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Bollettino U. M. I.
(8) 2-B (1999), 263-278

On the Fiber of the Compound
of a Real Analytic Function by a Projection (*).

ALAIN JACQUEMARD

In Memoriam Mario Raimondo

Sunto. – Sia f : RmKR k con mFkF1 una funzione analitica. Se il luogo critico di f è
compatto, esiste una fibrazione CQ localmente triviale associata ai livelli f. Suppo-
niamo kF2 e sia p k la proiezione (x1 , R , xk21 , xk ) O (x1 , R , xk21 ). Sotto una
condizione sul luogo critico di fA4p k i f esiste anche una fibrazione CQ localmente
triviale associata ai livelli di fA. Siano F e FA le fibre rispettitive, e I l’intervallo unità
reale. Dimostriamo qui che FA è omeomorfa al prodotto F3I. Nel caso di polinomi
studiamo criteri effettivi. Diamo inoltre un’applicazione del risultato principale.

1. – Introduction and statements of the results.

In his book [M. p. 100] J.Milnor asks some questions in the context of real
polynomial functions with isolated singularity at the origin. The first one is a
question about the fiber of a polynomial mapping Rm O Rk with isolated sin-
gularity at the origin and the fiber of its compound by the canonical projection
Rk O Rk21 which forgets the last coordinate: is the fiber of the latter homeo-
morphic to the product of the fiber of the former mapping by the unit interval?
We investigate this question in a larger context, allowing f to have a non isolat-
ed singularity.

Let us consider an analytic function f 4 ( f1 , f2 , R , fk ): Rm K Rk , with
mFkF1.

We recall that x�Rm is a singular point of f if and only if the rank of the
Jacobian matrix of f at x is not maximal. We call singular locus of f the set of
the singular points of f .

In the following, we consider functions satisfying:

HYPOTHESIS C The singular locus S f is compact and S f % f 21 (0).

Moreover, we may assume that S f is given as the zero set of a positive ana-
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lytic function u : Rm O R1 (for instance, one may take u defined by u(x) 4

!
i40

nk

mi
2 (x), where mi , 1GiGnk are the k3k minors of the Jacobian matrix of f ).

NOTATIONS 1. – For all eD0, mF1, nF2, hD0, let us denote:

Be4 ]x�Rm /u(x) Ge( ,

Se4 ]x�Rm /u(x) 4e( ,

Sh
n21 4m(u1 , u2 , R , ul ) �Rn / !

i41

l

ui
2 4h 2n .

Since S f 4u21 (0) is compact, for all neighbourhood V0 of S f , there exists
eD0 such that Be% V0 .

We first prove (Lemma 2) that there exists e 0 D0 such that for all eEe 0 ,
Be is a compact manifold with smooth boundary. We then show:

THEOREM 1. – Let f4 ( f1 , f2 , R , fk ): Rm KRk , with mFkF1 be an ana-
lytic function. Under Hypothesis C , there exists e 1 �]0 , e 0 ] such that: for all
e�]0 , e 1 ] there exists h eF0 such that for all h�]0 , h e ], the restriction of f

fNBeO f 21 (S k21
h ) : BeO f 21 (S k21

h ) KS k21
h

is a CQ locally trivial fibration onto S k21
h .

Notice (cf. Remark 2) that this fibration can be pushed on Se 0 f 21 (0).
When S f is not compact, but has at least one compact connected compo-

nent, one may prove the same kind of result, just replacing Be by its intersec-
tion with a suitable neighbourhood of the union of the connected compact com-
ponents of S f (cf. Remark 2).

In the following, we assume kF2.

NOTATION 2. – We denote by p k the projection

Rk

(x1 , R , xk21 , xk )

K

O

Rk21

(x1 , R , xk21 )

and we set up the following

HYPOTHESIS Hk . – The singular locus S fA of fA4p k i f is such that
S f 4S fA .

Let us suppose now that kF2 and that f satisfies both Hypotheses C and
Hk . We can apply Theorem 1 to both f and p k i f . We denote by F and FA the
corresponding fibers. The following result establishes the relationship be-
tween F and FA:
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THEOREM 2. – Let f4( f1 , f2 , R , fk): RmKRk , with mFkF2 be an analytic
function. Under Hypotheses C and Hk , there exist aD0, h aD0, such that:
(e�]0 , a], (h�]0 , h a ], (cA �S k22

h , (c�S k21
h ,

the fiber fA21 (cA)OBe is homeomorphic to the product ( f 21 (c)OBe )3 [0 , 1 ] .

