
BOLLETTINO
UNIONE MATEMATICA ITALIANA

Claudio Baiocchi, Vilmos Komornik, Paola
Loreti

Ingham type theorems and applications to
control theory

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 2-B (1999),
n.1, p. 33–63.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1999_8_2B_1_33_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_1999_8_2B_1_33_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 1999.



Bollettino U. M. I.
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Ingham Type Theorems and Applications to Control Theory.

CLAUDIO BAIOCCHI - VILMOS KOMORNIK (*) - PAOLA LORETI

Sunto. – Ingham [6] ha migliorato un risultato precedente di Wiener [23] sulle serie di
Fourier non armoniche. Modificando la sua funzione di peso noi otteniamo risul-
tati ottimali, migliorando precedenti teoremi di Kahane [9], Castro e Zuazua [3],
Jaffard, Tucsnak e Zuazua [7] e di Ullrich [21]. Applichiamo poi questi risultati a
problemi di osservabilità simultanea.

1. – Introduction.

Let L be a countable subset of R such that, with respect to a suitable gD0,

Nl2mNFg for all l , m�L with lcm .(1.1)

We will be concerned with series like

f (t) 4 !
l�L

al e il Q t

with al�C and t�R . They generalize the Fourier series, so it makes sense to
ask if, for a sufficiently large interval I%R , the L 2 (I) norm of f is equivalent to
the l 2 norm of the sequence a

K
f ]al( (Bessel type inequality). In 1936 Ing-

ham [6] proved that, under the assumption (1.1)

.
/
´

for every TD0 there exists cT such that

V f VL 2 (I) GcT V a
K

Vl 2 if NING2T
(1.2)

and

.
/
´

for every TDp/g there exists cT such that

V a
K

Vl 2 GcT V f VL 2 (I) if NINF2T ;
(1.3)

the restriction TDp/g in (1.3) being optimal.
Let us briefly recall the key idea in Ingham’s proofs: if k : t O k(t) is an

(*) Part of this work was accomplished during the visit of the second author at the
Istituto per le Applicazioni del Calcolo «Mauro Picone» and at the Università di Roma
«Tor Vergata» in 1997 and 1998. He thanks these institutions for their hospitality.
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L 1 OL Q function from R to R , then we have the identity

s
R

k(t)N f (t)N2 dt42p !
l , m�L

al am K(m2l) ,(1.4)

where K denotes the Fourier transform of k . If we denote by K the matrix
whose entries are K(l2m), under suitable assumptions on k ,

the map a
K

KK Q a
K

is
.
/
´

(i) bounded from l 2 into itself ,

(ii) coercive on l 2 ,
(1.5)

so that the right hand side of (1.4) is equivalent to V a
K

Vl 2
2 . Concerning (1.2) it

will be sufficient to have

.
/
´

k(t) F0

inf
t�I

k(t) D0

for all t�R ,

for some interval I ,
(1.6)

and the size of I is irrelevant (larger intervals will be divided into smaller
ones, where the estimate holds true); while concerning (1.3) we need

k(t) G0 for t� [2T , T] .(1.7)

Of course one can realize both (1.6) and (1.7) by choosing kF0 and com-
pactly supported; it is one of the choices suggested by Ingham and followed by
many authors. However, with such a choice, property (1.5) is very difficult to
realize: the function K cannot have a compact support, and the matrix K will
be «full»; in order to establish (1.5) we can only hope that, because of (1.1), the
non-diagonal terms in K are small compared to the diagonal one
K(0) R .

In order to impose (1.5) it is more convenient to impose K (instead of k) to
be compactly supported, e.g., by remarking that

(1.8) if K(0) D0 and K(u) 40 for NuNFg , then (1.5) holds true ,

because of K4K(0) I . In fact, Ingham himself suggested (and used for a sec-
ond proof of (1.3)) a choice of k satisfying (1.8): with the notation g41 and
T4p1e , he defined

ke (t) »4
12cos (t)

(p 2 2 t 2 )2
((p1e)2 2 t 2 )42g cos (t/2 )

p 2 2 t 2 h2

((p1e)2 2 t 2 ) .

In the following three sections of this paper we adapt this proof in three
different directions. First we improve some earlier extensions of Castro, Jaf-
fard, Tucsnak and Zuazua [3], [7] who weakened the gap condition (1.1). Then
we extend Ingham’s theorem for exponential functions of several variables,
improving thereby a former theorem of Kahane [9]. Finally, we give an opti-
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mal variant of our generalization of Kahane’s theorem, using lQ norm in RN in-
stead of the Euclidean one, and also allowing more general sums where the co-
efficients an can be algebraic polynomials of the variable t�RN . In the one-di-
mensional case this reduces to an earlier theorem of Ullrich [21].

In the last two sections we apply our results to solve some simultaneous ob-
servability problems.

Let us note that Ingham’s theorem has already been generalized in many
different directions before; see, e.g., [1], [4], [11], [12], [15], [16], [17], [19], [20],
[24].

Throughout this paper every interval I is supposed to have a finite positive
length 0 ENINEQ and all constants are assumed to be positive.

2. – A weakening of the gap condition.

Let

REl 21 El 0 El 1 ER

be a strictly increasing sequence of real numbers, and consider all sums of the
form

f (t) 4 !
n42Q

Q

an e il n t (an �C) .(2.1)

Instead of (1.1) here we only assume the existence of a number gD0 such
that

l n12 2l n F2g for all n .(2.2)

Introducing the sets

A4 ]n�Z : l n11 2l n Eg(

and

B4 ]n�Z : n�A and n21 �A( ,(2.19)

we have the

THEOREM 2.1. – (a) For every interval I there exists a constant c1 such
that all finite sums (2.1) satisfy the direct inequality

(2.3) s
I

Nf (t)N2 dtGc1 !
n�B

Nan N2 1

c1 !
n�A

Nan 1an11 N2 1Nl n11 2l n N2 (Nan N2 1Nan11 N2 ) .

(b) For every interval I of length NIND2p/g there exists a constant c2
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such that all finite sums (2.1) satisfy the inverse inequality

(2.4) !
n�A

Nan 1an11 N2 1Nl n11 2l n N2 (Nan N2 1Nan11 N2 )1

!
n�B

Nan N2 Gc2s
I

N f (t)N2 dt .

(c) The estimate (2.4) can fail if NIN42p/g .

REMARK 2.2. – Under the stronger hypothesis

l n11 2l n Fg for all n

instead of (2.2) this result reduces to Ingham’s theorem. Hence part (c) follows
at once.

