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When is Z[a] Seminormal or t-Closed?

MARTINE PICAVET-L’HERMITTE

Sunto. – Sia a un intero algebrico con il polinomio minimale f (X). Si danno condizio-
ni necessarie e sufficienti affinché l’anello Z[a] sia seminormale o t-chiuso per
mezzo di f (X). Come applicazione, in particolare, si ottiene che se f (X) 4X 31
aX1b , a , b�Z, le condizioni sono espresse mediante il discriminante de
f (X).

1. – Introduction.

Let a be an algebraic integer. Integral closedness of the ring Z[a] was the
subject of papers by T. Albu [1], G. Maury [5] and K. Uchida [12]. This last au-
thor got the following characterization [12, Theorem]:

THEOREM 1.1. – Let R be a Dedekind domain and a an element of some in-
tegral domain which contains R. If a is integral over R, then R[a] is a
Dedekind domain if and only if the minimal polynomial W(X) of a is not con-
tained in M 2 for any maximal ideal M of the polynomial ring R[X].

Our aim is to obtain a similar characterization for seminormality or t-
closedness of Z[a]. Recall some definitions:

A ring A is called seminormal if, for each (x , y) �A 2 such that x 3 4y 2,
there exists a�A such that x4a 2 , y4a 3. When A is a reduced ring, A is
seminormal if and only if the natural map Pic (A) KPic (A[X] ) is an isomor-
phism [10].

A ring A is called t-closed if, for each (x , y , r) �A 3 such that x 3 1rxy2

y 2 40, there exists a�A such that x4a 2 2ra , y4a 3 2ra 2. When A is a one-
dimensional Noetherian integral domain, A is t-closed if and only if the natu-
ral map Pic (A) KPic (A[X , X 21 ] ) is an isomorphism [7].

In section 2, we begin to recall some results about seminormality and t-
closedness gotten in [6], [7], [8], and we study properties of maximal ideals in
Z[a].

In section 3, we give a necessary and sufficient condition for a ring Z[a] to
be seminormal:
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Let f (X) be the minimal polynomial of the algebraic integer a. Then any
maximal ideal M in Z[X] containing f (X) is of the form M4 (p , g(X) ) where p
is a prime integer and g(X) is a monic polynomial of Z[X] such that its residue
class in Fp [X] is an irreducible polynomial dividing the residue class of f (X) in
Fp [X]. Such a maximal ideal is lying over pZ.

Consider f (X) 4q(X) g(X)1c(X), the Euclidean division of f (X) by g(X),
and then q(X) 4a(X) g(X)1b(X), the Euclidean division of q(X) by g(X), so
that

deg b(X) , deg c( X ) Edeg g(X) .

We can thus write

f (X) 4a(X) g 2 (X)1b(X) g(X)1c(X) .

Then, according to Proposition 3.1, Z[a] is seminormal if and only if for each
maximal ideal M4 (p , g(X) ) of Z[X] such that f (X) �M 2, we have

b 2 (X)24a(X) c(X) �p 2 M .

Section 4 is devoted to the same problem relating to t-closedness, with a
more complex formulation : indeed, we have to distinguish the cases p42 and
pc2:

Z[a] is t-closed if and only if for each maximal ideal M4 (p , g(X) ) of
Z[X] such that f (X) �M 2, we have, with the previous notations:

– if pc2, then [b 2 (X)24a(X)c(X) ]p 22 is not a quadratic residue mod M.

– if p42, then b(X) �4Z[X] and b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4M
for each h(X) �Z[X].

Let R be a Dedekind domain, a be an element of some integral domain
which contains R and let a be integral over R. We end both sections 3 and 4 in
generalizing seminormality and t-closedness criteria to the ring R[a].

In section 5 we give an application of sections 3 and 4 to simple cubic or-
ders: if a is an algebraic integer with minimal polynomial f (X) 4X 3 1aX1b ,
a , b�Z, let D42(4a 3 127b 2 ) be the discriminant of f (X). We obtain inte-
gral closedness, t-closedness and seminormality criteria for Z[a]; these crite-
ria are related to arithmetical properties of D, when D is divisible by a prime
integer p such that pc2, 3 and does not divide both a and b, and to arithmeti-
cal properties of f (a2b) or f 8 (a2b), for the other prime divisors of D.
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2. – Some generalities.

We first recall some definitions and properties of seminormality and
t-closedness.

In the introduction we have just given the definitions of seminormal or t-
closed rings. These notions are closely intertwined with seminormal and t-
closed morphisms (see [6], [7], [10]).

DEFINITION 2.1. – An injective ring morphism AKB is said to be semi-
normal (resp. t-closed) if an element b of B is in A whenever b 2 , b 3 �A (resp.
whenever there exists some r�A such that b 2 2rb , b 3 2rb 2 �A).

PROPOSITION 2.2. – Let A be an integral domain with integral closure A.
Then, A is seminormal (resp. t-closed) if and only if AK A is seminormal
(resp. t-closure).

PROPOSITION 2.3. – Let A be an integral domain with integral closure A.
There exist two A-subalgebras 1A and tA of A such that 1A (resp. tA) is the
smallest seminormal (resp. t-closed) A-subalgebra of A; the ring 1A (resp. t A)
is called the seminormalization (resp. t-closure) of A.

We have the inclusion: 1A%tA ; furthermore, A is seminormal (resp. t-
closed) if and only if A41A (resp. A4tA). The composite AK1AKtAK A is
called the canonical decomposition of AK A.

D. Ferrand and J. P. Olivier introduced in [4] the notion of minimal mor-
phism and showed there exist three classes of minimal morphisms:

DEFINITION 2.4 [4, Définition 1.1, Proposition 4.1 and Lemme 1.2].

(1) A ring morphism f is said to be minimal if

(a) f is injective and non bijective

(b) for every decomposition f4g i h where g and h are injective ring
morphisms, g or h is an isomorphism.

(2) Let f : AKB be a finite minimal morphism between two one-di-
mensional Noetherian domains with the same quotient field. Then the con-
ductor of f is a maximal ideal P of A. Moreover, f satisfies one of the following
conditions:

(a) there exists x�B0A such that x 2 , x 3 �A and x 2 �P : we say that f
is ramified.

(b) there exists x�B0A such that x 2 2x , x 3 2x 2 �A and x 2 2x�P :
we say that f is decomposed.
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(c) P is a maximal ideal in B and A/PKB/P is a minimal field ex-
tension: we say that f is inert.

Then, we showed in [8] the following result:

PROPOSITION 2.5 [8, Theorem 3.4]. – Let A be a one-dimensional Noetheri-
an domain such that A is finite over A. Then: AK1A (resp. 1AKtA , tAK A)
is a composite of finitely many ramified (resp. decomposed, inert) mor-
phisms, and is not factorized by another type of minimal morphism in any
decomposition into minimal morphism.

In particular, we have Ac A if and only if there exist some maximal ideal P
in A and an element x� A0A such that xP%P.

For a Dedekind domain R (in particular if R4Z) and an element a of some
integral domain which contains R such that a is integral over R, the ring R[a]
satisfies the assumptions of 2.5.

Next we give some results on maximal ideals in Z[a] needed in the
following.

Let a be an algebraic integer with minimal polynomial f (X). Any element z
of Z[a] can be written a(a), where a(X) is a unique polynomial in Z[X], such
that deg a(X) Edeg f (X).

Let p be a prime integer. For a polynomial a(X) 4!ai X i �Z[X], we de-
note by a(X) the polynomial !ai X i �Fp [X], where ai is the p-residue of ai in
Fp .

For a given prime integer p, let f (X) 4» f i (X)ei be the decomposition of
f (X) into irreducible distinct polynomials f i (X), where fi (X) is a monic polyno-
mial and ei �N*. In particular, fi (X) and f i (X) have the same degree.

Now we give a key lemma. As far as we know, this is a new result which
looks like the results of T. Albu, G. Maury and K. Uchida (cf. 1.1). Unlike their
results, we do not need any hypothesis on the ring Z[a].

LEMMA 2.6. – Let p be a prime integer and M4 (p , f (X) ) be an ideal of
Z[X] such that f (X) is a monic polynomial. Then p is not in M 2.

PROOF. – We have M 2 4 (p 2 , pf (X), f 2 (X) ). Assume p�M 2. Hence, there
exist a(X), b(X), c(X) �Z[X] such that p4p 2 a(X)1pf (X) b(X)1 f 2 (X) c(X).
As f (X) is a monic polynomial, there exists a a zero of f (X) in the integral clo-
sure A of some finite algebraic extension of Q. Then we get p4p 2 a(a); as pc

0, we have pa(a) 41; thus p is a unit of A, which leads to a contradiction since
there are maximal ideals in A lying over pZ : indeed, A is integral over Z.
Therefore, we get p�M 2.
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PROPOSITION 2.7. – Let a be an algebraic integer with minimal polynomial

f (X). For a given prime integer p, let f (X) 4 »
i41

n

f i (X)ei be the decomposition of

f (X) into irreducible distinct polynomials, where fi (X) is monic and ei �N*.
The maximal ideals of Z[a] lying over pZ are (p , fi (a) ), for i41, R , n, and
pZ[a] if f (X) is irreducible in Fp [X].