Notice that a similar result holds (cf. Remarks 2 and 3) if S f is not compact
but has at least one compact component.

In the case f has an isolated singularity, both Hypotheses C and Hk hold, and
this answers the particular question of J. Milnor. We should mention that in the
isolated singularity case, the question has been first answered by H. C. King
[K. Prop. 2.8, unpublished]: it is even proven that the fibers are diffeomorphic
(with corners rounded off) as long as analytic functions are involved.

We then investigate (section 4) the problem of giving effective criteria
(that is to say to be verified by a computer) for Hypotheses C and Hk . These
criteria are sufficient ones and rely upon the Theory of Gröbner bases.

At the end is given an application of Theorem 2 in the context of an isolated
singularity at the origin. We investigate a subsidiary question of J. Milnor
about the construction of non-trivial examples of such fibrations. We mention
that there are answers to that question in E. Looijenga, P. T. Church and K.
Lamotke [Loo, CL] who gave different classes of non-trivial examples. In sec-
tion 5 we show as an application of Theorem 2 that it is impossible to construct
non-trivial examples of mappings R 2n O R 3 by starting from holomorphic
functions Cn O R 2 and simply adding a new coordinate function.

2. – Fibrations for real analytic functions.

NOTATION 3. – We will denote by c , d the inner scalar product in Rm.

We recall also the famous (see [Loj])

LEMMA 1 (curve selection lemma). – Let W a real semi-analytic set of Rm

such that 0 � W. Then there exist j�R and a real analytic curve r : [0 , j] K

Rm such that r (0) 40 and r (t) �W for tD0.

Let f4 ( f1 , f2 , R , fk ): Rm KRk , kF1, mFk , be an analytic function sat-
isfying the Hypothesis C . We fix e 0 such that, in Bm

e 0
0S f , f has no singular

point.

LEMMA 2. – There exists e 0 D0 such that for all e such that 0 EeEe 0 , Be is
a compact manifold with smooth boundary Se .

PROOF. – The fact that Be is compact provided e is sufficiently small is an
obvious consequence of the compactness of S f . Assume that for all e sufficiently
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small there exists a point pe such that pe�Se and u is singular at pe . By compact-
ness, there exists an accumulation point p0 such that u(p0 ) 40. Hence p0�S f .
Let us consider the following subset:

S4 ]x�Be 0S f Ogradx

K

u40( .

S is a semi-analytic subset of Rm . Suppose there is a point p0 � SOS f . Then
there exists a path r : [0 , j] KRm such that:

.
/
´

u(r (0) )40 ,

(t�]0 , j] , r (t) �S ,

and by multiplication by r 8 (t) we get:

cgradr (t)

K

u , r 8 (t)d4u 8(r (t) )40 .

Hence for all t� [0 , j], u(r (t) )4u(r (0) )40. Contradiction. r

2.1. Proof of Theorem 1.

PROOF. – We have to check that for eD0 sufficiently small f 21 (0) is
transversal to Se .

For x� f 21 (0)OSe , transversality means exactly linear independance be-

tween gradx

K

u , gradx

K

f1 , R , gradx

K

fk . Then, denote:

Z4mx� f21 (0)0S f O)(l 0 , l 1 , R , l k )�Rk11 0]0(Ol 0 gradx

K

u1!
i41

k

l i gradx

K

fi40n .

It is a semi-analytic subset of Rm . Assume that for all eD0 there exists
a point pe�ZOBe . By compactness of Be , there exists an accumulation
point p0 �S f OZ. So, there would exist an analytic path: r : [0 , j] KRm such
that:

.
/
´

u(r (0) )40 ,

(t�]0 , j] , r (t) �Z .

Then, for tD0,

l 0 (t) gradr (t)

K

u1 !
k

i41
l i (t) gradr (t)

K

fi 40 .

By multiplication with r 8 (t), and using cgradr (t)

K

fi , r 8 (t)d4 [ fi (r) ]8 (t) 40,
we obtain:

(tD0 l 0 (t) cgradr (t)

K

u , r 8 (t)d40 .

But l 0 (t)c0, since gradr (t)

K

f1 , R , gradr (t)

K

fk are independent when u(r (t) )c0.
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Therefore: (tD0 cgradr (t)

K

u , r 8 (t)d40, so u(r(t) ) is constant, and u(r (t) )4

u(r (0) )40. Contradiction. r

REMARK 1. – When S f is not compact, but has at least one compact con-
nected component, the same kind of result holds.

