question to ask is, does the boundedness of
R : L (2(r11))O(r12) (Rn ) KL 2 (S), rD0, imply that NFS (j)NGC(11NjN)2r ? In
this paper we will show that this is indeed the case if S is a smooth convex finite
type hypersurface in the sense that the order of contact with every tangent line
is finite. (See [BNW]).

Under a more general condition, called the finite polyhedral type assumption,
(see Definition 1 below), we will show that the (L p , L 2 ) restriction theorem
with p4 (2(r11))O(r12) implies that NB(x , d)NGCd r , where B(x , d) 4

]y : dist (y , Tx (S) )Gd(, where Tx (S) denotes the tangent hyperplane to S at x .
Our plan is as follows. We will first use a variant of the Knapp homogeneity

argument to show that if S satisfies the finite polyhedral type condition and
R : L p (Rn )KL 2 (S), with p4(2(r11))O(r12), then NB(x , d)NGCd r for each x .
If the surface is, in addition, convex and finite type, then the result due to Bruna,
Nagel, and Wainger (see [1]) implies that NFS(j)NGC(11NjN)2r . If the surface
is not convex finite type, then we do not, in general, know how to conclude that
NB(x , d)NGCd r implies that NFS (j)NGC(11NjN)2r . A gap remains.

1. – Statement of results.

DEFINITION 1. – Let S be a smooth compact hypersurface in Rn . Let
B p (x , d) denote the projection of B(x , d) onto Tx (S). We say that S is of finite
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polyhedral type if there exists a family of polyhedra P(x , d) such that
B p (x , d) %P(x , d), C1 NB p (x , d)NGNP(x , d)NGC2 NB p (x , d)N , where C1 , C2

do not depend on d , and the number of vertices of P(x , d) is bounded above in-
dependent of d , where x P(x , d) denotes the characteristic function of P(x , d).

REMARK. – The motivation for the definition of finite polyhedral type is the
standard homogeneity argument due to Knapp. In order to prove the sharpness
of the (L p , L 2 ) restriction theorem for hypersurfaces with non-vanishing Gaus-
sian curvature, Knapp approximated such a surface with a box with side-lengths
(d , R , d , d2 ), d small. He then took fd to be the inverse Fourier transform of the
characteristic function of that box. It is not hard to see that VRf V2 Bd (n21)O2 . On
the other hand, using the fact that the Fourier transform of the box in question

is Bsin (d 2 xn )Oxn »
j41

n21

sin (dxj )Oxj , it is not hard to see that V fd Vp Bd (n11)Op 8 . It

follows that pG (2(n11))O(n13), which is the known positive result due to
Stein and Tomas. The crucial part of this calculation is the approximation of the
surface with a box with appropriate dimensions. Definition 1 and Theorem 2 are
generalizations of this phenomenon.

It should also be noted that it is not hard to see that the hypersurface S4

]x : x3 4x1 x2 ( does not satisfy the finite polyhedral type condition. Thus, it
makes sense to think of the finite polyhedral type condition as a generalization
of convexity.

THEOREM 2. – Let S be of finite polyhedral type. Consider the estimates

NFS (j)NGC(11NjN)2r ,( * )

R : L p (Rn ) KL 2 (S) , pG
2(r11)

r12
,( * * )

and

NB(x , d)NGCd r ,( * * * )

for each x.
Then( * )implies( * * )and( * * )implies( * * * ). Further, ( * * * )implies( * )

if S is in addition convex and finite type.

The fact that ( * ) implies ( * * ) is essentially the Stein-Tomas restriction the-
orem. (See [T], [Gr]). The fact that ( * * * ) implies ( * ) in the case of convex finite
type hypersurfaces is due to Bruna, Nagel, and Wainger. (See [BNW]). So it re-
mains to prove that ( * * ) implies ( * * * ), and that convex finite type hypersur-
faces are of finite polyhedral type. (See Theorems 3 and 4 below).

THEOREM 3. – Let S4]x : xn4Q(x 8)1R(x 8)1c(, where x 84(x1 , R , xn21 ),
Q�C Q is mixed homogeneous in the sense that there exist integers (a1 , R , an21 ),
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ajF1, such that Q(t 1Oa1 x1 , R , t 1Oan21 xn21 )4tQ(x 8), Q(x 8) c0 if x 8c(0, R , 0),
R�C Q is the remainder in the sense that lim

tK0
R(t 1Oa1 x1 , R , t 1Oan21 xn21 )Ot4

0, and c is a constant. Then S is of finite polyhedral type.

Theorem 3 implies that convex finite type hypersurfaces are of finite polyhe-
dral type via the following representation result due to Schulz. (See [Sch]). See
also [IS2].)

THEOREM 4. – Let F�C Q (Rn21 ) be a convex finite type function such that
F(0 , R , 0 ) 40 and ˜F(0 , R , 0 ) 4 (0 , R , 0 ). Then, after perhaps applying
a rotation, we can write F(y) 4Q(y)1R(y), where Q is a convex polynomial,
mixed homogeneous in the sense of Theorem 3, and R is the remainder in the
sense of Theorem 3.