REMARK 2.3. – Theorem 2.1 improves a former result of Castro and
Zuazua [3] by weakening their assumption on the sequence (l n ), and a subse-
quent theorem of Jaffard, Tucsnak and Zuazua [7] by improving their assump-
tion NIND3k6Og for the inverse inequality. They also applied Ingham’s sec-
ond method with a different weight function. Our weight function below is
closer to the Ingham’s original one.

REMARK 2.4. – By a finite sequence we mean a sequence having only a finite
number of nonzero elements. The estimates (2.3) and (2.4) extend easily to in-
finite sums for which the series on the right-hand side of (2.3) converges. In-
deed, given such a complex sequence (an ), set

fm (t) 4 !
n42m

m

an e il n t , m41, 2 , R .

Applying (2.3) to the finite sums fp 2 fm with pDm , we obtain that ( fm ) is a
Cauchy sequence and hence converges in L 2 (I) to some function f .

Next, applying (2.3) and (2.4) for every fm and letting mKQ we conclude
that (2.3) and (2.4) hold true for f too, with the same constants c1 and c2 .

An analogous remark holds for theorems 3.1 and 4.1 later.

The following four remarks will allow us to simplify the proof.

REMARK 2.5. – If we replace g by some 0 EdEg in the definition of the sets
A and B , then the resulting inequalities (2.3) and (2.4) are equivalent to the
original ones. Indeed, if

dEl n11 2l n Gg
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for some n , then

Nan 1an11 N2 1Nl n11 2l n N2 (Nan N2 1Nan11 N2 )G (21g 2 ) (Nan N2 1Nan11 N2 )

and

Nan N2 1Nan11 N2 Gd22 (Nan 1an11 N2 1Nl n11 2l n N2 (Nan N2 1Nan11 N2 )) .

Hence (2.3) remains valid with (21g 2 ) c1 instead of c1 and (2.4) remains valid
with max ]c2 , c2 d22 ( instead of c2 .

REMARK 2.6. – If the estimate (2.3) is satisfied for some interval I , then it is
also satisfied for every translate t 81I of I , with another constant c 81 . To show
this, we shall need the inequality

Nz1 e im 1 1z2 e im 2 N2 G2Nz1 1z2 N2 12Nm 1 2m 2 N2 Nz2 N2(2.5)

for all complex numbers z1 , z2 and real numbers m 1 , m 2 . Indeed, using the tri-
angle inequality and then the Lagrange mean value theorem we have

Nz1 e im 1 1z2 e im 2NGN(z1 1z2 ) e im 1N1 (Nz2 (e im 2 2e im 1 )NGNz1 1z2N1Nm 1 2m 2NNz2 N ,

and we conclude by applying Young’s inequality. Now, given

f (t) 4 !
n42Q

Q

an e il n t (an �C)

arbitrarily, setting

g(t) 4 !
n42Q

Q

an e il n (t 81 t) 4 !
n42Q

Q

(an e il n t 8 ) e il n t 4» !
n42Q

Q

a 8n e il n t

we have

s
t 81I

N f (t)N2 dt4s
I

Ng(t)N2 dtG

c1 !
n�B

Na 8n N2 1c1 !
n�A

Na 8n 1a 8n11 N2 1c1 !
n�A

Nl n11 2l n N2 (Na 8n N2 1Na 8n11 N2 )4

c1 !
n�B

Nan N2 1c1 !
n�A

Nan e il n t 81an11 e il n11 t 8 N2 1

c1 !
n�A

Nl n11 2l n N2 (Nan N2 1Nan11 N2 ) .

Applying (2.5) for each n�A we obtain that

Nan e il n t 81an11 e il n11 t 8 N2 G2Nan 1an11 N2 12Nt 8N2 Nl n11 2l n N2 Nan N2 .
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Substituting into the preceding inequality we obtain

s
t 81I

N f (t)N2 dtGc1 !
n�B

Nan N2 12c1 !
n�A

Nan 1an11 N2 1

c1 (112Nt 8 N2 ) !
n�A

Nl n11 2l n N2 (Nan N2 1Nan11 N2 ) .

Hence (2.3) is satisfied for t 81I with c184 max ]2c1 , c1 12Nt 8N2 (.

REMARK 2.7. – If the estimate (2.4) is satisfied for some interval I , then it is
also satisfied for every translate t 81I of I , with another constant c 82 . Indeed,
introducing g(t) as in the preceding remark, we have

!
n�B

Nan N2 1 !
n�A

Nan 1an11 N2 1 !
n�A

Nl n11 2l n N2 (Nan N2 1Nan11 N2 )4

!
n�B

Na 8n N2 1 !
n�A

Na 8n e 2il n t 81a 8n11 e 2il n11 t 8 N2 1

!
n�A

Nl n11 2l n N2 (Na 8n N2 1Na 8n11 N2 )G !
n�B

Na 8n N2 12 !
n�A

Na 8n 1a 8n11 N2 1

2Nt 8N2 !
n�A

Nl n11 2l n N2 Na 8n N2 1 !
n�A

Nl n11 2l n N2 (Na 8n N2 1Na 8n11 N2 )G

max ]2, 112Nt 8N2 ( c2s
I

Ng(t)N2 dtG max ]2, 112Nt 8N2 ( c2 s
t 81I

N f (t)N2 dt ,

so that (2.4) is satisfied for t 81I with c 82 4c2 max ]2, 112Nt 8N2 (.

REMARK 2.8. – If the theorem holds true for some gD0, then it also holds
for all gD0. To prove this, fix an arbitrary positive number p and set

l 8n 4pl n for all n .

The sequence (l 8n ) satisfies a condition analogous to (2.2) with g 84pg instead
of g . If the estimates (2.3) or (2.4) hold for some interval I , then on the interval
I 8 »4p 21 I we have

s
I 8

N !
n42Q

Q

an e il 8n t 8N
2

dt 84p 21s
I

N !
n42Q

Q

an e il n tN
2

dt ,

so that analogous estimates hold for the new sequence with c1 , c2 replaced by
c1 /p and c2 p , respectively.

In view of the last three remarks it suffices to prove the theorem for inter-
vals of the type (2R , R), and for one particular value of gD0.
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Now we turn to the proofs. The formula

H(x) »4
.
/
´

cos x

0

if 2p/2 ExEp/2 ,

otherwise
(x�R)(2.6)

defines an even real function H in the Sobolev space H 1
0 (2p/2 , p/2 ), whose in-

verse Fourier transform

h(t) »4 s
2Q

Q

e itx H(x) dx4
2 cos pt/2

12 t 2
(t�R)

is an even real function in C Q (R). (Moreover, h extends to an entire analytic
function by the Paley-Wiener theorem because H has a compact support.)