PROOF. – We know that the maximal ideals of Z[a] arise from maximal ide-
als of Z[X] containing f (X), due to the isomorphism Z[a] CZ[X] /(f (X) ). Be-
cause f (X) is a monic polynomial, a maximal ideal M 8 of Z[X] containing f (X)
and a prime integer p can be written M 84 (p , g(X) ), where g(X) is a monic
polynomial such that g(X) is irreducible in Fp [X]. Thus f (X) 4pa(X)1

g(X) b(X), where a(X), b(X) �Z[X], implies f (X) 4 g(X) b(X) in Fp [X]. There-
fore g(X) is a monic irreducible polynomial dividing f (X), so that g(X) 4 f i (X),
for some i. Hence M 84 (p , fi (X) ) shows that Pi 4 (p , fi (a) ) is a maximal ideal
in Z[a].

If f (X) is irreducible in Fp [X], we get f (X) 4 f i (X), whence f (X) 4 fi (X)
and fi (a) 40.

DEFINITIONS 2.8. – From now, we denote by Mi 4 (p , fi (X) ) (resp. Pi 4

(p , fi (a) )) the maximal ideals in Z[X] containing f (X) (resp. in Z[a]).

LEMMA 2.9. – Let Pi4(p , fi (a)) be a maximal ideal in Z[a], with fi (a) c0.

(1) For g(a) �Z[a] , we get g(a) �Pi if and only if g(X) � ( f i (X) ) in
Fp [X].

(2) Any element g(a) �Pi can be written: g(a) 4a(a) fi (a)1pb(a),
where a(X), b(X) �Z[X], and deg b(X) Edeg fi (X).

(3) If g(a) �Pi and deg g(X) Edeg fi (X), then a(a) 40 and g(a) �
pZ[a].

PROOF. – First we show (1). Let g(a) �Z[a]. Then we have g(a) �Pi if and
only if there exist a(a), b(a) �Z[a] such that g(a) 4a(a) fi (a)1pb(a), that is
to say g(X)2a(X) fi (X)2pb(X) 4 f (X) c(X), with c(X) �Z[X], from which it
follows that g(X) 4 a(X) f i (X)1 f (X) c(X) in Fp [X]. Since f (X) is divided by
f i (X), so is g(X).

Conversely, if g(X) � ( f i (X) ), we can write g(X) 4 a(X) f i (X) in Fp [X]. So,
there is b(X) �Z[X] such that g(X) 4a(X) fi (X)1pb(X), whence g(a) 4

a(a) fi (a)1pb(a) �Pi .

(2) For g(a) �Z[a], let g(X) 4a(X) fi (X)1a 8 (X) be the Euclidean divi-
sion of g(X) by fi (X), with deg a 8 (X) Edeg fi (X). This equality leads to g(a) 4

a(a) fi (a)1a 8 (a). Thus g(a) �Pi `a 8 (a) �Pi ` a8 (X) � ( f i (X) ) by (1). But,
deg a8 (X) Gdeg a 8 (X) Edeg fi (X) 4deg f i (X) implies a8 (X) 4 0 and a 8 (X) 4
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pb(X) in Z[X], with deg b(X) 4deg a 8 (X) Edeg fi (X). Then, g(a) 4

a(a) fi (a)1pb(a), with deg b(X) Edeg fi (X).

(3) If deg g(X) Edeg fi (X), the Euclidean division of g(X) by fi (X) gives
g(X) 40 fi (X)1g(X). With the notations of (2), we get then a(X) 40, g(X) 4

pb(X), so that a(a) 40 and g(a) 4pb(a) �pZ[a].

Assume that the polynomial f (X) is not irreducible in Fp [X] for a prime p�
Z. Let f i (X) be an irreducible monic divisor of f (X) in Fp [X]. If fi (X) is a monic
polynomial in Z[X] with residue f i (X) in Fp [X], consider f (X) 4q(X) fi (X)1

c(X) the Euclidean division of f (X) by fi (X), and q(X) 4a(X) fi (X)1b(X) the
Euclidean division of q(X) by fi (X). Thus we obtain unique polynomials
a(X), b(X), c(X) �Z[X] such that:

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)( * )

where deg b(X), deg c(X) Edeg fi (X).

DEFINITION 2.10. – Under the above conditions, we say that

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X) , where deg b(X) , deg c(X) Edeg fi (X)

is the double Euclidean division of f (X) by fi (X).

In Fp [X] we get f (X) 4 a(X) f i
2 (X)1b(X) f i (X)1c(X). Since f i (X) divides

f (X), it divides also c(X); inequalities between degrees give then

deg c(X) Gdeg c(X) Edeg fi (X) 4deg f i (X) .

So c(X) 4 0 and c(X) �pZ[X].
Relation ( * ) implies the relation in Z[a]:

a(a) f i
2 (a)1b(a) fi (a)1c(a) 40 .( * * )

In the next two sections, we are looking for seminormality or t-closedness
criteria of Z[a]. The next result will be useful in these two sections:

PROPOSITION 2.11. – Let Pi 4 (p , fi (a) ) be a maximal ideal of Z[a]. There
exists x�Q[a]0Z[a] such that xPi %Pi if and only if f i

2 (X) divides f (X) in
Fp [X] and p�Pi

2 .
Under these conditions and with notation 2.10, we have b(X) �pZ[X] ,

c(X) �p 2 Z[X] and f (X) � (p , fi (X) )2.

PROOF. – As we have Pi 4 (p , fi (a) ) , the condition xPi %Pi is equivalent to
px, xfi (a) �Pi . Thus we can write x4 [ph(a)1 fi (a) k1 (a) ]p 21, where
h(X), k1 (X) �Z[X].
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We get fi (a) k1 (a) p 21 �Z[a] due to x�Z[a], so that fi (a) k1 (a) �pZ[a].
Furthermore, the condition fi (a) x�Pi gives h(a) fi (a)1 fi

2 (a) k1 (a) p 21 �Pi ,
which is equivalent to f i

2 (a) k1 (a) �pPi . But this last condition is satisfied if
and only if there exist g1 (X), h1 (X), k(X) �Z[X] such that

f i
2 (X) k1 (X) 4p 2 g1 (X)1pfi (X) h1 (X)1k(X) f (X) ,

which gives f i
2 (X) k1 (X) 4 k(X) f (X) in Fp [X]. If f i (X) divides k(X), we obtain

f i (X) k1 (X) 4 k2 (X) f (X), with k2 (X) �Fp [X] and then we have fi (X) k1 (X) 4

k2 (X) f (X)1pk3 (X) in Z[X]; so, fi (a) k1 (a) 4pk3 (a) �pZ[a], a contradiction.
Then, f i (X) and k(X) are coprime and f i

2 (X) divides f (X). By ( * ), we get that
f i (X) divides b(X) in Fp [X]; it follows from deg b(X) Edeg f i (X) that b(X) 4 0,
whence b(X) �pZ[X]. As k(X) f (X) � (p , fi (X) )2 and k(X) does not belong to
the maximal ideal (p , fi (X) ), we obtain in addition that f (X) belongs to the pri-
mary ideal (p , fi (X) )2.

But, we can write c(X) 4pc2 (X) 4 f (X)2a(X) f i
2 (X)2b(X) fi (X) which

implies pc2 (X) � (p , fi (X) )2, with p� (p , fi (X) )2 by 2.6; for the same reason, we
get c2 (X) � (p , fi (X) ), and c2 (X) �pZ[X], c(X) �p 2 Z[X], since deg c2 (X) 4

deg c(X) Edeg fi (X).
If p�Pi

2, we get that p4p 2 a 8 (X)1pfi (X) b 8 (X)1 f i
2 (X) c 8 (X)1

f (X) d 8 (X) where a 8 (X), b 8 (X), c 8 (X), d 8 (X) �Z[X]; as f (X) � (p , fi (X) )2, we
should have p� (p , fi (X) )2, in contradiction with 2.6. Thus we get p�Pi

2 .
Conversely, assume f i (X)2 divides f (X) in Fp [X] and p�Pi

2 . Then we have
x4 fi (a) a(a) p 21 �Z[a] (if not, we get f i (X) a(X) � ( f (X) ) in Fp [X] ) . Obvi-
ously, we have px�Pi , as well as fi (a) x , since fi (a) x4a(a) f i

2 (a) p 21 42

[b(a) fi (a)1c(a) ] p 21 by ( * * ): indeed, we have just seen that b(X) �pZ[X]
since f i

2 (X) divides f (X) and c2 (a) �Pi since c(a) 4pc2 (a) 42a(a) fi
2 (a)2

b(a) fi (a) �Pi
2 , with p�Pi

2 .

REMARKS 2.12.

(1) From xPi %Pi where Pi 4 (p , fi (a) ), we deduce the system:

.
/
´

[A(a)2x] p1B(a) fi (a) 40 ,

C(a)p1 [D(a)2x] fi (a) 40 ,

where A(a), B(a), C(a), D(a) �Z[a].
It follows that x 2 2 [A(a)1D(a) ]x1 [A(a) D(a)2B(a) C(a) ] 40; hence

x satisfies a quadratic relation over Z[a] and is integral over Z[a].

(2) Under assumptions of 2.11, we can henceforth put b(X) 4pb1 (X) and
c(X) 4p 2 c1 (X), with b1 (X), c1 (X) �Z[X]. Then 2.10 gives:

a(a) f i
2 (a) 42pb1 (a) fi (a)2p 2 c1 (a) �pPi(***)
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PROPOSITION 2.13. – Let a be an algebraic integer with minimal polynomi-
al f (X); the following conditions are equivalent:

(1) Z[a] is not integrally closed.