Let us denote by C%S f the union of the compact connected components of
S f . There exists a neighbourhood C * of C such that C *OS f 4C . By the curve
selection lemma it is straightforward to prove that there exists e 0 sufficiently
small such that for all e�]0 , e 0 ], BeOC * is a compact manifold with smooth
boundary SeOC *. We then can repeat the same proof as in Theorem 1 just re-
placing Be by BeOC *.

REMARK 2. – The fibration on BeO fNBeO f 21 (S k21
h ) can be pushed on

Se 0 f 21 (0).

To achieve this, one proceeds in the same way as in some of the following
proofs (for instance the Proof of Proposition 1) first by constructing a vector
field v

K
on Be 0 f 21 (0) such that, for all x�Be 0 f 21 (0):

1) cv
K

(x), gradx

K

udD0.

2) cv
K

(x), !
i41

n

fi (x) gradx

K

fi d40.

It suffices then to integrate this vector field.

2.2. Fibrations for f and p k i f .

Let f4 ( f1 , f2 , R , fk ): Rm KRk, with mFkF2 be an analytic function,
satisfying both Hypotheses C and Hk . Let us consider the mapping fA4p k i f :

Rm

x

K

O

Rk21 ,

( f1 (x), R , fk21 (x) ) ,

fA is an analytic function. We have S fA4S f % f 21 (0) % fA 21 (0). Hence Hypothe-
sis C holds for fA.

Applying then Theorem 1 to fA:

COROLLARY 1. – There exists eA1 �]0 , e 0 ] such that, for all e�]0 , eA1 ], there
exists hAe such that for all h�]0 , hAe ]

fANBeO f 21 (S k22
h ) : BeO f 21 (S k22

h ) KS k22
h

is a CQ locally trivial fibration.

Furthermore, we can substitute e 1*4 inf ]e 1 , eA1 ( for e 1 and eA1 , and h e*4
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inf ]h e , hAe( for h e and hAe , to be sure that both the restrictions of f and
fA are already fibrations with given e�]0 , e 1*] and h�]0 , h e*].

Let now (a 1 , a 2 , R , a k21 ) �S k22
h , hGh e*. We can consider the fiber

FA(a 1 , a 2 , R , a k21 ) 4 fA 21 ((a 1 , a 2 , Ra k21 ) )OBe .

Furthermore, (a 1 , a 2 , R , a k21 , 0 ) �S k21
h , so we can also consider the fiber

F(a 1 , a 2 , R , a k21 , 0 ) 4 f 21 ((a 1 , a 2 , R , a k21 , 0 ) )OBe .

Notice the obvious inclusion F(a 1 , a 2 , R , a k21 , 0 ) % FA(a 1 , a 2 , R , a k21 ) .
We will now prove that there exists a close topological relationship be-

tween these two fibers.

3. – Fibers of f and p k i f.

First, let us set up the following notations.

NOTATIONS 4. – Let e�]0 , e 1*] and h�]0 , h e*].

F e
0 4 f 21 (0)OBe ,

F
Ae

0 4 f
A21 (0)OBe ,

F
Ae1

0 4 ]x�F
Ae

0 Ofk (x) D0( ,

F e
h 4 f 21 ((h , 0 , R , 0 , 0 ) )OBe ,

F
Ae

h 4 f
A21 ((h , 0 , R , 0 , 0 ) )OBe ,

F
Ae1

h 4 ]x�F
Ae

h Ofk (x) D0( .

In a first step, we will be interested in the study of the singular fiber FAe
0 , which

is transversal to Se provided that 0 EeEe 8Ge 1* .
In fact, we deal only with the half fiber FAe1

0 and we claim:

PROPOSITION 1. – There exists e 2 �]0 , e 1*] such that (e�]0 , e 2 ], ((h , h 8)
such that 0 Eh 8EhGh e*,

FAe1
0 0]x�Rm Ofk (x) Gh 8( is homeomorphic to ( f 21 ((0 , 0 , R , h) )OBe )3 [0 , 1 ]

At first, we construct a vector field on FA e1
0 .

3.1. A vector field on FAe1
0 .

PROPOSITION 2. – There exists e 2 �]0 , e 1*] such that, for all e�]0 , e 2 ]: there
exists a CQ vector field v

K

1 on FA e1
0 , such that:

1) (x� FA e1
0 , cv

K

1 (x), gradx

K

ud41,

2) (x� FA e1
0 , cv

K

1 (x), gradx

K

fk dD0.

