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On the D-Stability Problem for Real Matrices

RUSSELL JOHNSON - ALBERTO TESI

Sunto. – Vengono discusse delle condizioni sufficienti affinchè una matrice reale A
delle dimensioni n3n sia diagonalmente (o D-) stabile. Esse includono delle ipote-
si geometriche (condizioni degli ortanti), e un criterio che generalizza un criterio
di Carlson. Inoltre si discute la D-stabilità robusta per le matrici reali delle dimen-
sioni 434.

1. – Introduction.

The purpose of this paper is to present some remarks concerning the con-
cept of D- (or diagonal-) stability of n3n real matrices A. Recall that an n3n
real matrix A is called diagonally stable if and only if for every diagonal matrix
D4diag (d1 , R , dn ) with positive diagonal entries, the eigenvalues of the ma-
trix DA all lie in the left half-plane. This concept is of importance in e.g. eco-
nomics [2], [7] and control systems theory [13], [1].

The problem of characterizing the D-stable matrices has received consid-
erable attention and much is now known, especially for restricted classes of
matrices like Minkowski (or M-) matrices and sign-stable matrices. See the re-
views by Johnson [12] and Hershkowitz [11]. Cain [4] gave an elegant charac-
terization of the set of real 333 diagonally stable matrices. See also [3].

In the present paper, we first consider conditions which, when combined
with the stability of A, are sufficient for D-stability. We derive an elementary
necessary and sufficient condition for D-stability which seems not well-known.
Then, we consider a geometric condition (orthant condition) which is sufficient
for D-stability. Next we show that this geometric condition is implied by an an-
alytical condition (Proposition 2.5) which is related to a condition of Carl-
son [5]. Finally, we sharpen the Carlson condition in a significant way in
Proposition 2.9. All these matters are discussed in Section 2.

In Sections 3 and 4 we consider the characterization problem for D-stable
matrices. It is well known that this is a complicated matter if the dimension n
is greater than 3.

Section 3 is devoted to a proof that there is a polynomial decision procedure
for describing the class of D-stable matrices. More precisely, we show that the
complement in R n 2

of the set D of D-stable matrices is semi-algebraic. This im-
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plies that D itself has finitely many components. Our analysis uses arguments
of the paper of Seidenberg [15], which elaborates the well-known Tarski-Sei-
denberg decision procedure.

Finally, in Section 4, we consider the problem of characterizing the interior
of D (the class of robustly D-stable matrices [1]) when n44. Although the
method of Section 3 can in principle be used to do this, it is as a practical mat-
ter difficult to implement. We take advantage of some simplifying features
when n44 to characterize a set E which is intermediate between D and int D.
The description of E is relatively straightforward. We then show how int D can
be obtained by removing finitely many semialgebraic sets from E.

2. – Conditions for D-stability.

The main purpose of this section is to discuss sufficient conditions for D-
stability, one of which is of a geometric nature and consists of various «orthant
conditions». However, we first present a warm-up lemma which gives a
necessary condition for D-stability and illustrates what we mean by the term
«orthant condition».

LEMMA 2.1. – Let A : R n KR n be D-stable and let U be an open orthant in
R n. Then, AUOU4¯.

PROOF. – Suppose not, and let 0 cv�AUOU. Since Av�U, we can find a
diagonal matrix D with positive diagonal entries such that DAv4v. That is, 1
is a positive eigenvalue of DA and so A is not D-stable. r

The converse of this lemma is false as we see from the following

EXAMPLE 2.2. – Consider the matrix

A4y 23

7

230

2

29

21

1

9

21

z .

Then, it can be checked that AUOU4¯ for every open orthant U%R 3, but A
admits two eigenvalues with positive real part. r

We wish to relate orthant conditions to a standard condition arising in
D-stability theory [12]. For this we introduce orthants in coordinate hyper-
planes as well as the open orthants considered above. Consider the coordinate
hyperplane ]xi 40( �R n21 %R n where 1 G iGn. Let U be an open orthant in
]xi 40(. The argument of Lemma 2.1 shows that a necessary condition for
D-stability of A is that AUOU4¯. In general, if U is an open orthant of the
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codimension k coordinate subspace ]xi1
4R4xik

40(�R n2k%R n (1GkEn),
then D-stability of A implies that AUOU4¯.

