Gramchev, Todor and Rodino, Luigi: 
Gevrey solvability for semilinear partial differential equations with multiple characteristics
 Bollettino dell'Unione Matematica Italiana Serie 8 2-B (1999), fasc. n.1, p. 65-120, Unione Matematica Italiana (English)
pdf (473 Kb), djvu (697 Kb).  | MR1794545  | Zbl 0924.35030  
Sunto
Vengono considerate equazioni alle derivate parziali semilineari con caratteristiche multiple. Si studia in particolare la loro risolubilità locale e la buona positura del problema di Cauchy nell'ambito delle classi di Gevrey.
Referenze Bibliografiche
[1] 
                     S. 
                     ALINHAC
                  -
                     P. 
                     GÉRARD
                  , 
Opérateurs pseudo-différentiels et théorème de Nash-Moser, 
Inter Edition, Editions du CNRS, Meudon, Paris (
1991). | 
MR 1172111 | 
Zbl 0791.47044[2] 
                     J.-M. 
                     BONY
                  , 
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, 
Ann. Sc. École Norm. Sup., 
14 (
1981), 161-205. | 
fulltext mini-dml | 
MR 631751 | 
Zbl 0495.35024[3] 
                     F. 
                     CARDOSO
                  , 
A necessary condition of Gevrey solvability for differential operators with double characteristics, 
Comm. Partial Diff. Eqs., 
14 (
1989), 981-1009. | 
MR 1017059 | 
Zbl 0719.35001[4] 
                     W. 
                     CRAIG
                  , 
Nonstrictly hyperbolic nonlinear systems, 
Math. Ann., 
277 (
1987), 213-232. | 
MR 886420 | 
Zbl 0614.35060[5] 
                     L. 
                     CATTABRIGA
                  -
                     L. 
                     RODINO
                  -
                     L. 
                     ZANGHIRATI
                  , 
Analytic-Gevrey hypoellipticity for a class of pseudodifferential operators with multiple characteristics, 
Comm. Partial Diff. Eqs., 
15 (
1989), 81-96. | 
MR 1032624 | 
Zbl 0704.35035[6] 
                     HUA 
                     CHEN
                  -
                     L. 
                     RODINO
                  , 
Micro-elliptic Gevrey regularity for nonlinear partial differential equations, 
Boll. Un. Mat. Ital., 
10-B (
1996), 199-232. | 
MR 1385060 | 
Zbl 0860.35153[8] 
                     M. 
                     CICOGNANI
                  -
                     L. 
                     ZANGHIRATI
                  , 
Analytic regularity for solutions to semi-linear weakly hyperbolic equations, 
Rend. Sem. Mat. Univ. Politec. Torino, 
51 (
1993), 387-396. | 
MR 1289896 | 
Zbl 0816.35091[9] 
                     A. 
                     CORLI
                  , 
On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, 
Comm. Partial Diff. Eqs., 
14 (
1988), 1-25. | 
MR 973268 | 
Zbl 0668.35002[10] 
                     A. 
                     CORLI
                  , 
On local solvability of linear partial differential operators with multiple characteristics, 
J. Diff. Eqs., 
81 (
1989), 275-293. | 
MR 1016083 | 
Zbl 0701.35002[11] 
                     A. 
                     CORLI
                  -
                     L. 
                     RODINO
                  , 
Gevrey solvability for hyperbolic operators with costant multiplicity, in 
Recent Developments in Hyperbolic Equations, 
Pitman Res. Notes in Math., 
183, 290-304, 
Longman, Harlow (
1988). | 
MR 984375 | 
Zbl 0739.35002[12] 
                     P. 
                     D'ANCONA
                  -
                     S. 
                     SPAGNOLO
                  , 
On the life span of the analytic solutions to quasilinear weakly hyperbolic equations, 
Indiana Univ. Math. J., 
40, 1 (
1991), 71-99. | 
MR 1101222 | 
Zbl 0729.35012[13] 
                     P. 
                     D'ANCONA
                  -
                     M. 