(2) There is a maximal ideal (p , fi (X) ) in Z[X] such that f (X) �
(p , fi (X) )2.

(3) There exist a prime integer p and an irreducible monic polynomial
fi (X) �Z[X] such that f i

2 (X) divides f (X) and p� (p , fi (a) )2.

Furthermore, if one of these equivalent conditions holds, f (X) belongs to
the square of a maximal ideal (p , fi (X) ) in Z[X] if and only if f i

2 (X) divides
f (X) and p� ((p , fi (a) )2.

PROOF. – (1) ` (2) is 1.1. We have (1) ¨ (3) by 2.11 (we cannot have Pi 4

pZ[a] since x�Z[a]). Conversely, by 2.11, (3) yields x�Q[a]0Z[a] such that
xPi %Pi , for a maximal ideal Pi of Z[a]. Now 2.12 (1) shows that x is integral
over Z[a], so that Z[a] is not integrally closed.

When Z[a] is not integrally closed, there are maximal ideals (p , fi (X) ) in
Z[X] such that f (X) � (p , fi (X) )2 (see 1.1). We can ask what is the link be-
tween a and the prime integers p. The answer is given by the following
proposition:

PROPOSITION 2.14. – Let a be an algebraic integer with minimal polynomi-
al f (X) such that Z[a] is not integrally closed. Let nZ be the annihilator of
the Z-module Z[a] /Z[a], where Z[a] is the integral closure of Z[a]. If
(p , fi (X) ) is a maximal ideal of Z[X] , then f (X) � (p , fi (X) )2 if and only if p
divides n and f i (X) is a monic irreducible divisor of f (X) in Fp [X].

PROOF. – Let nZ be the conductor in Z of Z[a] K Z[a]. For a prime inte-
ger p, set S4Z0pZ. Obviously Z[a]S K Z[a]S is an isomorphism if and only if
n�pZ. Then Z[a]S is integrally closed if and only if n�pZ. But we have
Z[a]S 4ZS [a] and f (X) �ZS [X] is still the minimal polynomial of a. Since ZS

is a Dedekind domain, ZS [a] is integrally closed if and only if f (X) is not con-
tained in the square of any maximal ideal of ZS [X] by 1.1. But the maximal ide-
als of ZS [X] containing f (X) are of the form (p , fi (X) ), where f i (X) is an irre-
ducible factor of f (X) in Fp [X].

To sum up, the following statements are equivalent:

l p divides n ,

l ZS [a] is not integrally closed,

l f (X) � (p , fi (X) )2 ZS [X] for some fi (X) in ZS [X].
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This last condition is equivalent to the following:

l f (X) � (p , fi (X) )2 Z[X] for some fi (X) in Z[X].

One implication is obvious. Conversely, assume that f (X) �
(p , fi (X) )2 ZS [X], where fi (X) �ZS [X]. As Fp is the residue class field of Z and
ZS , there exists f 8i (X) �Z[X] such that fi (X)2 f 8i (X) �pZS [X] so that we can
choose fi (X) �Z[X]. Since f (X) � (p , fi (X) )2 ZS [X], we can write in a unique
way : f (X) 4a(X) f i

2 (X)1pb(X) fi (X)1p 2 c(X), with a(X), b(X), c(X) �ZS [X]
and deg b(X), deg c(X) Edeg fi (X). But, as f (X) and fi (X) �Z[X], we can also
consider the double Euclidean division of f (X) by fi (X) in Z[X]. We have then,
in a unique way:

f (X) 4a 8 (X) f i
2 (X)1b 8 (X) fi (X)1c 8 (X) ,

with a 8 (X), b 8 (X), c 8 (X) �Z[X] and deg b 8 (X), deg c 8 (X) Edeg fi (X). By
unicity of the division in ZS [X] we have:

a(X) 4a 8 (X) , b 8 (X) 4pb(X) �pZS [X]OZ[X] .

If b 8 (X) 4 !
j41

m

b 8j X j and b(X) 4 !
j41

m

bj sj
21 X j, with bj , b 8j �Z and sj �S, then

sj b 8j 4pbj for each j yield b 8j �pZ, since sj �pZ. So b 8 (X) �pZ[X]. In the same
way, we get c 8 (X) 4p 2 c(X) �p 2 ZS [X]OZ[X] 4p 2 Z[X]. Thus we have
f (X) � (p , fi (X) )2 Z[X] with fi (X) �Z[X].

REMARK. – We can find prime integers p such that ZS [a] is not integrally
closed in another way : let d be the discriminant of f (X); if f (X) � (p , fi (X) )2,
then p divides d. So, we have only to consider the prime divisors of d.

Let R be a Dedekind domain. The double Euclidean division obtained in
2.10 is still valid for a Dedekind domain. For each maximal ideal P in R, the
ring RP is a principal domain. Let a be an element of some integral domain
which contains R and such that a is integral over R and let f (X) �R[X] be the
minimal polynomial of a. Then a is also integral over RP and f (X) is still its
minimal polynomial in RP [X]. Moreover, for a maximal ideal P in R, we can
identify R/P and RP /PRP . So, let fi (X) be a monic polynomial in R[X] such that
f i (X) is a monic irreducible divisor of f (X) in R/P[X]; we get then that fi (X) is
also a monic polynomial in RP [X] such that f i (X) is a monic irreducible divisor
of f (X) in RP /PRP [X]. Hence it follows that the double Euclidean division of
f (X) by fi (X) in R[X] given in 2.10 is still the double Euclidean division of f (X)
by fi (X) in RP [X] and, for f (X) 4a(X) f i

2 (X)1b(X) fi (X)1c(X) with
a(X), b(X), c(X) �R[X], we also have a(X), b(X), c(X) �RP [X].

Now, if P is a maximal ideal in R, there exists p�P such that PRP 4pRP ,
where p is an irreducible element in RP . A maximal ideal in R[X] containing
f (X) is of the form (P , fi (X) ) [12, Lemma] so that (p , fi (X) ) is a maximal ideal
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in RP [X] containing f (X). Conversely, a maximal ideal in RP [X] containing
f (X) is of the form (p , fi (X) ) and comes from a maximal ideal (P , fi (X) ) in
R[X]. So we get:

LEMMA 2.15. – Let R be a Dedekind domain and P be a maximal ideal in
R such that PRP 4pRP , with p�P. For any monic polynomial f (X) �R[X]
such that (P , f (X) ) is a maximal ideal in R[X] , we have (P , f (X) )4

(p , f (X) )OR[X] (resp. (P , f (X) )2 4 (p , f (X) )2 OR[X] ), where (p , f (X) ) is a
maximal ideal in RP [X].

PROOF. – We have obviously (P , f (X) )% (p , f (X) )OR[X].
Let g(X) � (p , f (X) )OR[X]. The Euclidean division of g(X) by f (X) in

R[X] gives g(X) 4a(X) f (X)1b(X), with deg b(X) Edeg f (X) and a(X), b(X) �
R[X]. We get then b(X) �pRP [X]OR[X] 4PR[X]. Thanks to p 2 RP [X]O
R[X] 4P 2 R[X] we obtain the second equality by considering the double Eu-
clidean division of a polynomial by f (X).

To close the section, we have the following result:

PROPOSITION 2.16. – Let R be a Dedekind domain and a be an element of
some integral domain which contains R where a is integral over R. Then
R[a] is seminormal (resp. t-closed) if and only if RP [a] is seminormal (resp.
t-closed) for each maximal ideal P in R.

PROOF. – Consider a maximal ideal P in R. We have obviously RP [a] 4

(R[a] )P . If R[a] is seminormal or t-closed, so is RP [a] [10, Proposition 3.7] and
[7, Proposition 1.15].

Conversely, as R[a] is an R-module, we have R[a] 4 1
P�Max R

(R[a] )P 4

1
P�Max R

(RP [a] ). Then, if RP [a] is seminormal (resp. t-closed) for each maximal

ideal P in R, so is R[a] by [10, Corollary 3.2] and [7, Proposition 1.14].

3. – When is Z[a] seminormal?

In view of 2.4 and 2.5, a nonseminormality condition for Z[a] is the follow-
ing : there is some x�Q[a]0Z[a] such that x 2 , x 3 �Z[a] and xM%M, for a
maximal ideal M of Z[a] : indeed, Z[a] is not seminormal if and only if Z[a] c

1 Z[a], or equivalently, if and only if there exists a subring B of the integral
closure of Z[a] such that Z[a] KB is a ramified morphism.
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PROPOSITION 3.1. – Let a be an algebraic integer with minimal polynomial
f (X).

For each maximal ideal Mi 4 (p , fi (X) ) of Z[X] containing f (X), let

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)

be the double Euclidean division of f (X) by fi (X).
Then, Z[a] is not seminormal if and only if there exists a maximal ideal

Mi 4 (p , fi (X) ) of Z[X] containing f (X) such that f (X) �Mi
2 and

b 2 (X)24a(X)c(X) �p 2 Mi .