Taking into account the equivalency of the conditions AUOU4¯ and
A(2U)O (2U) 4¯, we see that there are

2n21 1n2n22 1gn

2
h2n23 1R1n

orthant conditions which are necessary for D-stability. It is easy to see that all
these conditions can be summarized in the following equivalent condition

det (A2D) c0 for all diagonal D with positive diagonal entries .(1)

For, the orthant conditions taken all together imply that there is no non-zero
vector v�R n and no positive diagonal matrix D with Av4Dv. And, condition
(1) implies the orthant conditions.

Now, condition (1) is closely related to the standard property P0 arising in
the stability theory of matrices [8], [9], [12]. In fact, assume that det Ac0.
Then, direct expansion of the quantity det (A2D) shows that (1) holds if and
only if, for each 1 GkGn, all signed principal minors of order k of A are
non-negative:

(21)k mi1 Rik
F0 (1 G i1 ERE ik Gn) .

This is the P0 property; see especially [9].
In conclusion, we have introduced a geometric (orthant) condition which is

necessary for D-stability and which, for non-singular A, is equivalent to the
P0-condition. After this warm-up, we turn to sufficient conditions for D-stabili-
ty. Our point of departure is the following

LEMMA 2.2. – Suppose A is stable but not D-stable. Then, we can find a di-
agonal matrix D with positive diagonal entries and non-zero vectors v 8 , v 9�
R n such that

DAv 842v 9 ,

DAv 94v 8 .

PROOF. – If A is stable but not D-stable, then there exists a positive diago-
nal D1 such that D1 A has an eigenvalue with non-negative real part. Since zero
is not an eigenvalue of DA for any positive diagonal D, there exists a positive
diagonal D such that DA admits ib as an eigenvalue for some bD0. Multiply-
ing D by b21, we can assume that i is an eigenvalue of DA.

Let v 81 iv 9 be an eigenvector of DA corresponding to the eigenvalue i.
Since A is real, we have v 8c0, v 9c0. It is easily seen that v 8 and v 9 satisfy
the conditions of the lemma. r
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As an immediate consequence of this lemma we have the necessary and
sufficient condition for D-stability promised in the Introduction.

PROPOSITION. – 2.3. – Necessary and sufficient conditions for D-stability
of the matrix A are stability of A and

detg A

2D

D

A
hc0(2)

for all diagonal n3n matrices with positive diagonal entries. r

Let us observe that, if v 8 , v 9�R n are two vectors satisfying the condition
of Lemma 2.2, then

w 84c 8 v 82c 9 v 9 ,

w 94c 9 v 81c 8 v 9 ,

also satisfy that condition for all real constants c 8 , c 9. Thus if the i-th compo-
nent of, say, v 8 is not zero, then we can choose c 8 , c 9 in such a way that the i-th
components of w 8 and w 9 are both non-zero. Conversely, if the i-th compo-
nents of both v 8 and v 9 are zero, then the same is true of the i-th components
of w 8 and w 9.

Using this observation, we can formulate orthant conditions which are suf-
ficient for D-stability. For each 0 GkGn21, consider the coordinate sub-
space of codimension k

Si1 Rik
4 ]x4 (x1 , R , xn ) �R n Nxi1

4R4xik
40(

where 1 G i1 ERE ik Gn and k40 corresponds to S0 4R n. Consider the con-
ditions (0 GkGn21):

For each pair of open orthants U r , U s %Si1 Rik
, there holds(Ck ):

either AU r O2U s 4¯ or AU s OU r 4¯ .

We have

PROPOSITION 2.4. – Condition (C0 ), R , (Cn21 ) together with the stability of
A are sufficient for the D-stability of A.

PROOF. – Suppose that (C0 ) holds. Then for all positive diagonal D, the ma-
trix DA cannot have eigenvalue i with complex eigenvector v 81 iv 9 such that
all components of v 8 and of v 9 are non-zero. For if this were so, we would have
v 8�U r , v 9�U s for some open orthants U r , U s %R n, and (C0 ) would be violat-
ed. Similarly, (C1 ) implies that v 8 and v 9 cannot have exactly one component
equal to zero, and so on. r
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Although these conditions are many in number, they are individually
easily verified.