PROOF. – In order to be a vector field on FA e1
0 , v

K

1 has to satisfy the addition-
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al conditions: (x� FA e1
0 ,

cv
K

1 (x), gradx

K

f1 d4cv
K

1 (x), gradx

K

f2 d4R4cv
K

1 (x), gradx

K

fk21 d40

because the tangent space to FA e1
0 at x is ]gradx

K

f1 , gradx

K

f2 , R , gradx

K

fk21(» .

Let us denote by u
K

(x) and v
K

(x) the orthogonal projections of gradx

K

u and
gradx

K

fk on

]gradx

K

f1 , gradx

K

f2 , R , gradx

K

fk21 (» .

We claim:

LEMMA 3. – There exists e 2 �]0 , e 1*] such that for all x�Bm
e 2

, u
K

(x) and v
K

(x)
are not linearly dependent with opposite directions.

We postpone the proof of this lemma to the end of the section.
Now, we construct the vector field. Locally, in a point x0 � FA e1

0 it is possible
to find a vector w

K

x0
such that:

(i� [1 , k21]: cw
K

x0
, gradx0

K

fi d40 ,

cw
K

x0
, gradx0

K

fk dD0 ,

cw
K

x0
, gradx0

K

udD0 .

On a small neighbourhood of x0 , the projection w
K

0 (x) of w
K

x0
on the space

]gradx

K

f1 , gradx

K

f2 , R , gradx

K

fk21 (» has the same properties. We finish the
construction of v

K

1 on the whole half-fiber, by using a CQ partition of unity, get-
ting first a vector field v

K
satisfying

(i� [1 , k21]: cw
K

, gradx

K

fi d40 ,

cw
K

, gradx

K

fk dD0 ,

cw
K

, gradx

K

udD0 .

Then, we get v
K

1 by division by cw
K

, gradx

K

ud . r

3.2. Proof of Proposition 1.

PROOF. – Let x0 � f 21 ((0 , 0 , R , h) )OBe , and denote by W x0
the trajectory

of v
K

1 such that W x0
(0 ) 4x0 .

By the properties of v
K

1 , the functions t O fi (W x0
(t) ) are always 0, for all

i� [1 , k21].
So, W x0

(t) stays in FA e1
0 . Furthermore, the function t O fk (W x0

(t) ) is
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strictly increasing. And:

u(W x0
(t) )4 t1u(x0 )

The result follows. r

3.3. Proof of Lemma 3.

PROOF. – Consider the following set:

T4 ]x�Be /fA (x) 40, fk (x) D0, )sG0/ v
K

(x) 4s u
K

(x)( .

For fA 21 (0) is transversal to Se provided that e is sufficiently small, the vector
u
K

(x) is never zero, and:

u
K

(x) 4 gradx

K

u1 !
i41

k21

l i gradx

K

fi ,

v
K

(x) 4 gradx

K

fk 1 !
i41

k21

m i gradx

K

fi ,

with:

(l 1 , l 2 , R , l k21 ) �Rk21 0](0 , 0 , R , 0 )( ,

( m 1 , m 2 , R , m k21 ) �Rk21 0](0 , 0 , R , 0 )( .

Using:

(i� [1 , k21] c u
K

(x), gradx

K

fi d4c v
K

(x), gradx

K

fi d40

the coefficients (l 1 , l 2 , R , l k21 ) satisfy the following linear system:

.
`
/
`
´

!
k21

i41
l i cgradx

K

fi , gradx

K

f1 d42cgradx

K

u , gradx

K

f1 d ,

÷

!
k21

i41
l i cgradx

K

fi , gradx

K

fk21 d42cgradx

K

u , gradx

K

fk21 d ,

and then, each l i is expressed as a quotient of two determinants involving the

products cgradx

K

fi , gradx

K

fj d or cgradx

K

u , gradx

K

fj d . As a result, each l i is a
meromorphic function. The same occurrs for the m i’s, hence T is a real semi-
analytic set.

Suppose a point p0 �S f belongs to its adherence T. Then there would exist
an analytic path r : [0 , j] KRm such that:

.
/
´

u(r (0) )40 ,

(t�]0 , j] , r (t) �T .
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So, for all t�]0 , j]:

v
K

(r (t) )4s (t) u
K

(r (t) )

with

s (t) G0 .

Then:

c v
K

(r (t) ) , r 8(t)d4s (t) c u
K

(r (t) ) , r 8(t)d .

But, for all t�]0 , j], f1 (r (t) )4 f2 (r (t) )4R4 fk21 (r (t) )40, so,

(i� [1 , k21] , cgradr (t)

K

fi , r 8 (t)d40 .

Finally, we obtain:

cgradr (t)

K

fk , r 8(t)d4s (t) cgradr (t)

K

u , r 8(t)d

that is:

d

dt
( fk (r) )4s

d

dt
(u(r) ) .