PROOF OF PART (a) OF THEOREM 2.1. – Set K»4H * H and denote its inverse
Fourier transform by k . They are are even real functions having the following
properties:

K�H 1
0 (2p , p) ,(2.7)

k�C Q (R) ,(2.8)

kF0 on R ,(2.9)

kF1 on some interval I .(2.10)

Indeed, the first relation follows from the properties of the support of a convo-
lution. The next two follow from the equality k4h 2 . The last one holds for a
sufficiently small interval around 0 because k(0) 4h(0)2 44 by the above ex-
plicit formula.

Assume that g4p . A direct computation yields for 0 ExEp the explicit
formulae

2K(x) 4sin x1 (p2x) cos x ,

2K 8 (x) 4 (x2p) sin x ,

2K 9 (x) 4sin x1 (x2p) cos x .

Hence

K(0) D0 , K 8 (0) 40 , K 9 (0) E0 .

Applying Taylor’s formula we conclude that

NK(x)2K(0)NGNK 9 (0)Nx 2 for all x� [2d , d](2.11)

for some suitable 0 EdGg . Let us change g to d in the definition of the sets A
and B .



C. BAIOCCHI - V. KOMORNIK - P. LORETI40

Observe that n�A implies n11 �A . Indeed, if n�A , then

l n11 2l n EdGg ,

so that

l n12 2l n11 F2g2gFd

by (2.2). Furthermore, (2.2) and (2.7) imply K(l m 2l n ) 40 whenever
Nm2nNF2. Furthermore, K(l n11 2l n ) 40 unless n�A . Therefore we have
the equality

!
m , n42Q

Q

K(l m 2l n ) am an 4

!
n42Q

Q

K(0)Nan N2 1 !
n�A

K(l n11 2l n )(an an11 1an an11 ) 4

!
n�B

K(0)Nan N2 1 !
n�A

K(0)Nan 1an11 N2 1

!
n�A

(K(l n11 2l n )2K(0) )(an an11 1an an11 ) .

Using (2.11) hence we deduce the inequality

!
m , n42Q

Q

K(l m 2l n ) am an G !
n�B

K(0)Nan N2 1K(0) !
n�A

Nan 1an11 N2 1

NK 9 (0)N !
n�A

Nl n11 2l n N2 (Nan N2 1Nan11 N2 ) .

We conclude by noting that thanks to (2.9) and (2.10) we have

(2p) !
m , n42Q

Q

K(l m 2l n ) am an 4 s
2Q

Q

k(t)N f (t)N2 dtFs
I

N f (t)N2 dt .

In the sequel we shall frequently use the powers of the function H . Let
H M : RKR be the Mth power of the function H introduced in (2.5), and let
hM : RKR denote its inverse Fourier transform given by

hM (t) 4 s
2Q

Q

e itx H M (x) dx .

LEMMA 2.9. – (a) H M is not identically zero, even and real-valued.

(b) H M belongs to the Sobolev space W0
M , Q (2p/2 , p/2 ).

(c) hM extends to an entire function CKC .

(d) hM is not identically zero, even and real-valued.
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(e) We have (H M )91M 2 H M 4M(M21)H M22 almost everywhere
if MF2.

PROOF. – (a) and (d) are obvious.

(b) First we note that H M belongs to C Q (2p/2 , p/2 ) and vanishes iden-
tically outside this interval. Therefore it is sufficient to verify that

(H M )(j) (6p/2 ) 40 , j40, 1 , R , M21

and that the one-sided derivatives

(H M )(M) (p/220) and (H M )(M) (2p/210)

exist and are finite. All these properties follows by applying the Leibniz rule.
Indeed, differentiating jEM times the product cosM , all terms of the result-
ing sum contains at least one factor cos which vanishes at 6p/2 . Furthermore,
applying the same rule we obtain easily that

(H M )(M) (p/220) 4 (21)M and (H M )(M) (2p/210) 41 .

(c) This follows from (b) by the Paley-Wiener theorem.

(e) Outside [2p/2 , p/2 ] both sides vanish, so it is sufficient to verify the
identity in (2p/2 , p/2 ). We have

(H M )9 (x) 4 ( cosM x)94 (2M cosM21 x sin x)84

M(M21) cosM22 x sin2 x2M cosM x4

M(M21) cosM22 x(12cos2 x)2M cosM x4

M(M21) cosM22 x2M 2 cosM x4M(M21)(H M22 )(x)2M 2 (H M )(x) .

PROOF OF PART (b) OF THEOREM 2.1. – Assume this time that g4p/2 . Fix
RD2 arbitrarily and set

K»4R 2 H 2
* H 2 1 (H 2 )8 * (H 2 )84gR 2 1

d 2

dx 2 h(H 2 H 2 ) .

It follows from the preceding lemma that K and its inverse Fourier transforms
k are even real functions satisfying

K�H 3
0 (2p , p) ,(2.12)

k�C Q (R) ,(2.13)

kG0 outside I»4 (2R , R) .(2.14)
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Furthermore, for 0 ExEp we have

K(x) 4
3R 2 24

16
sin 2x1

R 2 24

8
(p2x) cos 2x1

R 2

4
(p2x) ,

K 8 (x) 42
R 2

4
(12cos 2x)1

R 2 24

4
(x2p) sin 2x ,

K 9 (x) 42
R 2 14

4
sin 2x1

R 2 24

2
(x2p) cos 2x .

Hence

K(0) D0 , K 8 (0) 40 , K 9 (0) E0(2.15)

and

K(p) 4K 8 (p) 4K 9 (p) 40 .

Applying Taylor’s formula we obtain that

K(x) 4K(0)2
NK 9 (0)N

2
x 2 1o(x 2 ) , xK0 ,

and

K(y) 4o((p2y)2 ) , yKp .

Since we have also K(y) 40 for yFp , there exists a constant 0 EdGg such
that

K(x) DK(0) /2(2.16)

and

K(0)2K(x)2K(y) F
NK 9 (0)N

4
x 2(2.17)

for all 0 ExGd and yFp2x .
Furthermore, observe that K is nonincreasing in (0 , Q) because K 8 (x) G0

in (0 , p) by the above formula and K40 in (p , Q). Hence for all x , yFd such
that xEp and x1yFp , we have

K(x)1K(y) GK(x)1K(p2x) 4K(0)2
(R 2 24)p

8
(12cos 2x)
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and therefore

K(0)2K(x)2K(y) F
(R 2 24)p

8
(12cos 2d) 4»hD0 .(2.18)

whenever x , yFd and x1yFp . Let us change g to d in the definition of A
and B .