We now consider algebraic conditions which imply the orthant conditions
(C0 )-(Cn21 ). We first prove,

PROPOSITION 2.5. – Suppose that A is stable and that

detg A

2D2

D1

A
hc0(3)

for each pair of diagonal matrices D1 , D2 with positive diagonal entries.
Then, A is D-stable.

PROOF. – Clearly the hypothesis is stronger than the (necessary and) suffi-
cient condition of Proposition 2.3. r

REMARK 2.6. – The hypothesis of Proposition 2.5 implies each of the orthant
conditions (C0 ), R , (Cn21 ) is valid. Thus, suppose for contradiction that there
is a coordinate subspace Si1 Rik

(0 GkGn21) and that there are open orthants
U r , U s %Si1 Rik

such that

AU r O2U s c¯ and AU s OU r c¯ .

Let x 8�U r and w 8�U s satisfy Ax 84w 8, and let x 9�U s and w 9�U r satisfy
Ax 94w 9. There are diagonal matrices with positive diagonal entries D1, D2

such that

Ax 842w 842D1 x 9 ,

Ax 94w 94D2 x 8 .

That is, D1 and D2 satisfy

detg A

2D2

D1

A
h40 .

This contradicts the hypothesis of Proposition 2.5. r

The condition of Proposition 2.5 can be reformulated in the following ele-
gant algebraic way.

Write

D1 4diag (d1 , R , dn ) , D2 4diag (e1 , R , en ) .

Then the quantity

P(d1 , R , dn ; e1 , R , en ) 4detg A

2D2

D1

A
h
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is a polynomial in its arguments. The terms of the polynomial P are of the form

cdi1
R dik

ej1
R ejl

, (i1 , R , jl � ]1, 2 , R , n() ,

where the coefficient c4c(i1 , R , ik , j1 , R , jl ) depends only on the entries of
the matrix A. We verify the following three claims.

CLAIM 1. – The constant term in the polynomial P equals (det A)2 D0.

The proof of Claim 1 is trivial: set d1 4R4dn 4e1 4R4en 40.
We see that the non-vanishing of the polynomial P for all positive values of

d1 , R , en is equivalent to its positivity for all such values of d1 , R , en . Thus
the criterion of Proposition 2.5 is equivalent to the stability of A together with
strict positivity of P for d1 D0, R , en D0.

CLAIM 2. – The coefficient c(i1 , R , ik , j1 , R , jl ) 40 if kc l and k , lEn.

To prove this claim, note that the coefficient in question is obtained by ex-
panding the determinant

N
N
N

A

2e1

÷

0

R

R

R

0

÷

2en

d1

÷

0

R

R

R

0

÷

dn

A

N
N
N

(4)

and retaining only those terms containing di1
, R , dik

, ej1
, R , ejl

. Thus without
loss of generality we can set da40 if aR� ]i1 , R , ik ( and eb40 if
b� ] j1 , R , jl (.

Write r4n2k, s4n2 l, and let m1 , R , mr ; n1 , R , ns be the increasing
enumerations of ]1, 2 , R , n(0]i1 , R , ik ( and ]1, 2 , R , n(0]j1 , R , jl ( re-
spectively. By direct calculation from (4), one finds that

c(i1 , R , ik , j1 , R , jl ) 4

N
N
N

am1 n1

÷

amr n1

R

R

R

am1 ns

÷

amr ns

0

0

an1 m1

÷

ans m1

R

R

R

an1 mr

÷

ans mr

N
N
N

.(5)

The blocks of zeroes are respectively s3s and r3r, and since rcs the deter-
minant is zero.
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CLAIM 3. – If k4 l, then

c(i1 , R , ik , j1 , R , jk ) 4

N
N
N

am1 n1

÷

amr n1

R

R

R

am1 nr

÷

amr nr

N
N
N

N
N
N

an1 m1

÷

anr m1

R

R

R

an1 mr

÷

anr mr

N
N
N

where again r4n2k and m1 , R , mr ; n1 , R , nr are the increasing enumera-
tions of ]1, 2 , R , n(0]i1 , R , ik ( resp. ]1, 2 , R , n(0]j1 , R , jl (.