Developping in power series,

fk (r (t) )4 l1 t m1 1R ,

u(r (t) )4r 1 t k1 1R ,

s (t) 4s 1 t m 1 1R ,

with
.
/
´

l1 �(R1 0]0() ,

r 1 �(R1 0]0() ,

s 1 �(R0]0() ,

m1 �N ,

k1 �N ,

m 1 �Z .

We find:

m1 l1 t m121 1R4s 1 r 1 t k11m 121 1R

and so:

s 1 4
m1 l1

r 1

D0

which contradicts s(r (t) )G0 for all t�]0 , j].
In conclusion, p0 is not adherent to T, and there exists e 2 �]0 , e 1*] such that

on Bm
e 2

, u
K

(x) and v
K

(x) are never dependent with opposite directions. r

3.4. The half-fibers FA e1
h and FA e1

0 .

Now, we compare the parts ]fk Fh 8( of the singular fiber of fA and of a regu-
lar fiber of fA. Our aim is:
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PROPOSITION 3. – (e�]0 , e 2 ], ((h , h 8, h 9) /0 Eh 8EhEh 9Eh e* with h 8E

kh e*2 2h 92 :
FA e1

0 O ]x�Rm Ofk(x) Fh8( is diffeomorphic to FA e1
h O ]x�Rm Ofk(x) Fh8(.

The way is the same as previously, constructing first a vector field. We
have to distinguish the cases kD2 and k42.

PROPOSITION 4. – Let kD2. (e�]0 , e 2 ], (h , h 9O0 EhEh 9Eh e*, there
exists a CQ vector field v

K

2 on:

(x�Be 0S f Of1 (x) Eh 9 , f2 (x) 40, R , fk21 (x) 40, fk (x) F0(

such that:

1) (x� ]x�Be Of2 (x) 4R4 fk21 (x) 40(, cv
K

2 (x), gradx

K

f1 dD0;

2) (x� ]x�Be Of2 (x) 4R4 fk21 (x) 40, fk (x) Gkh e*2 2h 92(,
cv

K

2 (x), gradx

K

fk d40;

3) (x� ]x�Se Of2 (x) 4R4 fk21 (x) 40(, cv
K

2 (x), gradx

K

ud40.

PROOF. – Let x0 �Be such that f1 (x0 ) Eh 9 , f2 (x0 ) 4R4 fk21 (x0 ) 40. We
will examinate three cases:

1) If x0 �Be 0Se 0S f . We know that the vectors ]gradx

K

fi , i� [1 , k]( are

independent in a neighbourhood Vx0
%Be 0Se 0S f . Therefore ]gradx

K

f1 (» is not

included in ]gradx

K

f2 , R , gradx

K

fk (», and it is possible to find w
K

0 (x) satisfying
the conditions in Vx0

.

2) If x0 �Se and fk (x) Dkh e*2 2h 92 . Since !
k21

i41
f 2

i (x0 ) Gh e*2 , the fiber

fA21 ( fA (x0 )) is transversal to Se. So the vectors gradx0

K

u , gradx0

K

f1 , R , gradx0

K

fk21

are independent. We can find a vector w
K

0 in ]gradx0

K

u , gradx0

K

f2 , R , gradx0

K

fk21(»

such that cw
K

0 , gradx0

K

f1 dD0. In a small neighbourhood Vx0
of x0 , the projection

w
K

0 (x) of w
K

0 on ]gradx

K

u , gradx

K

f2 , R , gradx

K

fk21(» has the requested properties.

3) If x0 �Se and fk (x) Gkh e*2 2h 92 then !
k

i41
f i

2 (x0 ) Gh e*2 . Hence the

fiber f 21 ( f (x0 ) ) is transversal to Se , and the vectors gradx0

K

u ,

gradx0

K

f1 , R , gradx0

K

fk are independent. We can choose a vector w
K

0 in

]gradx0

K

u , gradx0

K

f2 , R , gradx0

K

fk (» such that

cw
K

0 , gradx0

K

f1 dD0 .

The projection w
K

0 (x) of w
K

0 on ]gradx

K

u , gradx

K

f2 , R , gradx

K

fk (» has the re-
quested properties on Vx0

.
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We end the construction of v
K

2 , starting from the local fields v
K

0 (x) and
using a CQ partition of unity.