As in part (a), (2.1) and (2.12) imply K(l m 2l n ) 40 whenever Nm2nNF2.
Furthermore, n�A implies n11 �A . Therefore we have the following
identity:

!
m , n42Q

Q

K(l m 2l n ) am an 4

!
n42Q

Q

K(0)Nan N2 1K(l n11 2l n )(an an11 1an an11 ) 4

!
n42Q

Q

K(0)NanN2 1K(l n11 2l n )Nan1an11N
22K(l n112l n ) (Nan N21Nan11N

2 )4

!
n42Q

Q

(K(0)2K(l n112l n )2K(l n 2l n21 ) )Nan N2 1K(l n112l n )Nan1an11N
2 4»

!
n42Q

Q

Sn 4 !
n�A

(Sn 1Sn11 )1 !
n�B

Sn .

Next we use (2.16), (2.17) and (2.18) with x4l n11 2l n and y4l n 2l n21 .
If n�A , then

Sn 1Sn11 F
NK 9 (0)N

4
Nl n11 2l n N2 (Nan N2 1Nan11 N2 )1

K(0)

2
Nan 1an11 N2 .

If n�B , then

Sn FhNan N2 .

Using (2.15) and these inequalities we deduce from the above identity the
estimate

!
n�A

Nan 1an11 N2 1Nl n11 2l n N2 (Nan N2 1Nan11 N2 )1 !
n�B

Nan N2 G

c 8 !
m , n42Q

Q

K(l m 2l n ) am an

with a suitable constant c 8 . We conclude by remarking that by (2.13), (2.14) k
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has a finite maximum, and

!
m , n42Q

Q

K(l m 2l n ) am an 4 s
2Q

Q

k(t)N f (t)N2 dtG (max k)s
I

N f (t)N2 dt .

3. – On a theorem of Kahane.

We are going to generalize Ingham’s theorem to several variables. Let
(l n ) be a sequence of vectors in RN , satisfying for some gD0 the condi-
tion

Vl m 2l n V2 Fg whenever mcn ,(3.1)

where V V2 stands for the usual Euclidean norm of RN . Let us denote by m N the
smallest eigenvalue of 2D in H0

1 (B1 ) where B1 is the unit ball of RN .

THEOREM 3.1. – (a) For every open ball B in RN there exists a constant c1 ,
depending only on g and on the radius of the ball, such that all finite
sums

f (t) 4 !
n42Q

Q

an e il n Q t (an �C)(3.2)

satisfy the estimate

s
B

N f (t)N2 dtGc1 !
n42Q

Q

Nan N2 .(3.3)

(b) For every open ball B of radius RD2 kmNOg there exists a constant
c2 , depending only on g and on R , such that all finite sums (3.2) satisfy the
estimate

!
n42Q

Q

Nan N2 Gc2s
B

N f (t)N2 dt .(3.4)

REMARK 3.2. – This result improves proposition III.1.2 of Kahane [9] by
weakening his assumptions for the validity of (3.4). We do not know whether
our condition RD2kmNOg in part (b) is optimal. Note that this condition
means that the smallest eigenvalue of 2D in H0

1 (BR ) is less than g 2 /4 .
Let us recall, e.g., from [22] that the smallest eigenvalue of 2D in H0

1 (BR )
is equal to (r N /R)2 where r N denotes the smallest positive zero of the Bessel
function J(N22) /2 .

REMARK 3.3. – As mentioned in Remark 2.4, both inequalities, once proved,
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extend to infinite sums with square summable coefficients. Furthermore, by
an easy generalization of Remarks 2.6-2.8, in the proofs it will suffice to con-
sider balls centered at the origin, and one particular value of g .

Turning to the proof of Theorem 3.1, let us denote by Br the open ball of
radius r centered at the origin of RN . Fix a nonzero eigenfunction H of 2D in
H0

1 (B1 ), corresponding to the smallest eigenvalue m N of 2D in H0
1 (B1 ), and ex-

tend it by zero outside B1 . We may assume that H is strictly positive in B1 .
Then H is a real radial function in H0

1 (B1 ), therefore its inverse Fourier
transform

h(t) »4 s
RN

e it Qx H(x) dx

is a real radial function in C Q (RN ). (And h extends again to an entire analytic
function.)

PROOF OF PART (a) OF THEOREM 3.1. – Assume that g42. The function K»4

H * H and its inverse Fourier transform k4h 2 are real radial functions having
the following properties:

K�H 1
0 (B2 ) ,

kF0 on RN ,

kFb on some ball B ,

where b is some positive number. (The last property follows from the fact that
k�C Q (RN ) by the Paley-Wiener theorem and that k cannot be identically
zero.)

Using (3.1) and these properties, (3.3) follows:

bs
B

N f (t)N2 dtG s
RN

k(t)N f (t)N2 dt4

(2p)N !
m , n42Q

Q

K(l n 2l m ) am an 4 (2p)N K(0) !
n42Q

Q

Nan N2 .

PROOF OF PART (b) OF THEOREM 3.1. – Assume g42 again. Choose RD

km N arbitrarily. The function

K4 (R 2 1D)(H * H) 4R 2 H * H1 !
j41

N

¯j H¯j H
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and its inverse Fourier transform

k(t) 4 (R 2 2NtN2 ) h(t)2

are even radial functions satisfying the following conditions:

K�H 1
0 (B2 ) ,

K(0) D0 ,

k�C Q (RN ) ,

kG0 outside B»4BR .

The second property follows from the relation

K(0) 4 s
RN

R 2 NHN2 2N˜HN2 dx4 (R 2 2m N ) s
RN

NHN2 dx .

Since k�C Q (RN ) again by the Paley-Wiener theorem, it follows that k has a
finite maximum a on RN , and (3.4) follows as in section 1:

(2p)N K(0) !
n42Q

Q

Nan N2 4 (2p)N !
m , n42Q

Q

K(l n 2l m ) am an 4

s
RN

k(t)N f (t)N2 dtG (max k)s
B

N f (t)N2 dt .

4. – On a theorem of Ullrich.

We are going to obtain an optimal variant of Kahane’s theorem by chang-
ing the l2-norm to the lQ-norm in RN . Furthermore, more generally, we con-
sider series with polynomial coefficients.

Let (l n ) be a sequence of vectors in RN , satisfying for some gD0 the
condition

Vl m 2l n VQFg whenever mcn .(4.1)

Fix a positive integer M and consider all finite sums of the form

f (t) 4 !
n42Q

Q

!
NjNQEM

ajn t j e il n Q t (ajn �C) .(4.2)

We apply here the usual multiindex notations: the components of j4
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(j1 , R , jN ) are nonnegative integers and

NjNQ4 max ]j1 , R , jN ( ,

t j 4 t1
j1

R tN
jN ;

NjN4 j1 1R1 jN ,

¯
j 4¯ 1

j1
R ¯N

jN ,

where

¯k 4¯/¯xk .

