Bollettino

Unione Matematica Italiana

Martine Picavet-L'Hermitte

When is $\mathbb{Z}[\alpha]$ seminormal or t-closed?

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B (1999), n.1, p. 189-217.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1999_8_2B_1_189_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

When is $\mathbb{Z}[\alpha]$ Seminormal or t-Closed?

Martine Picavet-L’Hermitte

Abstract

Sunto. - Sia a un intero algebrico con il polinomio minimale $f(X)$. Si danno condizioni necessarie e sufficienti affinché l'anello $\mathbb{Z}[\alpha]$ sia seminormale o t-chiuso per mezzo di $f(X)$. Come applicazione, in particolare, si ottiene che se $f(X)=X^{3}+$ $a X+b, a, b \in \mathbb{Z}$, le condizioni sono espresse mediante il discriminante de $f(X)$.

1. - Introduction.

Let α be an algebraic integer. Integral closedness of the ring $\mathbb{Z}[\alpha]$ was the subject of papers by T. Albu [1], G. Maury [5] and K. Uchida [12]. This last author got the following characterization [12, Theorem]:

Theorem 1.1. - Let R be a Dedekind domain and α an element of some integral domain which contains R. If α is integral over R, then $R[\alpha]$ is a Dedekind domain if and only if the minimal polynomial $\varphi(X)$ of α is not contained in M^{2} for any maximal ideal M of the polynomial ring $R[X]$.

Our aim is to obtain a similar characterization for seminormality or tclosedness of $\mathbb{Z}[\alpha]$. Recall some definitions:

A ring A is called seminormal if, for each $(x, y) \in A^{2}$ such that $x^{3}=y^{2}$, there exists $a \in A$ such that $x=a^{2}, y=a^{3}$. When A is a reduced ring, A is seminormal if and only if the natural map $\operatorname{Pic}(A) \rightarrow \operatorname{Pic}(A[X])$ is an isomorphism [10].

A ring A is called t-closed if, for each $(x, y, r) \in A^{3}$ such that $x^{3}+r x y-$ $y^{2}=0$, there exists $a \in A$ such that $x=a^{2}-r a, y=a^{3}-r a^{2}$. When A is a onedimensional Noetherian integral domain, A is t-closed if and only if the natural map $\operatorname{Pic}(A) \rightarrow \operatorname{Pic}\left(A\left[X, X^{-1}\right]\right)$ is an isomorphism [7].

In section 2, we begin to recall some results about seminormality and tclosedness gotten in [6], [7], [8], and we study properties of maximal ideals in $\mathbb{Z}[\alpha]$.

In section 3, we give a necessary and sufficient condition for a ring $\mathbb{Z}[\alpha]$ to be seminormal:

Let $f(X)$ be the minimal polynomial of the algebraic integer α. Then any maximal ideal M in $\mathbb{Z}[X]$ containing $f(X)$ is of the form $M=(p, g(X))$ where p is a prime integer and $g(X)$ is a monic polynomial of $\mathbb{Z}[X]$ such that its residue class in $\mathbb{F}_{p}[X]$ is an irreducible polynomial dividing the residue class of $f(X)$ in $\mathbb{F}_{p}[X]$. Such a maximal ideal is lying over $p \mathbb{Z}$.

Consider $f(X)=q(X) g(X)+c(X)$, the Euclidean division of $f(X)$ by $g(X)$, and then $q(X)=a(X) g(X)+b(X)$, the Euclidean division of $q(X)$ by $g(X)$, so that

$$
\operatorname{deg} b(X), \operatorname{deg} c(\mathrm{X})<\operatorname{deg} g(X)
$$

We can thus write

$$
f(X)=a(X) g^{2}(X)+b(X) g(X)+c(X)
$$

Then, according to Proposition 3.1, $\mathbb{Z}[\alpha]$ is seminormal if and only if for each maximal ideal $M=(p, g(X))$ of $\mathbb{Z}[X]$ such that $f(X) \in M^{2}$, we have

$$
b^{2}(X)-4 a(X) c(X) \notin p^{2} M
$$

Section 4 is devoted to the same problem relating to t-closedness, with a more complex formulation : indeed, we have to distinguish the cases $p=2$ and $p \neq 2$:
$\mathbb{Z}[\alpha]$ is t-closed if and only if for each maximal ideal $M=(p, g(X))$ of $\mathbb{Z}[X]$ such that $f(X) \in M^{2}$, we have, with the previous notations:

- if $p \neq 2$, then $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is not a quadratic residue $\bmod M$.
- if $p=2$, then $b(X) \notin 4 Z[X]$ and $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin 4 M$ for each $h(X) \in \mathbb{Z}[X]$.