PROPOSITION 5. – Let k42. (e�]0 , e 2 ], (h , h 9O0 EhEh 9Eh e*, there
exists a CQ vector field v

K

2 on:

]x�Be 0S f Of1 (x) Eh 9, f2 (x) F0(

such that:

1) (x�Be , cv
K

2 (x), gradx

K

f1 dD0;

2) (x� ]x�Be Of2 (x) Gkh e*2 2h 92(, cv
K

2 (x), gradx

K

f2 d40;

3) (x�Se , cv
K

2 (x), gradx

K

ud40.

PROOF. – The proof is similar to the previous one.
Let x0 �Be such that f1 (x0 ) Eh 9 .

1) If x0 �Be 0Se 0S f , use the fact that gradx

K

f1 and gradx

K

f2 are indepen-
dent in a neighbourhood Vx0

%Be 0Se 0S f .

2) If x0 �Se and f2 (x) Dkh e*2 2h 92 . Since f 2
1 (x0 ) Gh e*2 , the fiber

fA 21 ( fA (x0 )) is transversal to Se , so the vectors gradx0

K

u , gradx0

K

f1 are independent.

3) If x0 �Se and f2 (x) Gkh e*2 2h 92 then f 1
2 (x0 )1 f 2

2 (x0 ) Gh e*2 , and so,

the fiber f 21 ( f (x0 ) ) is transversal to Se , so the vectors

gradx0

K

u , gradx0

K

f1 , gradx0

K

f2 are independent. We conclude as in Proposition 4. r

We prove now Proposition 3.

PROOF. – Let us integrate v
K

2 . We fix h , h 8, h 9 with the conditions:

0 Eh 8EhEh 9Eh e* and h 8Ekh*2
e 2h 92 .

Let x0 � FA e1
0 O ]x�Rm Ofk (x) Fh 8( and W x0

the trajectory defined by v
K

2 such
that W x0

(0 ) 4x0 .
The properties of v

K

2 induce the following for W x0
:

l the function t O f1 (W x0
(t) ) is strictly increasing;

l if kD2, for all i� [2, k21], the functions t O fi (W x0
(t)) are always zero;

l fk (W x0
(t) )Fh 8 ;

l W x0
(t) �Be .

The consequence is that there exists t�R1 such that

l f1 (W x0
(t) )4h ;

l if kD2, f2 (W x0
(t) )4R4 fk21 (W x0

(t) )40;

l fk (W x0
(t) )Fh 8 ;

l W x0
(t) �Be .
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This mapping x0 O W x0
(t) constructs the diffeomorphism. r

3.5. Proof of Theorem 2.

We are now able to show the main result: (e�]0 , e 2 ], (h�]0 , h e*],

the fiber FA e
h is homeomorphic to F e

h 3 [21, 11] .

PROOF. – For all 0 Eh 8EhEh 9Eh e* with h 8Ekh*2
e 2h 92 , we have:

FA e
h4

.
`
/
`
´

FA e
hO ]x�Rm ONfk (x)NEh 8( ,

N

F
A e

hO ]x�Rm Ofk (x) Fh 8( ,

N

F
A e

hO ]x�Rm Ofk (x) G2h 8( .

But FA e
hO ]x�Rm Ofk (x) Fh 8( is homeomorphic to f 21 ((0 , 0 , R , h) )3 [0 , 1 ],

which is the same as f 21 ((0 , 0 , R , h) )3 [1O2, 1 ].
On the other hand, FA e

hO ]x�Rm Ofk (x) G2h 8( is homeomorphic to
f 21 ((0 , 0 , R , h) )3 [21, 21O2].

To end this proof, we claim that there exists h 8e such that (a�]0 , h 8e ], FA e
hO

]x�Rm ONfk (x)NEa( is homeomorphic to f 21 ((0 , 0 , R , h) )3]21O2, 1O2[.
This is clear, since the fiber ]x�F e

h Ofk (x) 40( is transversal to FA e
h .

We take h 8 such that h 8Eh 8e and this concludes the proof. r

REMARK 3. – When S f is not compact, but has at least one compact con-
nected component, the same result holds for the fibers that arise in Remark 1.

(The statements of the previous Propositions are similar, and their proofs
are performed in the same way.)

4. – Some effective sufficient criteria.