PROOF. – As we have just seen, Z[a] is not seminormal if and only if there
exists x�Q[a]0Z[a] such that x 2 , x 3 �Z[a] and xPi %Pi , for a maximal ideal
Pi in Z[a]. Such an ideal Pi is the conductor of Z[a] KZ[a , x] where Z[a , x]
is a Z[a]-module generated by 1 and x. Thus, Z[a] is not seminormal if and
only if there exists x�Q[a]0Z[a] such that x 2 �Pi and xPi %Pi , for a maximal
ideal Pi of Z[a]. The condition xPi %Pi is characterized in 2.11, and we have
x4 [ph(a)1 fi (a) k1 (a) ]p 21, under the notations of 2.11; furthermore, we got
in the proof of 2.11 that f i

2 (X) k1 (X) 4 f (X) k(X), where k(X) and f i (X) are co-
prime; then we have k1 (X) 4 k(X) a(X) by (*). We can now write, with new no-
tations: x4 [ph(a)1 fi (a) k(a) a(a) ]p 21, where k(X) and f i (X) are coprime in
Fp [X].

Now consider condition (i): x 2 �Pi . The following statements are equiva-
lent to (i):

(ii) p 2 h 2 (a)12pfi (a) h(a) k(a) a(a)1 f i
2 (a) k 2 (a) a 2 (a) �p 2 Pi ;

(iii) ph 2 (a)12 fi (a) h(a) k(a) a(a)2k 2 (a)a(a)[ fi (a) b1 (a)1pc1 (a) ]�pPi ;

(iv) ph 2 (X) 1 2 fi (X) h(X) k(X) a(X) 2 k 2 (X) a(X)[ fi (X) b1 (X) 1 pc1 (X) ]4
p 2 r(X) + p fi (X) s(X) + t(X) [a(X) fi

2 (X) + p b1 (X) fi (X) + p 2 c1(X) ], wh e r e
r(X), s(X), t(X) �Z[X].

Now, (iv) implies: f i (X) k(X) a(X)[2h(X)2k(X) b1 (X) ] 4 t(X) a(X) f i
2 (X)

in Fp [X], which is equivalent to: k(X)[2h(X)2k(X) b1 (X) ] 4 t(X) f i (X). As
k(X) and f i (X) are coprime, f i (X) divides 2h(X)2k(X) b1 (X) whence 2h(a)2

k(a) b1 (a) �Pi . Since f i
2 (a) a(a) �pPi , we have a(a) fi (a) Pi %pPi (indeed,

pa(a) fi (a) �pPi and a(a) f i
2 (a) �pPi ). So, condition 2h(a)2k(a) b1 (a) �Pi

implies that (i) is equivalent to: ph 2 (a)2pk 2 (a) a(a) c1 (a) �pPi , from which
it follows that h 2 (a)2k 2 (a) a(a) c1 (a) �Pi ; this last condition is equivalent to
f i (X) divides h 2 (X)2k 2 (X) a(X) c1 (X) in Fp [X]. Thus we get from (i) the two
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conditions: f i (X) divides 2h(X)2k(X) b1 (X) and h 2 (X)2k 2 (X) a(X) c1 (X) in
Fp [X]. Hence we have in Fp [X] congruences mod ( f i (X) ):

.
/
´

2h(X) f k(X) b1 (X) ,

h 2 (X) f k 2 (X) a(X) c1 (X) .

Eliminating h(X), these two relations combine to yield: f i (X) divides
k 2 (X)[b1

2 (X)24a(X) c1 (X) ]. Since k(X) and f i (X) are coprime, f i (X) divides
b1

2 (X)24a(X) c1 (X). Then it follows from 2.9 that b1
2 (X)24a(X) c1 (X) �

(p , fi (X) ) and b 2 (X)24a(X) c(X) �p 2 (p , fi (X) ), since b(X) 4pb1 (X) and
c(X) 4p 2 c1 (X). The direct part of the proof is done.

Conversely, assume that there exists a maximal ideal Mi 4 (pi , fi (X) ) in
Z[X] such that f (X) �Mi

2 and b 2 (X)24a(X) c(X) �p 2 Mi . Thus we have by
2.11: b1

2 (a)24a(a) c1 (a) �Pi 4 (p , fi (a) ). Now we have to consider two cases:
p42 and pc2.

l If p42.

Observe that b1
2 (a) �Pi ; it follows that b1 (a) �Pi , since Pi is a prime ideal.

As deg b1 (X) Edeg fi (X), we get b1 (X) �2Z[X] and b1 (a) �2Z[a].
Each element of the finite field K4F2 [X] /( f i (X) ) is a square since the

characteristic of K is 2. Thus there exists h(X) �Z[X] such that h 2 (X)2

c1 (X) a(X) � ( f i (X) ), or equivalently, such that h 2 (a)2c1 (a) a(a) �Pi . Set
x4h(a)1 fi (a) a(a)221. We have x�Z[a], otherwise relation fi (a) a(a) �
2Z[a] implies that f (X) divides f i (X) a(X) in F2 [X], a contradiction by 2.10.
Such an x satisfies xPi %Pi since f i

2 (a) a(a) �2Pi . Furthermore, we have:

x 2 4h 2 (a)1h(a) fi (a) a(a)1 f i
2 (a) a 2 (a)222 4

h(a) fi (a) a(a)1 [h 2 (a)2c1 (a) a(a) ]2a(a) b1 (a) fi (a)221 �Pi ,

since h 2 (a)2c1 (a) a(a) �Pi and b1 (a) �2Z[a]. So, there exists x�Q[a]2

Z[a] such that xPi %Pi and x 2 �Pi . Therefore Z[a] is not seminormal.

l If pc2.

As p is odd, we can write p42n21, where n�N*. Set x4nb1 (a)1

a(a) fi (a)p 21. We obtain x�Z[a] as above, since a(a) fi (a) �pZ[a]; further-
more xPi %Pi because f i

2 (a) a(a) �pPi . Thus we get x 2 4n 2 b1
2 (a)1

2nb1 (a) fi (a) a(a)p 21 1 f i
2 (a) a 2 (a) p 22. But b1

2 (a)24a(a) c1 (a) 4b2 (a) �
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Pi implies

x 2 4n 2 b2 (a)14n 2 a(a) c1 (a)1

2nb1 (a) fi (a) a(a) p 21 1a(a) p 22 [2pb1 (a) fi (a)2p 2 c1 (a)] 4

n 2 b2 (a)1 (4n 2 21) a(a) c1 (a)1 (2n21) p 21 b1 (a) fi (a) a(a) .

Thus p42n21 implies x 2 �Pi and Z[a] is not seminormal.

Next, we give one of our main results, a seminormality criterion for an or-
der Z[a].

THEOREM 3.2. – Let a be an algebraic integer with minimal polynomial
f (X).

For each maximal ideal Mi 4 (p , fi (X) ) of Z[X] containing f (X), let

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)

be the double Euclidean division of f (X) by fi (X).
Then Z[a] is seminormal if and only if b 2 (X)24a(X) c(X) �p 2 Mi for

each prime p�Z and fi (X) for which f (X) �Mi
2.

PROOF. – We know that integral closedness implies seminormality. Z[a] is
seminormal if and only if the conditions of 3.1 are not fulfilled, that is to say,
for each maximal ideal (p , fi (X) ) in Z[X], either f (X) � (p , fi (X) )2 or f (X) �
(p , fi (X) )2 and b 2 (X)24a(X) c(X) �p 2 (p , fi (X) ). If we have f (X) �
(p , fi (X) )2 for each maximal ideal (p , fi (X) ) in Z[X], apply 1.1 to get that Z[a]
is integrally closed.

COROLLARY 3.3. – Let R be a Dedekind domain and a be an element of
some integral domain which contains R where a is integral over R. Let
f (X) �R[X] be the minimal polynomial of a. For each maximal ideal Mi 4

(P , fi (X) ) in R[X] containing f (X), let

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)

be the double Euclidean division of f (X) by fi (X) in R[X] and let p�P be such
that PRP 4pRP . Then R[a] is seminormal if and only if, for each maximal
ideal Mi 4 (P , fi (X) ) in R[X] such that f (X) �Mi

2 , we have:

l 2 �P implies b 2 (X)24a(X) c(X) �P 2 Mi ,

l 2 �P implies b(X) �P 2 R[X] or p 22 a(X)c(X) is not a quadratic
residue mod (Mi )P .
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PROOF. – By 2.16, R[a] is not seminormal if and only if there exists a maxi-
mal ideal P in R such that RP [a] is not seminormal. As far as the PID property
of the ring Z is used we can go back to the proof of 3.1 since RP is a principal
domain. If RP [a] is not seminormal, by the first part of the proof of 3.1, there
exists a maximal ideal (Mi )P 4 (p , fi (X) ) in RP [X], where Mi 4 (P , fi (X) ) is a
maximal ideal in R[X], such that f (X) � (Mi )P

2 and b 2 (X)24a(X) c(X) �
p 2 (Mi )P OR[X] 4P 2 Mi . Moreover, we have b(X) 4pb1 (X) and c(X) 4

p 2 c1 (X), with b1 (X), c1 (X) �RP [X]. So we get b1
2 (X)24a(X) c1 (X) � (Mi )P .

Following the notations of the proof of 3.1, we still have in RP /PRP [X] the con-
gruence h 2 (X) f k 2 (X) a(X) c1 (X) mod ( f i (X) ).