Claim 3 follow from Claim 2 and a verification of sign.
Now, one verifies without difficulty that P is positive for all positive values

of d1 , R , en if and only if each coefficient c(i1 , R , ik , j1 , R , jk ) is non-nega-
tive, for each 1 GkGn. Thus we have (almost) proved

PROPOSITION 2.7. – The non-negativity of each of the following products is
sufficient for a stable matrix A to be D-stable

N
N
N

am1 n1

÷

amr n1

R

R

R

am1 nr

÷

amr nr

N
N
N

N
N
N

an1 m1

÷

anr m1

R

R

R

an1 mr

÷

anr mr

N
N
N

NF0(6)

where 1 GrGn21 and 1 Gm1 EREmr Gn, 1 Gn1 EREnr Gn.

PROOF. – The proof is complete if we note the (obvious) fact that the
coefficient of d1 R dn e1 R en is 11, and that, if k or l equals n in Claim 2, then
the corresponding coeffcient vanishes (eventhough formula (5) no longer
holds). r

EXAMPLE 2.8. – We apply Proposition 2.7 to 232 matrices. It turns out that
a 232 matrix A is D-stable if

a11 E0; a22 E0; a11 a22 Da12 a21 ; a12 a21 D0 .
The last inequality is not necessary for D-stability [12]. r

The determinants appearing in Proposition 2.7 are exactly those occurring
in Carlson’s Theorem [5], [11]. Indeed our Proposition 2.7 is equivalent to
Carlson’s Theorem because stability together with (6) imply and are implied
by the P0-property together with (6).

Let us note, however, that Proposition 2.7 can be significantly strength-
ened, as follows. By Proposition 2.3, the D-stability of A is equivalent to stabili-
ty together with the positivity of

F(d1 , R , dn ) 4
N
N
N

A

2D

D

A

N
N
N

4P(d1 , R , dn ; d1 , R , dn )

for all positive numbers d1 , R , dn . Now F(d1 , R , dn)4! f(k1 , R , kp)d l1
k1

Rd lp
kp
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where 1Gk1EREkpGn and 1Gl1 , R , lpG2. The coefficient f (k1 , R , kp ) can be
calculated using Theorem 2.7. The result is zero if l1 1R1 lp is odd. If
l1 1R1 lp42s is even, let Q(k1 , R , kp )4](I , J)N I%]1, 2 , R , n(,
J%]1, 2 , R , n(, NIN4NJN4s and di1

Rdis
dj1

Rdjs
4d l1

k1
Rd lp

kp
(. Then

f (k1 , R , kp ) 4 !
(I , J) �Q

c(I , J) .

Clearly, if A is stable and each coefficient f(k1 , R , kp ) F0, then A is
D-stable.

Summarizing, we have proved

THEOREM 2.9. – If A is stable and if each coefficient f (k1 , R , kp ) is non-
negative, then A is D-stable. r

This condition is considerably less restrictive that the Carlson’s Theorem.
Moreover its proof does not make use of determinantal inequalities. It may be
that more careful analysis of the polynomial F will allow a resolution of Carl-
son’s conjecture (weakly sign symmetric P-matrices are D-stable).

3. – On characterizing D-stability.

Our goal is to show that the set of D-stable matrices is the complement of a
semi-algebraic set in R n 2

, i.e., the complement of a set describable by a finite
collection of sets of polynomial equalities and inequalities.

As a starting point we take the characterization of D-stable matrices of
Proposition 2.3, namely that A is D-stable if and only if A is stable and

detgA

D

2D

A
hc0 .(7)

for all positive diagonal D. The stability of A can be determined by finitely
many polynomial inequalities in the coefficients a11 , a12 , R , ann of A (the Hur-
witz criterion).

The relation (7) is a polynomial P1 in the coefficients of A and the diagonal
elements d1 , R , dn of D:

P1 (A ; d1 , R , dn ) c0 .