We recall that if

k(t) 4 s
RN

K(x) e it Qx dx

is the inverse Fourier transform of K , then

K(x) 4 (2p)2N s
RN

k(t) e 2ix Q t dt ,

and more generally,

i NjN ¯ j K(x) 4 (2p)2N s
RN

t j k(t) e 2ix Q t dt

for all j . We are going to prove the

THEOREM 4.2. – (a) For every open ball B in RN there exists a constant c1 ,
depending on g , M and on the radius of the ball B , such that all finite sums
(4.2) satisfy the estimate

s
B

N f (t)N2 dtGc1 !
n42Q

Q

!
NjNQEM

Najn N2 .(4.3)

(b) For every open ball B of radius RDM kNp/g in RN there exists a
constant c2 , depending on g , M and on the radius of the ball B , such that all
finite sums (4.2) satisfy the estimate

!
n42Q

Q

!
NjNQEM

Najn N2 Gc2 s
B

N f (t)N2 dt .(4.4)

(c) The estimate (4.4) can fail if REM kNp/g .

REMARK 4.2. – For N41 the theorem reduces to an earlier result
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of Ullrich [21], proved by him in a different way. For N4M41 we get
the original theorem of Ingham.

REMARK 4.3. – By an easy modification of Remarks 2.4 and 2.6-2.8, the esti-
mates remain valid for infinite sums with square summable coefficients, and in
the proof it is sufficient to consider balls centered at the origin and to consider
the case g4p .

PROOF OF PART (a) OF THEOREM 4.1. – By Remark 4.3 it suffices to consider
balls centered at the origin and we may assume that g4p . Set

Bp
Q4 ]l�RN : VlVQEp( .

The function

K(x) »4 »
p41

N

(H M H M )(xp ) , x4 (x1 , R , xN ) �RN

and its inverse Fourier transform

k(t) »4 s
RN

e it Qx »
p41

N

(H M
* H M )(xp ) dx4

4 »
p41

N

s
2Q

Q

e itp xp (H M
* H M )(xp ) dxp 4 »

p41

N

NhM (tp )N2

satisfy the conditions

K�H0
1 (B Q

p ) ,

kF0 on RN ,

kFb on some ball B ,

where b is some positive number. Therefore

b(2p)2Ns
B

N f (t)N2 dtG (2p)2N s
RN

k(t)N f (t)N2 dt4

!
m , n42Q

Q

!
NjNQ , NkNQEM

(2p)2N ajm akn s
RN

t j1k k(t) e i(l m2l n ) Q t dt4

!
m , n42Q

Q

!
NjNQ , NkNQEM

ajm akn i Nj1kN ¯ j1k K(l m 2l n ) 4

!
n42Q

Q

!
NjNQ , NkNQEM

ajn akn i Nj1kN ¯ j1k K(0) .
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Hence

b(2p)2Ns
B

N f (t)N2 dtGc !
n42Q

Q

!
NjNQ , NkNQEM

NajnNNakn NG

c

2
!

n42Q

Q

!
NjNQ , NkNQEM

Najn N2 1Nakn N2 4c !
n42Q

Q

!
NkNQEM

Nakn N2

with

c»4 max ]N¯l K(0)N : NlNE2M21( .

For the proof of part (b) we need the crucial

LEMMA 4.4. – If RDM kN and

K(x) 4R 2 »
p41

N

(H M
* H M )(xp )1 !

p41

N

((H M )8 * (H M )8 )(xp ) »
qcp

(H M
* H M )(xq ) ,

then the quadratic form

(aj )NjNQEM O !
NjNQ , NkNQEM

i Nj1kN ¯ j1k (K)(0) aj ak

is positive definite.

PROOF. – We have

!
NjNQ , NkNQEM

i Nj1kN ¯ j1k K(0)aj ak 4

!
NjNQ , NkNQEM

aj ak i Nj1kN !
p41

N

s
R

R 2 (H M )( jp ) (xp )(H M )(kp ) (2xp )1

(H M )(jp11) (xp )(H M )(kp11) (2xp ) dxp »
qcp

s
R

(H M )(jq ) (xq )(H M )(kq ) (2xq ) dxq 4

!
NjNQ , NkNQEM

aj ak i Nj1kN (21)NkN !
p41

N

s
R

R 2 (H M )(jp ) (xp )(H M )(kp ) (xp )2

(H M )(jp11) (xp )(H M )(kp11) (xp ) dxp »
qcp

s
R

(H M )(jq ) (xq )(H M )(kq ) (xq ) dxq .

Setting

HA(x) »4 !
NjNQEM

aj i NjN »
q41

N

(H M )(jq ) (xq ) ,
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a simple computation shows that

s
[2p/2 , p/2 ]N

NHAN2 dx4 !
NjNQ , NkNQEM

aj ak i NjN (2i)NkN »
q41

N

s
2p/2

p/2

(H M )(jp ) (H M )(kp ) dxq

and

s
[2p/2 , p/2 ]N

N˜HAN2 dx4 !
p41

N

!
NjNQ , NkNQEM

aj ak i NjN (2i)NkN3

s
2p/2

p/2

(H M )(jp11) (H M )(kp11) dxp »
qcp

s
2p/2

p/2

(H M )(jq ) (H M )(kq ) dxq .

Substituting them into the first identity we obtain that

!
NjNQ , NkNQEM

i NjN1NkN ¯ j1k K(0) aj ak 4 s
[2p/2 , p/2 ]N

R 2 NHAN2 2N˜HAN2 dx .

We shall prove that the last integral is positive unless all coefficients aj

vanish.
Equivalently, setting G(x) 4sinM x and

H0 (x) »4 !
NjNQEM

aj i NjN »
q41

N

G (jq ) (xq ) ,

we have to prove that the integral

s
[0 , p]N

R 2 NH0 N2 2N˜H0 N2 dx

is positive unless all aj’s vanish.
Observe that the function G (m) G (n) is odd with respect to p/2 if m2n is

odd, and hence

s
0

p

G (m) (x) G (n) (x) dx40 .

Hence, putting

H1 (x) »4 !
NjNQEM , NjN odd

aj i NjN »
q41

N

G (jq ) (xq ) ,

H2 (x) »4 !
NjNQEM , NjN even

aj i NjN »
q41

N

G (jq ) (xq ) ,



INGHAM TYPE THEOREMS AND APPLICATIONS ETC. 51

we have H0 4H1 1H2 and

s
[0 , p]N

H1 H2 dx40 .

Therefore

s
[0 , p]N

R 2 NH0 N2 2N˜H0 N2 dx4

s
[0 , p]N

R 2 NH1 N2 2N˜H1 N2 dx1 s
[0 , p]N

R 2 NH2 N2 2N˜H2 N2 dx .