If 2 �P, condition b 2 (X)24a(X) c(X) �P 2 Mi implies b 2 (X) �P 2 Mi , since
c(X) �Mi . Because we can write b(X) 4pb1 (X) in RP [X], we get b1

2 (X) �
(Mi )P . As in the proof of 3.1, we get then b1 (X) �pRP [X], which implies
b(X) �p 2 RP [X]OR[X] 4P 2 R[X].

Conversely, let us assume that there exists a maximal ideal MiP 4

(p , fi (X) ) in RP [X] such that f (X) � (Mi )P
2 and such that:

– if 2 �P, then b 2 (X)24a(X) c(X) �P 2 Mi ,

– if 2 �P, then b(X) �P 2 R[X] and p 22 a(X) c(X) is a quadratic residue
mod (Mi )P .

l If 2 �P, we get that 2 and p are coprime in RP . Hence we can write
2n1mp41, with n , m�RP and the proof of 3.1 is again valid with
x4nb1 (a)1a(a) fi (a)p 21.

l If 2 �P, as R/P is not necessarily a finite field with characteristic 2,
any element may not be a quadratic residue mod (Mi )P. Anyway, we can set
2 4pn , n�RP. If a(X) c1 (X) 4a(X) c(X)p 22 is a quadratic residue mod
(Mi )P , there exists h(X) �RP [X] such that h 2 (X)2c1 (X) a(X) � ( f i (X) ) in
RP /PRP [X]. Moreover, we have b1 (X) �pRP [X] since b(X) �P 2 R[X]. We take
then x4h(a)1 fi (a) a(a) p 21 and we end the proof as in 3.1.

So we get the following result:
R[a] is not seminormal if and only if there exists a maximal ideal Mi 4

(P , fi (X) ) in R[X] such that f (X) �Mi
2 and such that:

– if 2 �P, then b 2 (X)24a(X) c(X) �P 2 Mi

– if 2 �P, then b(X) �P 2 R[X] and p 22 a(X) c(X) is a quadratic
residue mod (Mi )P .

Then the seminormality criteria follows immediately.

REMARK. – If 2 is a unit in R or if R/P is a finite field for each maximal ideal
P in R containing 2, we recover the condition of 2.2.
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4. – When is Z[a] t-closed?

As in the previous section, we begin to give conditions for Z[a] not to be t-
closed. By 2.3, Z[a] is not t-closed if and only if Z[a] c

tZ[a], or equivalently,
Z[a] K tZ[a] is composed only of ramified or decomposed minimal morphisms
(by 2.5). So, it follows from 2.4 that Z[a] is not t-closed if and only if there
exists a subring B of the integral closure of Z[a] such that Z[a] KB is a rami-
fied or a decomposed morphism. Hence, we deduce from 2.4 that Z[a] is not t-
closed if and only if there is some x�Q[a]0Z[a] and a maximal ideal P of Z[a]
with xP%P, where P is the conductor of Z[a] KZ[a , x], such that:

(1) either x 2 , x 3 �Z[a],

(2) or x 2 2x , x 3 2x 2 �Z[a].

Condition (1) means that Z[a] is not seminormal and is 3.1.
Thus we are aiming to give a necessary and sufficient condition for the ex-

istence of x�Q[a]0Z[a] and a maximal ideal P of Z[a] such that xP%P and x
satisfies (2).

LEMMA 4.1. – Let a be an algebraic integer with minimal polynomial f(X).
For each maximal ideal Mi 4 (p , fi (X) ) of Z[X] containing f (X), let

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)

be the double Euclidean division of f (X) by fi (X).
Then, there exist x�Q[a]0Z[a] and a maximal ideal Mi 4 (p , fi (X) ) of

Z[X] containing f (X) such that x(p , fi (a) )% (p , fi (a) ) and x 2 2x� (p , fi (a) )
if and only if f (X) �Mi

2 and:

– if pc2, [b 2 (X)24a(X) c(X) ]p 22 is a nonzero quadratic residue mod Mi .

– if p42, b(X) �4Z[X] and there exists h(X) �Z[X] such that

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4Mi .

PROOF. – For a maximal ideal Mi 4 (p , fi (X) ) of Z[X], let Pi be the maximal
ideal (p , fi (a) ) of Z[a]. As in 3.1, the condition xPi %Pi , for x�Q[a]0Z[a]
gives x4 [ph(a)1 fi (a) k(a) a(a) ]p 21, where k(X) and f i (X) are coprime in
Fp [X], so that fi (a) k(a) a(a) �pZ[a]. The following statements are equiva-
lent:

(i) x 2 2x�Pi ,

(ii) p[h 2 (a) 2 h(a) ] 1 fi (a) k(a) a(a)[2h(a) 2 1] 2 k 2 (a) a(a)[b1 (a) fi (a) 1

pc1 (a) ] �pPi ,
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(iii) p[h 2(X) 2 h(X)] 1 fi(X) k(X) a(X)[2h(X) 2 1] 2 k 2(X) a(X)[b1(X) fi (X) 1

pc1 (X) ] 4p 2 a2 (X)1pfi (X) b2 (X)1c2 (X) f (X), with a2 (X), b2 (X), c2 (X) �Z[X].

Then (iii) implies in Fp [X] the relation:

f i (X) k(X) a(X)[2h(X)212k(X) b1 (X) ] 4 c2 (X) f i
2 (X) a(X)

so that: k(X)[2h(X)212k(X) b1 (X) ] 4 c2 (X) f i (X). But, as k(X) and f i (X) are
coprime, we get the following condition

f i (X) divides 2h(X)212k(X) b1 (X) ( † )

Thus, 2h(a)212k(a) b1 (a) �Pi allows us to write:

2h(a)212k(a) b1 (a) 4pa3 (a)1 fi (a) b3 (a) , with a3 (X), b3 (X) �Z[X] .

So (ii) implies p[h 2 (a)2h(a) ]1 fi (a) k(a) a(a)[pa3 (a)1 fi (a) b3 (a) ]2

pk 2 (a) a(a) c1 (a) �pPi which gives h 2 (a)2h(a)2k 2 (a) a(a) c1 (a) �Pi and
then

f i (X) divides h 2 (X)2h(X)2k 2 (X) a(X) c1 (X) ( †† ) .

To sum up, (i) implies († ) and (†† ). To carry on the direct part of the proof
we have to consider two cases.

– If p42, condition († ) becomes : f i (X) divides 11k(X) b1 (X). So, f i (X)
and b1 (X) are coprime, b(X) �4Z[X] and we get:

(††) ¨ f i (X) divides b1
2 (X)[h 2 (X)1h(X) ]2a(X) c1 (X)

¨ there exists h(X) �Z[X]
such that b1

2 (X)[h 2 (X)1h(X) ]2a(X) c1 (X) � (2 , fi (X) )

¨ there exists h(X) �Z[X]
such that b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4(2 , fi (X) ).

– If pc2, as in 3.1, set p42n21. Eliminating h(X) between († ) and
( †† ), we get that († ) ` f i (X) divides h(X)2n[11k(X) b1 (X) ] and this last
condition combines with (†† ) to give the following equivalent conditions to
( †† ):

l f i (X) divides n 2 [112k(X) b1 (X)1k 2 (X) b1
2 (X) ]2n[11

k(X) b1 (X) ]2k 2 (X) a(X) c1 (X)

l f i (X) divides n 22n1(2n21) nk(X) b1 (X)1k 2 (X)[n 2 b1
2 (X)2

a(X) c1 (X) ].

l f i (X) divides 4(n 2 2n)14k 2 (X)[n 2 b1
2 (X)2a(X) c1 (X) ],

l f i (X) divides k 2 (X)[b1
2 (X)24a(X) c1 (X) ]21.
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Now, bearing in mind that k(X) and f i (X) are coprime, we observe that
there exists k1 (X) such that f i (X) divides k(X) k1 (X)21. Therefore, we get
that (†† ) is equivalent to

f i (X) divides b1
2 (X)24a(X) c1 (X)2k1

2 (X) ,

which implies b1
2 (X)24a(X) c1 (X) 4 [b 2 (X)24a(X) c(X) ] p 22 is a nonzero

quadratic residue mod (p , fi (X) ).

Conversely, let us assume that the conditions of 4.1 are fulfilled.
If pc2 and if there exists k1 (X) �Z[X]0(p , fi (X) ) such that

[b 2 (X)24a(X) c(X) ]p 22 2k1
2 (X) � (p , fi (X) )

we have b1
2 (a)24a(a) c1 (a)2k1

2 (a) �Pi .
Consider h(X) 4n[11k(X) b1 (X) ], with k(X) k1 (X)21 � (p , fi (X) ), since

k1 (X) and f i (X) are coprime. By the direct part of the proof, we get:

h 2 (X)2h(X)2k 2 (X) a(X) c1 (X) � (p , fi (X) ) ;

setting x4h(a)1 fi (a) k(a) a(a) p 21, we have: x�Z[a], x 2 2x�Pi and xPi %
Pi , since 2h(X)212k(X) b1 (X) � (p , fi (X) ) .

If p42, assume that b(X) �4Z[X] and that there exist h(X) �Z[X] such
that b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4(2 , fi (X) ) and k(X) �Z[X] such that
k(X) b1 (X)21 � (2 , fi (X) ). Then, for x4h(a)1 fi (a) k(a) a(a)221 , we still
have x�Q[a]0Z[a] such that xPi %Pi and x 2 2x�Pi and we are done.