Write d1 4 t 2
1 , d2 4 t 2

2 , R , dn 4 t 2
n and note that P1 (A ; 0 , R , 0 ) 4 ( det A)2 D0.

We see that (7) is equivalent to the relation

P(A ; t1 , R , tn ) fP1 (A ; t 2
1 , R , t 2

n ) D0(8)

for all real values of t1 , R , tn .
Now we apply Theorem 2 of Seidenberg [15] to conclude that there exists a

finite number N of polynomials s i (a11 , a12 , R , ann ) and an equal number of
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polynomials gi (a11 , a12 , R , ann ; t) such that the relation

P(A ; t1 , R , tn ) 40(9)

has a solution (t1 , R , tn ) �R n if and only if for at least one i, 1 G iGN, the
system

.
/
´

s i (a11 , a12 , R , ann ) c0 ,

gi (a11 , a12 , R , ann ; t) 40 ,
(10)

has a solution t�R. We have written t1 4 t.
Now, solvability of (10) can be determined by constructing a Sturm chain

for

s 2
i (Q)

(¯gi O¯t)(Q , t)

g(Q , t)

and considering the number of variations in sign of this chain between t42Q

and t4Q. See Gantmacher [10, Vol. II, p. 175]. The result is a finite set
G 1 , R , G N 8 (N 84N 8 (i) ) of collections of polynomial equalities and inequali-
ties in a11 , a12 , R , ann such that (10) has a solution if and only if at least one
collection G j is satisfied.

We conclude, then, that the set of D-stable matrices is the complement of a
semi-algebraic subset of R n 2

. This property has an important corollary which
we include in the following

THEOREM 3.4. – The set of D-stable matrices is the complement in R n 2
of a

semi-algebraic set and as a consequence has a finite number of connected
components. r

Finally, we wish to note that, in a recent paper [6], the question of D-stabil-
ity is related to an NP-hard problem (that of the exact computation of the real
structured singular value of a complex matrix).

4. – Robust D-stability in dimension n44.

As stated in the Introduction, a matrix is robustly D-stable if it lies in
D 4 ]A�R n 2

N A is D2stable( and if all sufficiently near matrices A 8 are
also in D. Even in four dimensions, it seems that it is unwieldy to write down a
complete set of algebraic defining relations for int D (and that it is even more
unwieldy to describe D itself). Nevertheless, we will describe a set E satisfying
int D % E % D, then state how a semialgebraic set can be removed from E so as to
obtain int D.

It will be convenient to begin from the classical Hurwitz criterion for the
stability of DA, where D is a positive diagonal matrix. First let p(l) be the
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characteristic polynomial of DA:

det (lI2DA) 4p(l) 4l n 1pn21 l n21 1R1p1 l1p0 .(11)

The coeffcients pn2k equals (21)k time the sum of the k-th order principal mi-
nors of the matrix A [10]. Each coefficient pn2k is a function of the diagonal
entries d1 , R , dn of D.

Let us assume that A itself is stable; this can be verified by the Hurwitz
criterion. Then using Orlando’s Theorem [10, Vol. II, pp. 196], we can con-
clude that A is D-stable if and only if the third Hurwitz determinant H3 of DA
is positive for all positive diagonal D:

H3 (DA) 4
N
N
N

p3

p1

0

1

p2

p0

0

p3

p1

N
N
N

D0(12)

for all positive values of d1 , d2 , d3 , d4 .
Next observe that H3 (DA) is homogeneous of degree 6 in d1 , R , d4 . In fact,

in general, if A is an n3n matrix and Hk is the k-th Hurwitz determinant of DA,
then Hk is homogeneous in d1 , R , dn of degree 1121R1k4k(k11)/2.

It is therefore natural to study (12) by first eliminating a variable through
projectivization. Concretely, divide H3 (DA) 4H3 (A ; d1 , R , d4 ) by d 6

4 . Write
x4d1 /d4 , y4d2 /d4 , z4d3 /d4 and define

b(x , y , z) 4
H3 (d1 , R , d4 )

d 6
4

.