Furthermore, NH1 N and NH2 N are even in each of their N variables, and
therefore

2N s
[0 , p]N

R 2 NH0 N2 2N˜H0 N2 dx4 s
[2p , p]N

R 2 NH1 N2 2N˜H1 N2 dx1

1 s
[2p , p]N

R 2 NH2 N2 2N˜H2 N2 dx4 s
[2p , p]N

R 2 NH0 N2 2N˜H0 N2 dx .

Now observe that H0 is a linear combination of the functions e ij Qx for NjNQG

M and therefore

s
[2p , p]N

R 2 NH0 N2 2N˜H0 N2 dxF (R 2 2NM 2 ) s
[2p , p]N

NH0 N2 dx .

Since R 2 2NM 2 D0 by assumption and since the last integral is a positive def-
inite quadratic form of the coefficients aj by the linear independence of the
functions G , G 8, R , G (M21) , the lemma follows.

PROOF OF PART (b) OF THEOREM 4.1. – As in part (a), we consider balls cen-
tered at the origin, we assume that g4p and we introduce the set Bp

Q as
before.

Choose RDM kN arbitrarily and set

K(x) 4R 2 »
p41

N

(H M
* H M )(xp )1 !

p41

N

((H M )8 * (H M )8 )(xp ) »
qcp

(H M
* H M )(xq ) .

Then K and its inverse Fourier transform

k(t) 4 (R 2 2NtN2 ) »
p41

N

hM (tp )2
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are even real functions, satisfying the conditions

K�W0
2M21, Q (Bp

Q )

and

kG0 outside B»4 ]l�RN : VlV2 ER( .

In particular, k has a finite maximum a on RN .
We have

a(2p)2Ns
B

N f (t)N2 dtF (2p)2N s
RN

k(t)N f (t)N2 dt4

!
m , n42Q

Q

!
NjNQ , NkNQEM

ajm akn i Nj1kN ¯ j1k K(l n 2l m ) 4

!
n42Q

Q

!
NjNQ , NkNQEM

ajn akn i Nj1kN ¯ j1k K(0) ,

and we conclude by recalling that the quadratic form

(aj )NjNEM O !
NjNQ , NkNQEM

i Nj1kN ¯ j1k K(0) aj ak

is positive definite by Lemma 4.4.

PROOF OF PART (c) OF THEOREM 4.1. – According to Remark 2.4, if (4.4)
holds for all finite sums, then it also holds for all sums with square summable
coefficients.

Fix a small positive number eE1 and consider the function

fe (t) 4
.
/
´

1 if dist (t , 2MZN ) Ee ,

0 otherwise ,
(t�R) .

For every t� [0 , 2 )N , the linear system

!
NjNQEM

(t12k) j fj (t) 4 fe (t) , NkNEM

has a unique solution ( fj (t) )NjNQEM . Extending f0 , R , fM21 to RN 2-periodically
in each variable, we have

!
NjNQEM

t j fj 4 fe

on the set

V»4 0
NkNQEM

(2k1 [0 , 2 )N ) .
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Developing the functions fj into N-fold trigonometric Fourier series, we obtain
in V a development

fe (t) 4 !
NjNQEM

!
n�ZN

ajn t j e ipn Q t

with square summable coefficients ajn . Since fe does not vanish identically,
there are nonzero coefficients, so that (4.4) cannot hold on the ball of center
(M , R , M) and radius (M2e) kN , contained in V , where fe vanishes
identically.

5. – Simultaneous observability of vibrating strings.

Fix a number 0 EaE1 arbitrarily and consider the following prob-
lem:

.
`
/
`
´

utt 2uxx 40 in (0 , a)3R ,

utt 2uxx 40 in (a , 1 )3R ,

u(0 , Q) 4u(a , Q) 4u(1 , Q) 40 in R ,

u(Q , 0 ) 4u0 and ut (Q , 0 ) 4u1 in (0 , 1 ) .

(5.1)

We recall from Lions [14] that if

u0 �H0
1 (0 , 1 ) , u1 �L 2 (0 , 1 ) and u0 (a) 40 ,

then (5.1) has a unique solution

u�C(R ; H0
1 (0 , 1 ) )OC 1 (R ; L 2 (0 , 1 ) ) ,

and that this solution has the «hidden» regularity property

ux (a20, Q) , ux (a10, Q) �L 2
loc (R) .

We are going to study the following question. Assume we may observe the
sum of the outward normal derivatives of the solutions of (5.1) at the common
endpoint a during some time interval I . Does this observation allow us to iden-
tify the unknown initial data? Mathematically, we ask whether the linear
map

H0
1 (0 , 1 )3L 2 (0 , 1 ) KL 2 (I)

defined by the formula

(u0 , u1 ) O ux (a20, Q)2ux (a10, Q)NI

is injective or not.
The answer depends on the position of a and on the length of I :
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THEOREM 5.1. – (a) For almost every 0 EaE1, the solutions of (5.1) satis-
fy the inequality

Vu0 VH 2e (0 , 1 )
2 1Vu1 VH 212e (0 , 1 )

2 GCs
I

Nux (a20, t)2ux (a10, t)N2 dt(5.2)

for every bounded interval I of length D4 max ]a , 12a( and for every eD0.
The constant C depends on e and on NIN but not on the particular choice of u0

and u1 .

(b) The estimate (5.2) cannot hold for any 0 EaE1 if NINE

2 max ]a , 12a(.

(c) The estimate (5.2) cannot hold for any interval I if a is a rational
number.

REMARK 5.2. – This problem was first studied by Jaffard, Tucsnak and
Zuazua [8]. They proved the estimate (5.2) under a stronger condition on the
length of I . We follow their method but we apply Theorem 2.1 instead of their
original result.

REMARK 5.3. – We hope to return to this problem in the near future and to
determine the optimal condition on NIN for the validity of the estimate
(5.2).

PROOF OF PART (a). – By a density argument it suffices to consider initial
data u0 , u1 which are finite linear combinations of the eigenfunctions of 2D in
H0

1 (0 , a) and in H0
1 (a , 1 ). Then all sums in the sequel are finite, hence all con-

vergence problems are avoided. Furthermore, assume that a is irrational; this
excludes only a set of measure zero.