PROPOSITION 4.2. – Let a be an algebraic integer with minimal polynomial
f (X).

For each maximal ideal Mi 4 (p , fi (X) ) of Z[X] containing f (X), let

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)

be the double Euclidean division of f (X) by fi (X).
Then, Z[a] is not t-closed if and only if there exists a maximal ideal Mi 4

(p , fi (X) ) of Z[X] such that f (X) �Mi
2 and:

(a) if pc2, [b 2 (X)24a(X) c(X) ]p 22 is a quadratic residue mod
Mi .

(b) if p42, b(X) �4Z[X] , or there exists h(X) �Z[X] such that

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4Mi .
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PROOF. – Come back to the beginning of this section. We have seen that
Z[a] is not t-closed if and only if there exist some x�Q[a]0Z[a] and a maxi-
mal ideal P of Z[a] with xP%P such that:

(1) either x 2 , x 3 �Z[a],

(2) or x 2 2x , x 3 2x 2 �Z[a].

If (1) is satisfied, Z[a] is not seminormal and there exists, by 3.1, a maximal
ideal Mi 4 (p , fi (X) ) of Z[X] such that f (X) �M 2

i and b 2 (X)24a(X) c(X) �
p 2 Mi , that is to say, [b 2 (X)24a(X) c(X) ]p 22 �Mi .

If (2) is satisfied, P is the conductor of Z[a] KZ[a , x] and x 3 2x 2 �Z[a]
implies x 2 2x�P; we are then under the assumption of 4.1 and we get
f (X) �Mi

2 .
If pc2, with the notations of 4.1, we get that [b 2 (X)24a(X) c(X) ] p 22 is a

nonzero quadratic residue mod Mi. But, [b 2 (X)24a(X) c(X) ] p 22 �Mi implies
[b 2 (X)24a(X) c(X) ] p 22 is a zero quadratic residue mod Mi .

Hence in any case [b 2 (X)24a(X) c(X) ]p 22 is a quadratic residue mod Mi .
If p42, and if (1) is satisfied, we still have [b 2 (X)24a(X) c(X) ]222 �Mi 4

(2 , fi (X) ), with f (X) �Mi
2 . Remember that this last condition implies b1

2 (X)2

4a(X) c1 (X) �Mi , where b(X) 42b1 (X) and c(X) 44c1 (X); this implies that
b1 (X) �2Z[X].

If (2) is satisfied, we have seen in 4.1 that b(X) �4Z[X] and that there
exists h(X) �Z[X] such that b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4Mi .

Conversely, let us assume the conditions of 4.2 are fulfilled. Let Mi 4

(p , fi (X) ) be a maximal ideal of Z[X] such that f (X) �Mi
2 and satisfying (a) or

(b):

(a) If pc2 then [b 2 (X)24a(X) c(X) ]p 22 is a quadratic residue mod Mi .
If this quadratic residue is nonzero, by 4.1, there exists x�Q[a]0Z[a] such
that x 2 2x�Pi 4 (p , fi (a) ), with xPi %Pi . This implies x 3 2x 2 �Z[a] and
Z[a] is not t-closed.

If [b 2 (X)24a(X) c(X) ]p 22 �Mi , then Z[a] is not seminormal in view of
3.1, whence is not t-closed.

(b) If p42 and b(X) �4Z[X], then b 2 (X)24a(X) c(X) �4Mi and Z[a] is
still not t-closed.

If p42 and b(X) �4Z[X], there exists h(X) �Z[X] such that

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4Mi

then it follows again that Z[a] is not t-closed by 4.1.
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REMARKS.

(1) If f (X) � (p , f i (X) )2 is such that f i
3 (X) divides f (X) in Fp [X], we can ob-

serve that for any prime integer p, the conditions of 4.2 are fulfilled:

Indeed f i (X) divides a(X) whence a(X) � (p , fi (X) ).

If pc2, the condition «b1
2 (X)24a(X) c1 (X) is a quadratic residue mod

(p , fi (X) )» is always satisfied.

If p42, the condition « b(X) �4Z[X] or there exists h(X) �Z[X] such that
b1

2 (X)[h 2 (X)1h(X) ]2a(X) c1 (X) � (2 , fi (X) )» is satisfied, since we can
choose h(X) 40 if b(X) �4Z[X].

(2) The map z O z 2 1z is an additive group endomorphism of
F2 [X] /( f i (X) ), the kernel of which is ]0, 1(. Since this map is not surjective,
for a given k 2 (X) a(X) c1 (X) �F2 [X], there is not always h(X) �F2 [X] such
that (†† ) is satisfied; nevertheless half of the elements of F2 [X] /( f i (X) ) can be
written z 2 1z, with z�F2 [X] /( f i (X) ).

We are now able to give a characterization for Z[a] to be t-closed.

THEOREM 4.3. – Let a be an algebraic integer with minimal polynomial
f (X).

For each maximal ideal Mi 4 (p , fi (X) ) of Z[X] containing f (X), let

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)

be the double Euclidean division of f (X) by fi (X).
Then Z[a] is t-closed if and only if, for each maximal ideal Mi 4

(p , fi (X) ) for which f (X) �Mi
2, we have:

– if pc2, [b 2 (X)24a(X) c(X) ] p 22 is not a quadratic residue mod
Mi ( ‡ ).

– if p42 , b(X) �4Z[X] and, for each h(X) �Z[X] , we have:

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �4Mi ( ‡‡ ) .

Moreover, if Z[a] is t-closed, for each maximal ideal Mi 4 (p , fi (X) ) for
which f (X) �Mi

2, we have f (X) � ( f i
3 (X) ) in Fp [X].

PROOF. – The proof is similar to the proof of 3.2.

REMARK. – Set K4Fp [X] /( f i (X) ) and denote by p(x) the residue class of
x�Z[X]. Then:

If pc2, condition (‡ ) is equivalent to: Y 2 2p[(b 2 (X)24a(X) c(X) )p 22 ]
is irreducible in K[Y].
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If p42, condition (‡‡ ) is equivalent to: (Y 2 1Y) p(b 2 (X)222 )2

p(a(X) c(X)222 ) is irreducible in K[Y].

PROPOSITION 4.4. – Let Z[a] be a t-closed, non integrally closed ring, with
integral closure Z[a]. There exist P�Spec (Z[a] ) and Q�Spec (Z[a]) lying
over P, such that [Z[a] /Q : Z[a] /P] is even.

PROOF. – Remark 2.12 (1) shows that there is some x� Z[a]0Z[a] satisfy-
ing a quadratic relation over Z[a]. Denote by A (resp. B) the ring Z[a] (resp.
Z[a , x]). We have seen that there exists a maximal ideal P in A such that xP%
P : in fact, P is the conductor of t-closed minimal morphism AKB since A is a
t-closed ring [6, Remark 2 of Definition 3.1]. Thus, P is a maximal ideal in B by
[6, Theorem 3.15] and B/P4 (A/P)[x] is a two-dimensional vector space over
A/P. As AK Z[a] is a finite (order) morphism, we get the result.

REMARK. – Assume that A4Z[a] is not integrally closed, with integral clo-
sure A. Then there exists an element x� A0A which is a zero of a monic poly-
nomial f (X) �A[X] with degree 2:

– if Z[a] is t-closed, the result is given by 4.4,

– if Z[a] is not t-closed, the result is given by 2.5.

We recall that an integral domain A is quadratically integrally closed if
x 2 1ax1b40, for x in the quotient field of A and a , b�A, implies x�A
[2].

This implies the following result:

PROPOSITION 4.5. – Let a be an algebraic integer. Then, Z[a] is quadrati-
cally integrally closed if and only if it is integrally closed.

PROOF. – Obviously, an integrally closed ring is quadratically integrally
closed. Conversely, assume that Z[a] is quadratically integrally closed and
not integrally closed. By 2.11 and Remark 2.12 (1), there exists x�Q[a]0Z[a]
satisfying a quadratic (integral) relation over Z[a], i.e., there exist
a(a), b(a) �Z[a] such that x 2 1a(a) x1b(a) 40. Then, the assumption on
Z[a] implies x�Z[a], a contradiction. Therefore, Z[a] is integrally
closed.

COROLLARY 4.6. – Let R be a Dedekind domain and a be an element of
some integral domain which contains R where a is integral over R. Let
f (X) �R[X] be the minimal polynomial of a . For each maximal ideal Mi 4

(P , fi (X) ) in R[X] containing f (X), let

f (X) 4a(X) f i
2 (X)1b(X) fi (X)1c(X)
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be the double Euclidean division of f (X) by fi (X) in R[X] and let p�P be such
that PRP 4pRP . Then R[a] is t-closed if and only if, for each maximal ideal
Mi 4 (P , fi (X) ) in R[X] such that f (X) �Mi

2 , we have:

l 2 �P implies [b 2 (X)24a(X) c(X) ]p 22 is not a quadratic residue
mod (Mi )P

l 2 �P implies:

– if b(X) �P 2 R[X] , then b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �P 2 Mi for
each h(X) �R[X]

– if b(X) �P 2 R[X] , then, p 22 a(X) c(X) is not a quadratic residue mod
(Mi )P .