We suppress the A-dependence unless it is useful to display it explicitly. We
see that (12) is equivalent to

b(x , y , z) D0 for all positive x , y , z .(13)

We study the polynomial inequality (13). First consider b(x) fb(x ; y , z) as
a polynomial in x and write

b(x) 4B3 (y , z)x 3 1B2 (y , z) x 2 1B1 (y , z)x1B0 (y , z) .

Observe that a necessary condition for robust D-stability of the matrix A is

B3 (y , z) D0 , B0 (y , z) D0 for all yD0 , zD0 .(14)

For if, for example, B3 (y, z) G0 for some values of y, z, then an arbitrarily
small perturbation of A will yield a matrix A 8 such that B3 (A 8 ; y, z) E0. Then,
b(A 8 ; x , y , z) is negative for large x, and A 8 is not D-stable. Similarly, letting
xK0 we see that robust D-stability of A implies positivity of B0 for all yD0,
zD0.
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Observe further that a necessary condition for D-stability (and a fortiori
for robust D-stability) of A is

b(x , 1 , 1 ) D0 for all xD0 .(15)
We assume until further notice that the matrix A satisfies (14) and (15), and
proceed to derive more necessary conditions for D-stability of A.

First of all, we have for each yD0, zD0:

b(0) D0 , lim
xK2Q

b(x) 42Q , lim
xKQ

b(x) 4Q .

Combining these observations with (14) and (15), we see that D-stability of A
implies that there does not exist a pair (y , z) for which b(x) has a positive
double zero x0 , and conversely if there does not exist a pair (y , z) for which
b(x) has a positive double zero, then A is D-stable.

We are led to study the existence of double zeroes of b(x), i.e. points x0 D0
such that 0 4b(x0 ) 4b 8 (x0 ). In general, b(x) admits a complex double zero x0

if and only if the discriminant D4D(y , z) of the coefficients of b is zero:

D(y , z) 4D(B3 , B2 , B1 , B0 ) 40 .(16)

Explicitly [14, p. 141]:

D(B3 , B2 , B1 , B0 ) 4B 2
1 B 2

2 24B0 B 3
2 24B 3

1 B3 227B 2
0 B 2

3 118B0 B1 B2 B3 .
We study the solutions (y , z) of (16).

LEMMA 4.6. – Let (y , z) be a solution of D(y , z) 40, and let x0 4a1 ib be a
double root of b(x) 40 with bc0. Then, B2 (y , z) D0 and B1 (y , z) D0.

PROOF. – By (14), b(x) has a negative root 2a where aD0. Since x0 and
x0 4a2 ib are roots of b and of b 8 we can conclude that

3b(x) 4 (x1a) b 8(x) .(17)
The condition (17) implies that

.
/
´

3B2 42B2 13aB3 ,

3B1 4B1 12aB2 ,

3B0 4aB1 .

(18)

The first relation implies that B2 D0, and the third implies that B1 D0. This is
the assertion of the lemma. r

LEMMA 4.7. – Let (y , z) be a solution of D(y , z)40, and suppose that x0G0
is a double root of b. Then, B2 (y , z) D0 and B1 (y , z) D0.

PROOF. – First of all, b(0) D0 so we must have x0 E0. It is then easy to see
that b 8 (0) D0, that is B1 (y , z) D0. It can further be seen that b 8 (x) 4

3B3 x 2 12B2 x1B1 has two negative real roots, and this forces B2 (y , z) D0.
The lemma is proved. r
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We now combine these lemmas to prove the following

PROPOSITION 4.8. – Suppose that the matrix A satisfies (14) and (15). Then
A is D-stable if and only if neither of the following relations admits a sol-
utionyD0, zD0:

D(y , z) 40 , B1 (y , z) E0 ,(19)

D(y , z) 40 , B2 (y , z) E0 .(20)

PROOF. – (K) If A is D-stable and (y , z) is a solution of D(y , z) 40, then
Lemmas 4.6 and 4.7 show that B1 (y , z) and B2 (y , z) are both positive. So nei-
ther (18) nor (19) admits a solution.

(J) Suppose that neither (19) nor (20) admits a solution, and let yD0, zD

0 be a solution of D(y , z) 40. We must consider several special cases.