We consider here the case of polynomial functions. Our aim is to give some
sufficient effective criteria for the Hypotheses C and Hk , via the Gröbner
bases Theory. We mention that these criteria are only sufficient, because they
deal with the complex structure of the algebraic varieties they involve. We
suggest the reader to consult [E, CLO] for the exposition of the Gröbner basis
construction algorithm and of the associated division process. We only recall
the following facts about Gröbner bases. Assume that a monomial ordering
(compatible with the multiplication) is put on R [x1 , x2 , R , xn ]. Let
f�R[x1 , x2 , R , xn ], fc0. We define the initial part of f, denoted by in( f ), as
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the highest monomial of f. Then, for any given ideal I of R[x1 , x2 , R , xn ], there
exists a finite set of polynomials ]g1 , g2 , R , gn( (a Gröbner basis) such that

1) I4 ag1 , g2 , R , gn b;

2) for all f�I , in( f ) � ain(g1 ), in(g2 ), R , in(gn )b;

3) ]g1 , g2 , R , gn ( can be constructed by an algorithm;

4) for all f�R[x1 , x2 , R , xn ], one can perform an algorithmic division,

that is to write: f4 !
i41

n

hi gi 1h0 with hi �R [x1 , x2 , R , xn ], 0 G iGn , and h0

such that if h0 c0 then in(h0 ) � ain(g1 ), in(g2 ), R , in(gn )b. Moreover, h0 does
not depend upon the particular construction of the basis ]g1 , g2 , R , gn ( and is
called the rest of the division of f by I. We shall denote h0 4R( f , I).

We first recall how to test the inclusion of one algebraic variety into another.
Let V4( f1 , f2 , R , fr)21 (0) and V 84( f 81 , f 82 , R , f 8r 8)21 (0) two algebraic varieties
of Rm . Let us denote I4 a f1 , f2 , R , fr b and I 84 a f 81 , f 82 , R , f 8r 8 b. We have the
classical (see for instance [CLO]) effective sufficient criterion for the inclusion:

SUFFICIENT CRITERION 0. – If for all i� [1, r 8], R( f 8i , I) 40, then V%V 8.

Notice that this criterion involves in fact the complex structure of the
varieties.

We then investigate how to test Hypothesis C . S f is defined as the vanish-
ing set in Rm of the k3k minors of the Jacobian matrix of f. These minors are
polynomials, they belong to R [x1 , x2 , R , xn ], and generate an ideal M( f ). We
assume that a monomial ordering is fixed, and that G is a Gröbner basis for
M( f ). Hence, we can perform algorithmically the division of any polynomial
by M( f ), just dividing it by G. Applying the sufficient criterion 0 gives:

SUFFICIENT CRITERION 1. – If for all i� [1 , k], R( fi , M( f ) )40, then
S f % f 21 (0).

The second problem is to determine if S f is compact. The strategy consists in
considering the homogeneous part of highest homogeneous degree of every poly-
nomial of a set of generators of M( f ) (for instance G), and to consider the ideal
MQ generated by these polynomials. Then, compute a Gröbner basis. At this
point, we may examine if the complex locus at infinity is void or not: it depends
upon the fact that the Gröbner basis for MQ is reduced to 1 or not.

SUFFICIENT CRITERION 2. – If MQ4R[x1 , x2 , R , xn ], then S f is compact.

In the case there are complex roots, the Gröbner basis for MQ is not re-
duced to 1 and one has to test the possibility of real roots. In order to prove
that they are no real root at infinity, one may try other algorithmic methods
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such as Cylindrical Algebraic Decomposition. However we should stress that
this method is of great complexity, and strongly depend upon the number of
variables, the degree, as well as the singularities at infinity. We suggest the
reader to refer to [JKM] for the difficulties that may arise in practical Cylin-
drical Algebraic Decomposition. This kind of method also holds for testing the
inclusion of algebraic real varieties.

It remains to give a test for the Hypothesis Hk . Let us define M(fA) as the
ideal generated by the (k21)3 (k21) minors of the Jacobian matrix of fA4
(f1 , f2 , R , fk21 ). Of course S fA is the zero set in Rm of M( fA ), and we have MfA%
Mf . Hypothesis Hk is nothing but the converse inclusion, and for that we can
use Sufficient criterion 0. Let us denote by m1 , m2 , Rmk the k3k minors of
the Jacobian matrix of f involving the derivatives of fk .

SUFFICIENT CRITERION 3. – If for all i� [1 , k], R(mi , M(fA) )40, then Hy-
pothesis Hk holds.

(This criterion implies that Mf %MfA , and so S fA4S f . )

5. – An application of Theorem 2.

In [M. p. 100], J. Milnor asks for non-trivial examples of such fibrations. By
trivial examples he means fibrations with fiber homeomorphic to a disk. One
could think of constructing such examples starting from the well known exam-
ples of fibrations associated to holomorphic functions Cn KR 2 , and then in-
crease the dimension of the target space, completing them to get functions
R2n KR3. We show here, using our previous result, that this is infortunately
impossible to do so.

