Hidalgo-Solís, Laura and Recillas-Pishmish, Sevin: 
The fibre of the Prym map in genus four
 Bollettino dell'Unione Matematica Italiana Serie 8 2-B (1999), fasc. n.1, p. 219-229, Unione Matematica Italiana (English)
pdf (259 Kb), djvu (161 Kb).  | MR1794551  | Zbl 0945.14016  
Sunto
In questa nota si dà una descrizione della fibra della mappa di Prym in genere 4. Se $JX$ è la Jacobiana di una curva di genere 3, allora la fibra della mappa di Prym in $JX$ si ottiene dalla varietà di Kummer $KX$ mediante due scoppiamenti: $\sigma_{1} : KX(0) \to KX$ che è lo scoppiamento di $KX$ nell'origine e $\sigma_{2} : \widetilde{KX(0)} \to KX(0)$ che è lo scoppiamento lungo una curva isomorfa a $X$.
Referenze Bibliografiche
[Be.1] 
                     A. 
                     BEAUVILLE
                  , 
Prym varietes and the Schottky problem, 
Invent. Math., 
41 (
1977), 149-196. | 
MR 572974 | 
Zbl 0333.14013[DC-R] 
                     A. 
                     DEL CENTINA
                  -
                     S. 
                     RECILLAS
                  , 
On a property of the Kummer variety and a relation between two moduli spaces of curves, in 
Algebraic Geometry and Complex Analysis, Proceedings, 
Lect. Notes in Math., 
1414, 
Springer-Verlag (
1989), 28-50. | 
Zbl 0722.14012[DS] 
                     R. 
                     DONAGI
                  -
                     R. C. 
                     SMITH
                  , 
The structure of the Prym map, 
Acta Math., 
146 (
1982), 25-102. | 
MR 594627 | 
Zbl 0538.14019[F] 
                     J. 
                     FAY
                  , 
Theta Functions on Riemann Surfaces, 
Lecture Notes, 
352, 
Springer-Verlag (
1973). | 
MR 335789 | 
Zbl 0281.30013[FS] 
                     R. 
                     FRIEDMAN
                  -
                     R. 
                     SMITH
                  , 
The generic Torelli theorem for the Prym map, 
Invent. Math., 
74 (
1982), 473-490. | 
MR 664116 | 
Zbl 0506.14042[K] 
                     S. 
                     KLEIMAN
                  , 
Algebraic Cycles and the Weil Conjectures, 
Advanced Studies in Pure Mathematics, 
North-Holland, 
3, Amsterdam (
1968). | 
MR 292838 | 
Zbl 0198.25902[Ma] 
                     L. 
                     MASIEWICKI
                  , 
Universal properties of Prym varieties with an aplication to algebraic curves of genus five, 
Trans. Amer. Math. Soc, 
222 (
1976), 221-240. | 
MR 422289 | 
Zbl 0333.14012[M] 
                     D. 
                     MUMFORD
                  , 
Prym Varietes - I, 
Contributions to Analysis, 
Academic Press, New York (
1974). | 
MR 379510 | 
Zbl 0299.14018[GIT] 
                     D. 
                     MUMFORD
                  -
                     J. 
                     FOGARTY
                  -
                     F. 
                     KIRWAN
                  , 
Geometric Invariant Theory, third edition, 
Springer-Verlag, Heidelberg (
1994). | 
MR 1304906 | 
Zbl 0504.14008[P] 
                     H. 
                     POPP
                  , 
Moduli theory and classification theory of algebraic varieties, 
Lecture Notes in Math., 
620, 
Spinger-Verlag, Berlin-Heidelberg-New York (
1977). | 
MR 466143 | 
Zbl 0359.14005[Rec.1] 
                     RECILLAS 
                     S.
                  , 
Jacobians of curves with $g^{4}_{1}$'s are Prym's varietes of trigonal curves, 
Bol. Soc. Mat. Mexicana, 
19 (
1974), 9-13. | 
MR 480505 | 
Zbl 0343.14012[Rec.2] 
                     S. 
                     RECILLAS
                  , 
Symmetric Cubic Surfaces and Curves of Genus 3 and 4, 
Boll. Un. Mat. (7), 
7-B (
1993), 787-819. | 
MR 1255648 | 
Zbl 0818.14005[V] 
                     A. 
                     VERRA
                  , 
The Fibre of the Prym map in genus three, 
Math. Ann., 
276 (
1987), 433-448. | 
MR 875339 | 
Zbl 0588.14024[W] 
                     G. 
                     WELTERS
                  , 
Curves of twice the minimal class on principally polarized abelian variety, 
Nederl. Akad. Wetensh. Proc. Ser. A., 
90 (
1987), 87-109. | 
MR 883371 | 
Zbl 0644.14014