(i) If D(y , z) 40 4B1 (y , z) and if b(x , y , z) has a positive double root
x0 , then B2 (y , z) E0, a contradiction.

(ii) If B2 (y , z) 40, then b(x) and b 8 (x) cannot have a common positive
root x0 .

(iii) If B1 (y , z) D0 and B2 (y , z) D0, then b(x) has no positive root.

Putting these observations together with the assumption that neither (19)
nor (20) has a solution, we conclude that there is no pair yD0, zD0 for which
b(x , y , z) admits a double root x0 . This implies that A is D-stable and proves
the proposition. r

REMARK 4.9. – A brief examination of the proof of Proposition 4.8 shows
that the following assertion is valid. Suppose that A satisfies (19) and (20);
then A is D-stable if and only if neither of the following relations admits a sol-
ution yD0, zD0:

D(y , z) 40 , B1 (y , z) G0 ,(21)

D(y , z) 40 , B2 (y , z) G0 ,(22)

We now consider how to determine whether (19)-(20) have solutions. There
are at least two ways to handle such problems. The first, convenient in special
cases, is to explicitly determine those points yD0, zD0 for which B1 (y , z) D0
resp. B2 (y , z) D0, then to solve the quadratic equation b 8 (x) 40 for such
points (y , z), and finally to plug any real positive solutions x0 into the equation
b(x) 40.

The second way is to use the method of Sturm chains. It is somewhat more
convenient to use relations (21)-(22) as the point of departure here. Consider
for example D(y , z) and B1 (y , z) as functions of y. Construct a Sturm chain for
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the rational function

D 8 (y)

D(y)
.

where the prime 8 of course denotes the derivative with respect to y. Let
V Q

0 (D 8 /D) denote the difference in the number of sign changes in this chain
between y40 and y4Q. Then V Q

0 (D 8 /D) is the number of positive zeroes of
D(y). See Gantmacher [10, Vol. II, p. 175].

Next construct a Sturm chain for

B1 (y)
D 8 (y)

D(y)
.

Using [10], we see that (21) does not admit a solution yD0 (for the fixed z in
question) if and only if

V Q
0 g D 8

D
h4V Q

0 gB1
D 8

D
h .(23)

Now the verification of (23) involves the examination of finitely many col-
lections of equalities and inequalities involving polynomials in the variable z.
The investigation of these sets of equalities and inequalities, and their reduc-
tion to sets of equalities and inequalities which only involve the coefficient
a11 , a12 , R , ann of the matrix A, is in principle an elementary task.

Since relation (22) can be studied in the same manner, it is natural to make
the following

DEFINITION 4.11. – Let E be the set of all 434 real matrices which satisfy
(14) and (15) and such that neither of relations (21)-(22) admits a solution
yD0, zD0.

This is the set of E referred to in the Introduction. Clearly we have
int D % E % D, so E contains the robustly D-stable matrices and is itself con-
tained in the set of D-stable matrices.

Let us remark that (14) and (15) are verifiable by elementary (and simple)
means. In fact, B0 (y , z) is quadratic in y and z, so it is straightforward to de-
termine conditions on the coefficients of B0 which are necessary and sufficient
for its positivity for yD0, zD0. The function B3 (y , z) is cubic in y and z. One
can fix z and look for roots yD0 of B0 (y , z) by Sturm’s method. One obtains in
this way finitely many sets of equalities and inequalities involving polynomials
in the variable z, which can be studied by elementary means. Finally, (15) can
be studied directly by examination of a Sturm chain.

We finish the paper with comments on how the class of robustly D-stable
matrices A can be picked out of E. The problem can be posed as follows: deter-
mine «robust» conditions on A under which B3 (y , z) D0 and B0 (y , z) D0 for
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all yD0, zD0; determine robust conditions on A under which neither (19) nor
(20) admits a solution yD0, zD0. [Observe that, if (14) is true for all matrices
A 8 in an open neighborhood V of some matrix A, and if (15) holds at A, then
(15) also holds for all A 8�V. Thus the condition (15) need not be considered
further.]