THEOREM 3. – Let p x be the projection C3RKC : (z , x) O z .
Let fA: Cn KC be an analytic function with isolated singularity at the ori-

gin, m its Milnor number.

l If m40 or m41, there could exist f : Cn KC3R with isolated singu-
larity at the origin, such that fA4p x i f .

l If mc0 and mc1 this construction is impossible.

PROOF.

l First, let us consider the case m40: one example is

fA: Cn KC

(z1 , R , zn ) O z1

and we can construct f : Cn KC3R

(z1 , R , zn ) O (z1 , Re(z2 ) ) .
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l For m41, let fA: Cn KC

(z1 , z2 , R , zn ) O (z1 , z2 1z 2
3 1R1z 2

n )

and we can take f : Cn KC3R

(z1 , R , zn ) O (z1 , z2 1z 2
3 1R1z 2

n , Nz1 N2 2Nz2 N2 ) .

l If mc0 and mc1, we will prove the theorem by reductio ad absur-
dum. Suppose fA completed in f : Cn KC3R with isolated singularity, and de-
note by FA and F the fibers fA21 (cA)OB 2n

e and f 21 (c)OB 2n
e for e , c , cA chosen con-

veniently with respect to Theorem 1 and Corollary 2 (B 2n
e denotes the euclidi-

an ball of radius e centered at 0 �R2n ). It is well known that the fibration (for
e , h sufficiently small)

fANfA 21 (S 1
h )OB 2n

e
: fA 21 (S 1

h )OB 2n
e KS 1

h

is equivalent to the Milnor fibration:

f
A

Nf
A
N

: S 2n21
e 0KeKS 1

where Ke denotes fA 21 (0)OS 2n21
e .

Let us consider the closed fiber

G4KeNgfA 21g cA

NcA N
hOS 2n21

e h
G and FA are diffeomorphic, so G is homeomorphic to F3 [0 , 1 ]. Let
h *n21 : Hn21 (G) KHn21 (G) be the monodromy. The boundary of G is homeo-
morphic to that of FA, so to:

H4F3 ]0(NF3 ]1(N¯F3 [0 , 1 ]

In order to simplify, identify ¯G with H.
It is well known that the restriction of the monodromy to Hn21 (¯G) is the

identity, so it is the same for the restriction of h *n21 to Hn21 (F3 ]0( ) .
But Hn21 (G) CHn21 (F3 [0 , 1 ] )CHn21 (F3 ]0( ) and we have the fol-

lowing commutative diagram:

Hn21 (G) K
hn21*

Hn21 (G)

CI IC

Hn21 (F3 ]0( ) K
id

Hn21 (F3 ]0( ) .

We deduce from this: h *n21 4 idHn21 (G) .
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But, from [A’C] we know (mc0) that:

!
n21

i40
(21)i trace (h *i ) 40

so:

(21)0 1 (21)n21 m40

and this is impossible in the case we consider. r

R E F E R E N C E S

[A’C] N. A’CAMPO, Le nombre de Lefschetz d’une monodromie, Ind. Mat. Proc. Kon.
Ned. Akad. Wet., serie A, 76 (1973), 113-118.

[CL] P. T. CHURCH - K. LAMOTKE, Non-trivial polynomial isolated singularities,
Indag. Mat., 37 (1975), 149-153.

[CLO] D. COX - J. LITTLE - D. O’SHEA, Ideals, Varieties and Algorithms, Springer-
Verlag (1991).

[E] D. EISENBUD, Commutative Algebra with a View Toward Algebraic Geome-
try, Springer-Verlag (1995).

[JKM] A. JACQUEMARD - F. Z. KHECHICHINE - A. MOURTADA, Algorithmes formels ap-
pliqués à l’étude d’un polycycle algébrique générique à quatre sommets hy-
perboliques, NonLinearity, 10 (1995), 19-53.

[K] H. C. KING, PhD Thesis, Berkeley (1974).
[Loj] S. LOJASIEWICZ, Ensembles semi-analytiques, Preprint IHES (1965).
[Loo] E. LOOIJENGA, A note on polynomial isolated singularities, Indag. Mat., 33

(1971), 418-421.
[M] J. MILNOR, Singular Points of Complex Hypersurfaces, Annals Study, 61,

Princeton University Press (1968).

UMR 5584 CNRS, Laboratoire de Topologie, Université de Bourgogne
BP 400, 21011 Dijon cedex, France

e-mail: jacmarIu-bourgogne.fr

Pervenuta in Redazione
il 26 ottobre 1996