Applying the Fourier method, the solution of (5.1) is given by the
formula

u(x , t) 4
.
/
´

!
n

bn sin (npa 21 x) e inpa 21 t

!
n

cn sin (np(12a)21 (12x) ) e inp(12a)21 t

if 0 ExEa ,

if aExE1 ,

where n runs over the nonzero (positive or negative) integers, with suitable
complex coefficients bn and cn depending on the initial data. A simple computa-
tion shows that

ux (a20, t)2ux (a10, t) 4!
n

(21)n png bn

a
e inpa 21 t 1

cn

12a
e inp(12a)21 th .
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Setting

L»4 ]npa 21 , np(12a)21 : n�Z2 ]0( (

and

al4
.
/
´

(21)n pnbn a 21

(21)n pncn (12a)21

if l4npa 21 ,

if l4np(12a)21 ,

we may rewrite it in the simpler form

ux (a20, t)2ux (a10, t) 4 !
l�L

al e ilt .

Note that no l�L has two different representations by the irrationality of a .
Next we obtain by another direct computation that

Vu0 VH 2e (0 , 1 )
2 1Vu1 V

2
H 212e (0 , 1 )

is equivalent to

!
n

NnN22e (Nbn N2 1Ncn N2 ) ,

which is in its turn equivalent to the sum

!
l�L

NlN2222e Nal N2 .

Indeed, for l4npa 21 we have

NlN2222e Nal N2 4Nnpa 21 N2222e Npnbn a 21 N2 4Nnpa 21 N22e Nbn N2 ANnN22e Nbn N2 ,

while for l4np(12a)21 we have similarly

NlN2222e Nal N2 4Nnp(12a)21 N2222e Npncn (12a)21 N2 4

Nnp(12a)21 N22e Ncn N2 ANnN22e Ncn N2 .

Hence the estimate (5.2) is equivalent to the following inequality:

!
l�L

NlN2222e Nal N2 Gcs
I

N !
l�L

al e iltN
2

dt .(5.3)

To prove (5.3) first we observe that, since a is assumed to be irrational,
the numbers npa 21 , np(12a)21 , where n runs over the nonzero integers,
are pairwise distinct. Furthermore, no interval of length Emin ]pa 21 ,
p(12a)21 ( contains more than two elements of the set L . Therefore, apply-
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ing theorem 2 with g41O2 min ]pa 21 , p(12a)21( we obtain the inequality

(5.4) !
Nl2mNEg

Nl2mN2 (Nal N2 1Nam N2 )1 !
l�L 8

Nal N2 Gcs
I

N !
l�L

al e iltN
2

dt

for every bounded interval I of length

NIND2pg21 44 max ]a , 12a( ,

where L 8 denotes the set of those l�L for which Nl2mNFg for every other
m�L .

Next we recall from [2] a classical result from the theory of diophantine ap-
proximation: almost every real number a satisfies for all eD0 the inequali-
ties

dist (qa , Z) Fce q 212e , q41, 2 , R .

If Nl2mNEg in (5.4), then we have (changing, if necessary, the order of l and
m) l4np(12a)21 and m4mpa 21 with suitable integers. Apart from a finite
number of such pairs, the integers m and n have the same sign and have a suf-
ficiently large absolute value. Hence

Nl2mN4
p

a(12a)
N(n1m)a2mNF

p

a(12a)
ce Nn1mN212e .

Since the condition Nl2mNEg implies that

n1mAnAmAlAm ,

it follows that

Nl2mNFc 8e max ]NlN , NmN(212e

with a suitable positive constant c 8e . (The right-hand side is well defined be-
cause 0 �L .) Hence the first sum on the left-hand side of (5.4) is minorized
by

c 8e !
Nl2mNEg

NlN2222e Nal N2 1NmN2222e Nam N2 .

Choosing, if necessary, a smaller c 8e , the second sum on the left-hand side of
(5.4) can also be minorized as follows:

c 8e !
l�L 8

NlN2222e Nal N2 G !
l�L 8

Nal N2 .

This completes the proof of (5.3).
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PROOF OF PART (b). – Assume that aF1O2 (the other case is analogous) and
fix 0 ETEa arbitrarily. We are going to show that the estimate (5.2) cannot
hold for I4 (2T , T).

Choose nonzero initial data u0 �H0
1 (0 , 1 ) and u1 �L 2 (0 , 1 ) satisfying

u0 4u1 40 in (a2T , 1 ) .

Then the solution of (5.1) satisfies

u(x , t) 40 for a2T1NtNExE1

for all t by the finite propagation property of the wave equation. Hence

ux (a20, t) 4ux (a10, t) 40 for 2TE tET ,

so that the right-hand side of (5.2) vanishes for I4 (2T , T). On the other
hand, the left-hand side of (5.2) is strictly positive because the initial data are
not identically zero.

PROOF OF PART (c). – If a is a rational number, then there exist positive in-
tegers m and n such that

mp

a
4

np

12a
.

Denoting this common value by l , the formula

u(x , t) »4
.
/
´

sin lx e ilt

2sin l(12x) e ilt

if 0 ExEa ,

if aExE1

defines a nonzero solution of (5.1), so that the left-hand side of (5.1) is strictly
positive. On the other hand, we have

ux (a20, t) 4ux (a10, t) 40

for all real t , so that the right-hand side of (5.2) vanishes for every bounded in-
terval I . Hence (5.2) cannot hold.

6. – Simultaneous observability of beams.

As in the preceding section, fix 0 EaE1 arbitrarily. Now consider the fol-
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lowing problem:

.
`
/
`
´

utt 1uxxxx 40 in (0 , a)3R ,

utt 1uxxxx 40 in (a , 1 )3R ,

u(0 , Q) 4u(a , Q) 4u(1 , Q) 40 in R ,

uxx (0 , Q) 4uxx (a , Q) 4uxx (1 , Q) 40 in R ,

u(Q , 0 )4u0 and ut (Q , 0 ) 4u1 in (0 , 1 ) .

(6.1)

This system models two vibrating beams with simply supported endpoints, one
of which is common to both beams. We recall from [14] that if

u0 �H0
1 (0 , 1 ) , u1 �H 21 (0 , 1 ) and u0 (a) 40 ,

then (6.1) has a unique solution

u�C(R ; H0
1 (0 , 1 ) )OC 1 (R ; H 21 (0 , 1 ) ) ,

and this solution has the «hidden» regularity property

ux (a20, Q) , ux (a10, Q) �L 2
loc (R) .

Assume we may observe the sum of the outward normal derivatives of the sol-
utions of (6.1) at the common endpoint a during some time interval I . Does it
allow us to distinguish different sets of initial data? We are going to prove that
the answer is affirmative for almost every point a , even if the observation time
is arbitrarily small.

THEOREM 6.1. – (a) For almost every 0 EaE1, the solutions of (6.1) satis-
fy the estimate

Vu0 VH 12e (0 , 1 )
2 1Vu1 VH 212e (0 , 1 )

2 Gcs
I

Nux (a20, t)2ux (a10, t)N2 dt(6.2)

for every (arbitrarily short) bounded interval I , and for every eD0, with a
constant c4c(NIN , e), independent of the choice of u0 and u1 .