This task can in principle be carried out for relations (19)-(20) by examin-
ing the collections of equalities and inequalities involving polynomials in z
which result from studying (23). Since one has to do with polynomials in a sin-
gle variable, the «robustification» of (19)-(20) presents no theoretical difficul-
ties (though it may be unappealing to carry out in detail ...). The same remarks
apply to the polynomials B3 and B0 . However, for B3 (y , z) at least, a direct
analysis is easier. We can write

B3 (y , z) 4 (az1a*) y 2 1Q(z) y1 (gz1g* z 2 )

where

Q(z) 4h 1 z 2 1sz1h 2 .

The coefficients a , a*, g , g*, h 1 , s , h 2 are function of a11 , a12 , R , ann . It is
easily seen that positivity of B3 for all yD0, zD0 implies that a , a*, g , g*
and h 1 are all positive. Assume that conditions have been written down which
ensure that B3 (A ; y , z) D0 for all yD0, zD0, where A is fixed. Then one can
check, if h 2 D0, then B3 (A 8 ; y , z) D0 for all yD0, zD0, for all A 8 in some
neighborhood of A. Thus robust positivity of B3 can be expressed in terms of
polynomial relations involving the coefficients of A.

EXAMPLE 4.12. – In this example we apply the discussed method to the fol-
lowing matrix

A4y21

21

21

21

0

21

21

21

a

0

21

21

0

0

0

21

z
where a is a real parameter. It is easily checked that A is stable for aD28/3.
On the other hand our procedure can be used to prove that A is D-stable if
aF21. First, we get that the coefficients of the characteristic polynomial of
DA (see (11)) are

p3 (d1 , d2 , d3 , d4 ) 4d1 1d2 1d3 1d4 ,

p2 (d1 , d2 , d3 , d4 ) 4d1 d2 1d1 d3 (a11)1d2 d3 1d1 d4 1d2 d4 1d3 d4 ,

p1 (d1 , d2 , d3 , d4 ) 4d1 d2 d3 1d1 d2 d4 1d1 d3 d4 (a11)1d2 d3 d4 ,

p0 (d1 , d2 , d3 , d4 ) 4d1 d2 d3 d4 .
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Thus, a necessary condition for D-stability is aF21. To prove that A is actu-
ally D-stable for aF21 we find it not convenient to view H3 (DA) /d 6

4 as a cubic
polynomial in x4d1 /d4 with coefficients which are functions of y4d2 /d4 and
z4d3 /d4 . It is better to write instead

H3 (DA)

d 6
4

4B2 (11a)2 1B1 (11a)1B0 .

It can be checked that B2 , B1 , and B0 are all positive if x , y , zD0. Indeed a
calculation shows that

B2 4x 2 z 2 (x1y1z) ,

B1 4xz]x 2 [y(z12)11]1x[y 2 (z12)1y(z 2 13z12)12z11]1

y 2 (2z11)1y(2z 2 12z11)1z(z11)( ,

B0 4y]x 3 [y(z11)11]1x 2 [y 2 (z11)1y(z 2 12z12)12z11]1

x[y 2 (z11)2 1y(z 3 12z 2 13z11)1z(2z11) ]1z(z11)[y 2 1y(z11)1z]( ,

and these expressions are positive if x , y , zD0.
As a final comment we note that D-stability of A cannot be checked by the

well-known Lyapunov condition [12], at least if aD8(11k2). In fact, suppose
for contradiction that there exists a diagonal matrix

X4

.
`
´

x

0

0

0

0

y

0

0

0

0

z

0

0

0

0

t

ˆ
`
˜

with positive entries such that XA1A 8 XE0 (8 denotes transpose). Clearly,
such an X exists if and only if the matrices

X1 4
.
`
´

x

0

0

0

y

0

0

0

z

ˆ
`
˜

, A1 4
.
`
´

21

21

21

0

21

21

a

0

21

ˆ
`
˜

satisfy M42 (X1 A1 1A18 X1 ) D0. But

M4
.
`
´

2x

y

2ax1z

y

2y

z

2ax1z

z

2z

ˆ
`
˜

is not positive definite for any x , y , zD0 if, say, aD8(11k2). r
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