                     REISSIG
                  , 
New trends in the theory of nonlinear weakly hyperbolic equations of second order, Proc. 2-nd WCNA, Athens, Greece, 10-17 July 1996, 
Nonl. Anal. TMA, 
30, 4 (
1997), 2507-2515. | 
MR 1490366 | 
Zbl 0890.35076[14] 
                     B. 
                     DEHMAN
                  , 
Resolubilité local pour des équations semi-linéaires complexes, 
Can. J. Math., 
42 (
1990), 126-140. | 
MR 1043515 | 
Zbl 0718.35027[15] 
                     Y. 
                     EGOROV
                  , 
Linear Differential Equations of Principal Type, 
Nauka, Moscow (1994); 
Plenum Press, New York (
1985). | 
Zbl 0669.35001[16] 
                     A. 
                     FERRARI
                  -
                     E. 
                     TITI
                  , 
Gevrey regularity for nonlinear analytic parabolic equations, 
Comm. Partial Diff. Eqs., to appear. | 
MR 1608488 | 
Zbl 0907.35061[17] 
                     C. 
                     FOIAS
                  -
                     R. 
                     TEMAM
                  , 
Gevrey class regularity for the solutions of the Navier-Stokes equations, 
J. Funct. Anal., 
87 (
1989), 359-369. | 
MR 1026858 | 
Zbl 0702.35203[18] 
                     G. 
                     GARELLO
                  , 
Local solvability for semilinear equations with multiple characteristics, 
Ann. Univ. Ferrara, Sez VII, Sc. Mat. Suppl. Vol. 
41, 1995 (
1997), 199-209. | 
MR 1471025 | 
Zbl 0883.35038[19] 
                     R. 
                     GOLDMAN
                  , 
A necessary condition for local solvability of a pseudo-differential equation having multiple characteristics, 
J. Diff. Eqs., 
19 (
1975), 176-200. | 
MR 380171 | 
Zbl 0305.35085[20] 
                     J. 
                     GOODMAN
                  -
                     D. 
                     YANG
                  , Local solvability of nonlinear partial differential equations of real principal type, preprint.
[21] 
                     D. 
                     GOURDIN
                  -
                     M. 
                     MECHAB
                  , 
Problème de Goursat nonlinéaire dans les espaces de Gevrey pour les équations de Kirchhoff généralisées, 
J. Math. Pures Appl., 
75 (
1996), 569-593. | 
MR 1423048 | 
Zbl 0869.35027[22] 
                     T. 
                     GRAMCHEV
                  , 
Powers of Mizohata type operators in Gevrey classes, 
Boll. Un. Mat. Ital., (7) 
5-B (
1991), 135-156. | 
MR 1110672 | 
Zbl 0809.47043[24] 
                     T. 
                     GRAMCHEV
                  -
                     P. 
                     POPIVANOV
                  , 
Local solvability of semi-linear partial differential equations, 
Ann. Univ. Ferrara Sez. VII (N.S.), 
25 (
1989), 147-154. | 
MR 1079584 | 
Zbl 0733.35028[25] 
                     T. 
                     GRAMCHEV
                  -
                     M. 
                     YOSHINO
                  , 
Rapidly convergent iteration method for simultaneous normal forms of commuting maps, 
preprint, 
1997. | 
MR 1709494 | 
Zbl 0931.65055[26] 
                     V. 
                     GRUSHIN
                  , 
On a class of elliptic pseudodifferential operators degenerate on a submanifold, 
Mat. Sb., 
84 (
1971), 163-195 (in russian); 
Math. USSR Sb., 13 (
1971), 155-185. | 
Zbl 0238.47038[27] 
                     J. 
                     HOUNIE
                  , 
Local solvability of partial differential equations, 
Rev. Un. Mat. Argentina, 
37 (
1991), 77-86. | 
MR 1266670 | 
Zbl 0813.35003[28] 
                     J. 
                     HOUNIE
                  -
                     P. 