PROOF. – By 2.16, R[a] is not t-closed if and only if there exists a maximal
ideal P in R such that RP [a] is not t-closed. Then, there exists a maximal ideal
in RP [X], of the form (Mi )P , where Mi 4 (P , fi (X) ) is a maximal ideal in R[X]
such that f (X) � (Mi

2 )P .
Following the proof of 4.3, we begin to give conditions for the existence of

an element x in the integral closure of RP [a] such that x 2 2x or x 2 � (Pi )P and
x(Pi )P % (Pi )P , where Pi 4 (P , fi (a) ) is a maximal ideal in R[a]. We get then
(Pi )P 4 (p , fi (a) ) in RP [a], where p�P is such that PRP 4pRP .

Condition x 2 2x� (Pi )P is the same as the one get in 4.1, considering the
cases 2 �P and 2 �P instead of p42 and pc2. Now, we have seen in 3.3 that,
if 2 �P, there exists x in the integral closure of RP [a] such that x 2 � (Pi )P and
x(Pi )P % (Pi )P if and only if b(X) �P 2 R[X] and a(X) c(X)p 22 is a quadratic
residue mod (Mi )P . When 2 �P, the condition of non t-closedness of RP [a]
gotten in 4.2 for p42 is changed into one of the two following condi-
tions:

«b(X) �P 2 RP [X] and there exists h(X) �RP [X] such that

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �p 2 (Mi )P »

or

«b(X) �P 2 RP [X] and p 22 a(X) c(X) is a quadratic residue mod (Mi )P » .

We get then the two following conditions for t-closedness of RP [a], when
2 �P:

«b(X) �P 2 RP [X] or b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �p 2 (Mi )P

for each h(X) �RP [X]»
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and

«b(X) �P 2 RP [X] or p 22 a(X) c(X) is not a quadratic residue mod (Mi )P » .

Hence it results that RP [a] is t-closed, when 2 �P, if and only if the two fol-
lowing conditions are satisfied:

«b(X) �P 2 RP [X] implies that for each h(X) �RP [X] we have

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �p 2 (Mi )P »

and

«b(X) �P 2 RP [X] implies that p 22 a(X) c(X)

is not a quadratic residue mod (Mi )P ».

In fact, the condition

for each h(X) �RP [X] we have b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �p 2 (Mi )P

is equivalent to:

for each h(X) �R[X] we have b 2 (X)[h 2 (X)1h(X) ]2a(X)c(X) �P 2 Mi .

Indeed, we have seen in 3.3 that p 2 (Mi )P OR[X] 4P 2 Mi . So, if h(X) �R[X] is
such that

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �p 2 (Mi )P

we get then b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �P 2 Mi . Conversely, assume
that for each h(X) �R[X], we have b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) �P 2 Mi

and let g(X) �RP [X]. Thanks to the isomorphism R/PCRP /PRP , there exists
h(X) �R[X] such that g(X) 4h(X)1pk(X), where k(X) �RP [X]. Now

b 2 (X)[h 2 (X)1h(X) ]2a(X) c(X) 4p 2 [b1
2 (X)[ g 2 (X)1g(X) ]2a(X) c1 (X) ]1

p 2 b1
2 (X)[p 2 k 2 (X)22pg(X) k(X)2pk(X) ] �p 2 (Mi )P .

But p 2 b1
2 (X)[p 2 k 2 (X)22pg(X) k(X)2pk(X) ] �p 2 (Mi )P implies

b1
2 (X)[ g 2 (X)1g(X) ]2a(X) c1 (X) � (Mi )P

and then b 2 (X)[ g 2 (X)1g(X) ]2a(X) c(X) �p 2 (Mi )P .
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5. – Application to simple cubic orders.

H. Tanimoto [11, Theorem 2.3, Theorem 4.4 and Theorem 5.1], D. Dobbs
and M. Fontana [3, Theorem 2.5 and Corollary 4.5] obtained characterizations
for a quadratic order to be integrally closed, quasinormal or GPVD (which is
equivalent to be t-closed in our situation) or seminormal. Their results can be
deduced from 2.12, 3.2 and 4.3. Now we study the situation for another special
class of algebraic orders : a cubic order Z[a], where a is a zero of the irre-
ducible polynomial f (X) 4X 3 1aX1b (in Z[X]).

Let p be a prime integer. The decomposition in Fp [X] of f (X) into monic ir-
reducible polynomials f i (X) give f (X) 4» f i

ei (X), with an index ei such that
ei F2 if and only if f (X) has a multiple zero, that is to say if and only if p di-
vides the discriminant D42(4a 3 127b 2 ) of f (X).

PROPOSITION 5.1. – Let a be an algebraic integer with minimal poly-
nomial

f (X) 4X 3 1aX1b�Z[X] .

Then, Z[a] is integrally closed if and only if, for each prime integer p divid-
ing the discriminant D42(4a 3 127b 2 ) of f (X), we have:

– if p42, 3 or divides both a and b, then p 2 does not divide
f (a2b),

– for all other p dividing D, then p 2 does not divide D.

PROOF. – We know by 2.13 that Z[a] is integrally closed if and only if, for
each prime integer p and each monic irreducible divisor f i (X) of X 3 1aX1b
in Fp [X], we have X 3 1aX1b� (p , fi (X) )2, where fi (X) is a monic polynomial
in Z[X] with residue f i (X) in Fp [X].

If deg f i (X) F2, we get X 3 1aX1b� (p , fi (X) )2, since f i
2 (X) cannot di-

vide f (X).
Hence it is enough to consider the case deg f i (X) 41, i.e., f i (X) 4X2a1.

Then a1 �Z, with residue a1 �Fp , satisfies the relation f (a1 ) 4a1
3 1aa1 1b�

pZ. With definition 2.10, we obtain f (X) 4 (X2a1 )2 (X12a1 )1 (X2a1 ) k1

f (a1 ), where k4 f 8 (a1 ) 43a1
2 1a, that is:

f (X) 4 (X2a1 )2 (X12a1 )1 (X2a1 )(3a1
2 1a)1 f (a1 ) (*) .

Consider the relation f (X) � (p , X2a1 )2, which is equivalent to

(X2a1 ) f 8 (a1 )1 f (a1 ) � (p , X2a1 )2 ,

and also, after an easy calculation, to f 8 (a1 ) �pZ (**) and f (a1 ) �p 2 Z (***).
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Then, for such an a1 �Z, we have in Fp :

.
/
´

a1
3 1aa1 1b 4 0

3a1
2 1a 4 0

,(S)

where the last condition is equivalent to (**), which implies D 42

4a 3 127b 2 4 0 in Fp . Conversely, if D 4 0 in Fp , there exists a1 �Z satisfy-
ing (S).

Now, if p is a prime integer such that p divides D, there exists a1 �Z
satisfying (S).

– If p42, 3 or divides both a and b, relation (S) is fulfilled by a1 4a2b.
So, f (X) � (p , X2a1 )2 if and only if p 2 divides (a2b)3 1a(a2b)1b.

– If pc2, 3 and does not divide both a and b, relation (S) yields
2aa1 13b 4 0 in Fp ; thus we get a1 42(3b)(2a)21. Furthermore, we can write
a1

3 1aa1 1b4np and 3a1
2 1a4mp, with n , m�Z. Thus, we observe that:

2D44a 3 127b 2 44m 3 p 3 19p 2 (3n 2 26nma1 2a1
2 m 2 )1108a1

3 pn .

As 3a1
2 42a in Fp , we get that p does not divide a1 . So, f (a1 ) �p 2 Z if and only

if p divides n, or also, if and only if p 2 divides D.
To sum up, for a1 �Z such that f (a1 ) �pZ, the following conditions are

equivalent:

l f (X) � (p , X2a1 )2 ,

l f (a1 ) �p 2 Z or f 8 (a1 ) �pZ ,

l either a1 is not a multiple zero of f (X) in Fp [X] or a1 is a multiple zero
of f (X) in Fp [X] (and, in this case, p divides D) and f (a1 ) �p 2 Z ,

l either a1 is not a multiple zero of f (X) in Fp [X] or p divides D
and

– if p42, 3 or divides both a and b, then p 2 does not divide (a2b)3 1

a(a2b)1b ,

– for all other p dividing D, then p 2 does not divide D.

Thus the result is gotten.

REMARK. – We have shown, under suitable assumptions (D is coprime
to 2, 3, a and b), a noteworthy converse to the well known result: if
the discriminant of an integral ring extension A of Z is square-free, then
A is integrally closed (see for instance [9, 5.3, Proposition 1]). Let a
be an algebraic integer with minimal polynomial f (X) 4X 3 1aX1b�Z[X].
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If the discriminant D of f (X) is coprime to 2, 3, a and b and Z[a] is
integrally closed, then D is square-free.

EXAMPLE. – Let a be an algebraic integer with minimal polynomial X 3 1

2X12 (an irreducible polynomial by Eisenstein’s criterion). Here a4b42, so
D42140 4273534. Then, 25 and 49 does not divide D, 2 divides D, but 4
does not divide (a2b)3 1a(a2b)1b42. So, Z[a] is integrally closed al-
though 4 divides D.

PROPOSITION 5.2. – Let a be an algebraic integer with minimal poly-
nomial

f (X) 4X 3 1aX1b�Z[X] .