(b) The estimate (6.2) cannot hold if a is a rational number.

PROOF OF PART (a). – Applying the Fourier method as in the preceding
section, the solution of (6.1) is given by the formula

u(x , t) 4
.
/
´

!
n

bn sin (npa 21 x) e inNnNp2 a 22 t

!
n

cn sin (np(12a)21 (12x) ) e inNnNp2 (12a)22 t

if 0 ExEa ,

if aExE1 ,

where n runs over the nonzero (positive or negative) integers, with suitable
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complex coefficients depending on the initial data. By a density argument
it suffices to consider only finite sums.

It follows that

ux (a20, t)2ux (a10, t) 4!
n

(21)n pnm bn

a
e inNnNp2 a22 t1

cn

12a
e inNnNp2 (12a)22 tn .

Assume that a is irrational, and assume by symmetry that 0 EaE1O2.
Setting

L»4 ]nNnNp 2 a 22 , nNnNp 2 (12a)22 : n�Z2 ]0( (

and

al4
.
/
´

(21)n pnbn a 21

(21)n pncn (12a)21

if l4nNnNp 2 a 22 ,

if l4nNnNp 2 (12a)22 ,

the right-hand side of (6.2) takes the form

cs
I

N !
l�L

al e iltN
2

dt .

Next we obtain by a straightforward computation that the left-hand side of
(6.2) is equal to

! NnN222e (Nbn N2 1Ncn N2 )

and that this sum is equivalent to

!
l�L

NlN2e Nal N2 .

Indeed, for l4nNnNp 2 a 22 we have

NlN2e Nal N2 4Nnpa 21 N22e Npnbn a 21 N2 ANnN222e Nbn N2 ,

while for l4nNnNp 2 (12a)22 we have

NlN2e Nal N2 4Nnp(12a)21 N22e Npnbn (12a)21 N2 ANnN222e Ncn N2 .

Hence the estimate (6.2) is equivalent to the following inequality:

!
l�L

NlN2e Nal N2 Gcs
I

N !
l�L

al e iltN
2

dt .(6.3)

For the proof of (6.3) fix a bounded interval I and then fix a (sufficiently
large) real number g satisying

NIND2p/g .
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Choose a sufficiently large positive integer N such that, setting

L N »4 ]nNnNp 2 a 22 , nNnNp 2 (12a)22 : n�Z and NnNFN( ,

no interval of length E2g contains more than two elements of L N . Then, ap-
plying Theorem 2.1 we obtain the estimate

!
Nl2mNEg

Nl2mN2 (Nal N2 1Nam N2 )1 !
l�L N8

Nal N2 Gcs
I

N !
l�L N

al e iltN
2

dt(6.4)

where the first sum is taken for all pairs of numbers in L N whose distance is
strictly between 0 and g , while the second sum is taken for the remaining
numbers in L N .

We are going to deduce from (6.4) the inequality

!
l�L N

NlN2e Nal N2 Gcs
I

N !
l�L N

al e iltN
2

dt .(6.5)

(Compare to (6.3).) Since L N has no finite accumulation points, for this it suf-
fices to prove the estimate

NlN2eGcNl2mN2(6.6)

for all pairs in the first sum of (6.4). Moreover, it suffices to consider pairs with
sufficiently large NlN and NmN . Now, for such a pair we have (exchanging l and
m if needed)

l4mNmNp 2 a 22 and m4nNnNp 2 (12a)22

with suitable nonzero integers m , n of the same sign. Since 0 EaE1O2 by our
choice at the beginning of the proof, we have

n1mAn2mAnAm

for NlNKQ . Now let a be such that

dist (qa , Z) Fce q 212e

for all eD0 and for all positive integers q . (We recall again from [2] that al-
most every a has this property.) Then we have

(6.7) Nl2mN4p 2 a 22 (12a)22 Nn 2 a 2 2m 2 (12a)2 N4

p 2 a 22 (12a)22 N(n1m)a2mN QN(n1m)a1mN .

Thanks to the choice of a we have

N(n1m)a2mNFce Nn1mN212eFc 8e NnN212e
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and

N(n1m)a1mNFce Nn2mN212eFc 8e NnN212e .

Furthermore,

NN(n1m)a2mN2N(n1m)a1mNNF2NmNF2cNnN

for a suitable positive constant c , independent of m , n , and hence at least one
of the numbers

(n1m) a2m and (n1m)a1m

has an absolute value FcNnN . Therefore we have

N(n1m)a2mN QN(n1m)a1mNFcc 8e NnN212e NnN4cc 8e NnN2e .(6.8)

Using (6.8) we deduce from (6.7) the estimate

Nl2mNFcc 8e p 2 a 22 (12a)22 NnN2e .

Since

NnNANmNANlN1/2 ,

the desired estimate (6.6) follows.
We have thus proved (6.5). In other words, we have proved (6.3) for all (fi-

nite) sequences of complex numbers (al ) which satisfy the additional condi-
tion

al40 for all l�L2L N .

The proof of (a) is then completed by applying the

LEMMA 6.2. – We are given a countable set L of real numbers without fi-
nite accumulation points, and for every l�L two positive numbers a lEb l .
Assume that there exist a bounded interval I , a finite subset L N of L and two
positive constants c1 , c2 such that

c1 ! a l Nal N2 Gs
I

N! al e iltN2 dtGc2 ! b l Nal N2

for all sequences of complex numbers al where l runs over some finite subset
of L2L N .
Then for every bounded interval J of length DNIN there exist two positive
constants c3 , c4 such that

c3 ! a l Nal N2 Gs
J

N! al e iltN2 dtGc4 ! b l Nal N2
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for all sequences of complex numbers al where l runs over some finite subset
of L .

In the special case where the numbers a l and b l do not depend on l , this
lemma was proved in [5]. His proof carries over easily to the proof of this gen-
eral case. Alternatively, this lemma is a very particular case of Theorem 5.3
in [10] and of the more general Theorem 3.1 in [13].

PROOF OF PART (b). – If a is a rational number, then there exist positive in-
tegers m and n such that

mp

a
4

np

12a
.

Denoting this common value by l , the formula

u(x , t) »4
.
/
´

sin lx e il2 t

2sinl(12x) e il2 t

if 0 ExEa ,

if aExE1 ,

defines a nonzero solution of (6.1), so that the left-hand side of (6.1) is strictly
positive. On the other hand, we have

ux (a20, t) 4ux (a10, t) 40

for all real t , so that the right-hand side of (6.2) vanishes for every bounded in-
terval I . Hence (6.2) cannot hold.
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