                     SANTIAGO
                  , 
On the local solvability of semilinear equations, 
Comm. Partial Diff. Eqs., 
20 (
1995), 1777-1789. | 
MR 1349231 | 
Zbl 0838.35003[29] 
                     L. 
                     HÖRMANDER
                  , 
The Analysis of Linear Partial Differential Operators, I-IV, 
Springer-Verlag, Berlin, 
1983-85. | 
Zbl 0521.35001[30] 
                     K. 
                     KAJITANI
                  , 
Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, 
Hokkaido Math. J., 
12 (
1983), 434-460. | 
MR 725589[32] 
                     J. 
                     LERAY
                  -
                     Y. 
                     OHYA
                  , 
Systèmes nonlinéaires hyperboliques nonstricts, 
Math. Ann., 
170 (
1967), 167-205. | 
MR 208136 | 
Zbl 0146.33701[33] 
                     C. D. 
                     LEVERMORE
                  -
                     M. 
                     OLIVER
                  , 
Analyticity of solutions for a generalized Euler equation, 
J. Diff. Eqs., 
133 (
1997), 321-339. | 
MR 1427856 | 
Zbl 0876.35090[34] 
                     M. 
                     MASCARELLO
                  -
                     L. 
                     RODINO
                  , 
Partial Differential Equations with Multiple Characteristics, 
Akademie Verlag-Wiley, Berlin (
1997). | 
MR 1608649 | 
Zbl 0888.35001[35] 
                     A. 
                     MENIKOFF
                  , 
Some examples of hypoelliptic partial differential equations, 
Math. Ann., 
221 (
1976), 167-181. | 
MR 481452 | 
Zbl 0323.35019[36] 
                     Y. 
                     MEYER
                  , 
Remarques sur un théorème de J. M. Bony, 
Rend. Circ. Mat. Palermo, bf 2, 
1 (
1981), 1-20. | 
MR 639462 | 
Zbl 0473.35021[37] 
                     K. 
                     PAYNE
                  , 
Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators, 
Comm. Pure Appl. Math., 
44 (
1991), 309-337. | 
MR 1090435 | 
Zbl 0763.47022[39] 
                     P. 
                     POPIVANOV
                  , 
A class of differential operators with multiple characteristics which have not solutions, 
Pliska Stud. Math. Bulg., 
3 (
1981), 47-60 (Russian). | 
MR 631966 | 
Zbl 0497.35018[40] 
                     P. 
                     POPIVANOV
                  , 
On the local solvability of a class of PDE with double characteristics, 
Trudy Sem. Petrovsk., 
1 (1975), 237-278 (Russian); 
Amer. Math. Soc. Transl., 
118, 2 (
1982), 51-89. | 
Zbl 0495.35083[41] 
                     K. 
                     PROMISLOW
                  , 
Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations, 
Nonl. Anal., TMA, 
16 (
1991), 959-980. | 
MR 1106997 | 
Zbl 0737.35009[43] 
                     M. 
                     REISSIG
                  -
                     K. 
                     YAGDJIAN
                  , 
Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, 
Math. Nachr., 
178 (
1996), 285-307. | 
MR 1380714 | 
Zbl 0848.35078[44] 
                     L. 
                     RODINO
                  , 
Linear Partial Differential Operators in Gevrey Spaces, 
World Scientific, Singapore, New Jersey, London, Hong Kong (
1993). | 
MR 1249275 | 
Zbl 0869.35005[45] 
                     M. 
                     TAYLOR
                  , 
Pseudodifferential Operators and Nonlinear PDE, 
Birkäuser, Boston (
1991). | 
MR 1121019 | 
Zbl 0746.35062[46] 
                     F. 
                     TRÈVES
                  , 
Introduction to Pseudodifferential Operators and Fourier Integral Operators, vol. I-II, 
Plenum Press, New York (
1980). | 
Zbl 0453.47027[47] 
                     C. 
                     WAGSCHAL
                  , 
Le problème de Goursat non linéaire, 
J. Math. Pures Appl., 
58 (
1979), 309-337. | 
MR 544256 | 
Zbl 0427.35021