2. – ( * * )K( * * * ).

Locally, S is a graph of a smooth function F, such that F(0 , R , 0 ) 40, and
˜F(0 , R , 0 ) 4 (0 , R , 0 ). If we consider a sufficiently small piece of our hy-
persurface, B p (0 , R , 0 , d) 4 ]y�K : F(y) Gd(, where K is a compact set in
Rn21 containing the origin, and, without loss of generality, F(y) F0. Since
NB p (x , d)NBNB(x , d)N, it suffices to show that N]y�K : F(y) Gd(NGCd r .

Let fd be a function such that f×d is the characteristic function of the set
](x 8 , xn ): x 8�Pd ; 0 Gxn Gd(, where Pd is the polyhedron containing the set
]x 8 : F(x 8 ) Gd( given by the definition of finite polyhedral type.

Let’s assume for a moment that V fd Vp GC(dNPd N)1/p 8. Since the restriction
theorem holds, we must have VRfd V2 GCV fd Vp , which implies that NPd NG

Cd (2(p21))O(22p) . Since p4 (2(r11))O(r12), it follows that NPd NGCd r .
By the definition of Pd it follows that NB(0 , R , 0 , d)N4NB p (0 , R , 0 , d)N4

N]y�k : F(y) Gd(NGCd r .
This completes the proof provided that we can show that V fd Vp G

C(dNPd N)1/p 8 . More generally, we will show that if P is a polyhedron in Rn, then
Vx× P Vp GCNPN1/p 8 , where C depends on the dimension and the number of ver-
tices of P and NPN denotes the volume of P. We give the argument in two dimen-
sions, the argument in higher dimensions being similar. Break up P as a union
of disjoint (up to the boundary) triangles tj , j41, R , N. Since x P (x) 4

!
j

x tj
(x), it suffices to carry out the argument for x P , where P is assumed to be a

triangle. Since translations don’t contribute anything in this context, we may
assume that one of the vertices of the triangle is at the origin. Break up this tri-
angle, if necessary, into two right triangles. Refine the original decomposition
so that it consists of right triangles. Rotate the right triangle so that it is in the
first quadrant and one of the sides is on the x1-axis. We now apply a linear trans-
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formation mapping this triangle (denoted by P 8) into the triangle with the end-
points (0 , 0 ), (1 , 0 ) and (1 , 1 ). It is easy to check by an explicit computation
that the Fourier transform of the characteristic function of this triangle has the
L p norm (crudely) bounded by 21Op .

Let T denote the linear transformation taking the triangle P 8 to the unit tri-
angle above. We see that

x× TP 8 (j) 4NTNx× P 8 (T t j) ,

so

Vx× TP 8 Vp 4NTN1/p 8
Vx× P 8 Vp .

Since NTN41ONP 8 N , we see that Vx× tj
Vp GCNtj N

1/p 8 , where the tj’s are the tri-
angles from the (refined) original decomposition. Adding up the estimates we
get

Vx× P Vp GC !
j40

N

Ntj N
1/p 8GCNg!

j40

N

Ntj Nh1/p 8

4CNNPN1/p 8 .

In higher dimensions the proof is virtually identical with triangles replaced
by (n21)-dimensional simplices, i.e the convex hull of n points that are not con-
tained in any (n22)-dimensional plane.

Since we have assumed that the number of vertices of Pd is bounded above, it
follows that V fd Vp GC(dNPd N)1/p 8 , as desired.

3. – Proof of Theorem 3.

As before, it is enough to consider the set B p (0 , R , 0 ) 4 ]y : Q(y)1

R(y) Gd(. It will be clear from the proof below that if we shrink the support
sufficiently, then B p (0 , R , 0 ) BBQ

d4 ]y : Q(y) Gd(, due to our assumptions
on the remainder term R.

Let (n21)Om41Oa1 1R11Oan21 . Our plan is as follows. We first prove
that NBQ

d NBd (n21)Om . Then, we will find a polyhedron of suitable area that con-
tains the set BQ

1. We shall obtain the polyhedra for all values of d by homogene-
ity.

Going into polar coordinates, x1 4s mOa1 v 1 , R , xn21 4s mOan21 , v4

(v 1 , R , v n21 ) �S n22 , we see that

s
BQ

d

dy4 s
S n22

s
0

s 1Om Q 21Om (v)

s n22 ds dv4d (n21)Om s
S n22

Q 2(n21)Om (v) dv4CQ d (n21)Om .

This proves that NBQ
d NBd (n21)Om .

We now find a box P1 with sides parallel to the coordinate axes, such that
BQ

1 %P1 , and NP1 N4cCQ , where cD1. Let QP be a mixed homogeneous function
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of degree (a1 , R , an21 ) defined by the condition ]y : QP (y) 41( 4¯P1, where
¯P1 denotes the boundary of P1. Let Pd be the polyhedron such that the bound-
ary ¯Pd4 ]y : QP (y) 4d(. It is not hard to see that BQ

d%Pd. Moreover, NPd N4

cCQ d (n21)Om BNBQ
d N by the calculation made in the previous paragraph. This

completes the proof of Theorem 3.
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