Then, Z[a] is t-closed if and only if for each prime integer p dividing the
discriminant D42(4a 3 127b 2 ) of f (X), conditions (1) and (2) are veri-
fied:

(1) if pc2, 3, does not divide both a and b and if p 2 divides D, we have
Dp 22 is not a quadratic residue mod (p).

(2) if p42, 3 or divides both a and b and if p 2 divides f (a2b), then p4

2 and 8 divides neither f (a2b) nor 2 f 8 (a2b) (or, equivalently 4 divides
a11).

PROOF. – Let us assume that Z[a] is not integrally closed. So, with the no-
tations of 4.3, there must be a prime p and fi (X) �Z[X] such that f (X) �
(p , fi (X) )2 . According to the proof of 5.1, we must have deg f i (X) 41, so that
fi (X) 4X2a1 and a1 is a multiple root of f (X) in Fp [X].

As we get f (X) 4 (X2a1 )2 (X12a1 )1 (X2a1 )(3a1
2 1a)1 f (a1 ), it follows

from 4.3 that Z[a] is t-closed if and only if, for each prime p�Z and fi (X) for
which f (X) � (p , fi (X) )2, we have:

– if pc2, [(a13a1
2 )2 24(X12a1 ) f (a1 ) ]p 22 is not a quadratic residue

mod (p , X2a1 ) ( ‡ ),

– if p42, a13a1
2 �4Z and, for each h(X) �Z[X], we get:

(a13a1
2 )2 [h 2 (X)1h(X) ]2 (X12a1 ) f (a1 ) �4(2 , X2a1 ) ( ‡‡ ) .

For pc2, condition (‡) is equivalent to:

(h(X) �Z[X] , (a13a1
2 )2 212a1 f (a1 )2p 2 h 2 (X) �p 2 (p , X2a1 ) .
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But, we can write h(X) 4 (X2a1 ) g(X)1k , k�Z. So, we have

( ‡ ) ` (k�Z , (a13a1
2 )2 212a1 (a1

3 1aa1 1b)2k 2 p 2 �p 3 Z

` (k�Z , a 2 23a1
4 26aa1

2 212a1 b2k 2 p 2 �p 3 Z .

As p 2 divides D, we can write D42(4a 3 127b 2 ) 42rp 2, with r�Z, and
2aa1 13b4sp, with s�Z, since a1 is such that 2aa1 13b 4 0 in Fp .

Moreover, if pc3 and does not divide a and b, we get then:

( ‡ ) ` (k�Z , 16a 4 (a 2 23a1
4 26aa1

2 212a1 b2k 2 p 2 ) �p 3 Z

` (k�Z , 16a 6 23(sp23b)4 224a 3 (sp23b)2 2

96a 3 b(sp23b)216a 4 k 2 p 2 �p 3 Z

` (k�Z , (4a 3 127b 2 )(26s 2 p 2 112spb14a 3 29b 2 )216a 4 k 2 p 2 �p 3 Z

` (k�Z , r(4a 3 29b 2 )2k 2 �pZ , since 4a 2 is invertible in Fp

` (k�Z , 236b 2 r2k 2 �pZ since 4a 3 127b 2 �pZ

`(k�Z , 2r2k 2 �pZ since6b is invertible in Fp .

So (‡ ) is equivalent to 2(4a 3 127b 2 )p 22 4Dp 22 is not a quadratic residue
modulo p.

If p43, we know that 9 divides f (a1 ) so that 12a1 (a1
3 1aa1 1b) �27Z.

In the same way, if p divides both a and b, we obtain that p 2 divides f (a1 )
and we have seen in 5.1 that we can choose a1 40.

In these two cases, (‡ ) is equivalent to (a13a1
2 )2 p 22 is not a quadratic

residue mod (p), a contradiction. So, we cannot have p43 or p divides both a
and b.

If p42, the same argumentation for h(X) shows that condition (‡‡ ) is
equivalent to: for each k�Z , (a13a1

2 )2 (k 2 1k)23a1 f (a1 ) �8Z and a1

3a1
2 �4Z. But, since 2 divides a13a1

2 and k 2 1k for each k�Z, condition (‡‡ )
is equivalent to a1 f (a1 ) and 2 f 8 (a1 ) �8Z. Furthermore, we have only to con-
sider the case where f (X) � (2 , X2a1 )2, which, by the proof of 5.1, is equiva-
lent to 2 divides D and 4 divides f (a1 ). So, it implies that a is odd, 4 divides a1

1, and a1 f (a1 ) �8Z is then equivalent to (a2b)3 1a(a2b)1b�8Z. Con-
versely, this last condition, combined with 4 divides a11 implies (‡‡ ) and the
proof of the proposition is done.

EXAMPLE. – Consider f (X) 4X 3 18X11. Since f (X) has no zero in F3 , we
get that f (X) is irreducible in Z[X]. Let a be a zero of f (X) and consider Z[a].
The discriminant of f (X) is D42(2048127) 422075 4225383. By 5.1, we
get that Z[a] is not integrally closed. The only prime p such that p 2 divides D
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is 5, and 5 c3, 2, divides neither 8 nor 1. As we have 2(4a 3 127b 2 )522 42

83 f2 mod (5) and as 2 is not a quadratic residue modulo 5, then Z[a] is
t-closed.

PROPOSITION 5.3. – Let a be an algebraic integer with minimal poly-
nomial

f (X) 4X 3 1aX1b�Z[X] .

Then, Z[a] is seminormal if and only if for each prime integer p dividing the
discriminant D42(4a 3 127b 2 ) of f (X), conditions (1) and (2) are veri-
fied:

(1) if pc2, 3, does not divide both a and b and if p 2 divides the discrim-
inant D, we have that p 3 does not divide D.

(2) if p42, 3 or divides both a and b and if p 2 divides f (a2b), then
f 8 (a2b) �p 2 Z.

PROOF. – Let us assume that Z[a] is not integrally closed. So, with the no-
tations of 3.2, there must be a prime p�Z and fi (X) �Z[X] such that f (X) �
(p , fi (X) )2. According to the proof of 5.1, we must have deg f i (X) 41, so that
fi (X) 4X2a1 and a1 is a multiple root of f (X) in Fp [X].

As we get f (X) 4 (X2a1 )2 (X12a1 )1 (X2a1 )(3a1
2 1a)1 f (a1 ), the fol-

lowing conditions are equivalent:

l Z[a] is seminormal,

l according to 3.2, for each prime integer p and each fi (X) �Z[X] for
which f (X) � (p , fi (X) )2, we have b 2 (X)24a(X) c(X) �p 2 (p , fi (X) ) ,

l for each prime integer p and a1 �Z for which f (X) � (p , X2a1 )2, we
have (a13a1

2 )2 24(X12a1 ) f (a1 ) �p 2 (p , X2a1 ),

l p 3 does not divide (a13a1
2 )2212a1 (a1

31aa11b) for each prime inte-
ger p and a1�Z for which f(X) � (p , X2a1 )2, that is such that p divides D.

Consider a prime integer p dividing D.

– if pc2, 3, does not divide both a and b and is such that p 2 divides D,
we get: p 3 does not divide (a13a1

2 )2 212a1 (a1
3 1aa1 1b) if and only if p 3 does

not divide 16a 4 [ (a13a1
2 )2 212a1 (a1

3 1aa1 1b) ] if and only if (4a 3 2

9b 2 )(4a 3 127b 2 ) �p 3 Z by using notation and calculation of 5.2.
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But 4a 3 29b 2 4 (4a 3 127b 2 )236b 2 and 4a 3 127b 2 �p 2 Z. So, the following
conditions are equivalent:

l (4a 3 29b 2 )(4a 3 127b 2 ) �p 3 Z ,

l 236b 2 (4a 3 127b 2 ) �p 3 Z ,

l 4a 3 127b 2 �p 3 Z, since pc2, 3 and does not divide b.

Thus we obtain (1).

– if p42, 3 or divides both a and b, we have seen in 5.1 that we can choose
a1 4a2b. In any case, p 2 divides f (a1 ), and, if p42, 3 or divides both a and b,
then p 3 divides 12a1 f (a1 ); then p 3 does not divide (a13a1

2 )2 212a1 (a1
3 1

aa1 1b) is equivalent to p 3 does not divide (a13a1
2 )2, which is equivalent to p 2

does not divide a13a1
2 4a13(a2b)2.

EXAMPLE. – Consider f (X) 4X 3 12X14. As f (X) has no zero in F5 , f (X) is
irreducible in Z[X]. Let a be a zero of f (X) and consider Z[a]. The discrimi-
nant of f (X) is D42(32127316) 4216329. So, p42 is the only prime
such that p 2 divides D. Here, 8 divides f (a2b) 428; thus Z[a] is not t-closed
by 5.2 . But, f 8 (a2b) 414 �4Z, so Z[a] is seminormal.

REMARKS. – (1) When a40, we recover the results obtained by H. Tanimo-
to for Z[n

km] to be normal, seminormal and quasinormal when n43
[11].

(2) In this section, we did not study the situation for a ring R[a], where R
is a Dedekind domain and a is an element of some integral domain which con-
tains R where a is integral over R. Indeed, for R4Z, special cases where p is
a prime integer dividing the discriminant such that p42, 3 or divides both a
and b imply: a1 4 a2b is a common zero of f (X) and f 8 (X) in Fp [X], which may
no longer be verified when taking another Dedekind domain R. Hence we can-
not give an explicit expression of a1 when RcZ.
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