Let R be a Dedekind domain, α be an element of some integral domain which contains R and let α be integral over R. We end both sections 3 and 4 in generalizing seminormality and t-closedness criteria to the ring $R[\alpha]$.

In section 5 we give an application of sections 3 and 4 to simple cubic orders: if α is an algebraic integer with minimal polynomial $f(X)=X^{3}+a X+b$, $a, b \in \mathbb{Z}$, let $\Delta=-\left(4 a^{3}+27 b^{2}\right)$ be the discriminant of $f(X)$. We obtain integral closedness, t-closedness and seminormality criteria for $\mathbb{Z}[\alpha]$; these criteria are related to arithmetical properties of Δ, when Δ is divisible by a prime integer p such that $p \neq 2,3$ and does not divide both a and b, and to arithmetical properties of $f(a-b)$ or $f^{\prime}(a-b)$, for the other prime divisors of Δ.

2. - Some generalities.

We first recall some definitions and properties of seminormality and t-closedness.

In the introduction we have just given the definitions of seminormal or t closed rings. These notions are closely intertwined with seminormal and tclosed morphisms (see [6], [7], [10]).

Definition 2.1. - An injective ring morphism $A \rightarrow B$ is said to be seminormal (resp. t-closed) if an element b of B is in A whenever $b^{2}, b^{3} \in A$ (resp. whenever there exists some $r \in A$ such that $b^{2}-r b, b^{3}-r b^{2} \in A$).

Proposition 2.2. - Let A be an integral domain with integral closure \bar{A}. Then, A is seminormal (resp. t-closed) if and only if $A \rightarrow \bar{A}$ is seminormal (resp. t-closure).

Proposition 2.3. - Let A be an integral domain with integral closure \bar{A}. There exist two A-subalgebras ${ }^{+} A$ and ${ }^{t} A$ of \bar{A} such that ${ }^{+} A$ (resp. $\left.{ }^{t} A\right)$ is the smallest seminormal (resp. t-closed) A-subalgebra of \bar{A}; the ring ${ }^{+} A\left(r e s p . ~{ }^{t} A\right)$ is called the seminormalization (resp. t-closure) of A.

We have the inclusion: ${ }^{+} A C^{t} A$; furthermore, A is seminormal (resp. tclosed) if and only if $A={ }^{+} A$ (resp. $A=^{t} A$). The composite $A \rightarrow{ }^{+} A \rightarrow{ }^{t} A \rightarrow \bar{A}$ is called the canonical decomposition of $A \rightarrow \bar{A}$.
D. Ferrand and J. P. Olivier introduced in [4] the notion of minimal morphism and showed there exist three classes of minimal morphisms:

Definition 2.4 [4, Définition 1.1, Proposition 4.1 and Lemme 1.2].
(1) A ring morphism f is said to be minimal if
(a) f is injective and non bijective
(b) for every decomposition $f=g \circ h$ where g and h are injective ring morphisms, g or h is an isomorphism.
(2) Let $f: A \rightarrow B$ be a finite minimal morphism between two one-dimensional Noetherian domains with the same quotient field. Then the conductor of f is a maximal ideal P of A. Moreover, f satisfies one of the following conditions:
(a) there exists $x \in B \backslash A$ such that $x^{2}, x^{3} \in A$ and $x^{2} \in P$: we say that f is ramified.
(b) there exists $x \in B \backslash A$ such that $x^{2}-x, x^{3}-x^{2} \in A$ and $x^{2}-x \in P$: we say that f is decomposed.
(c) P is a maximal ideal in B and $A / P \rightarrow B / P$ is a minimal field extension: we say that f is inert.

Then, we showed in [8] the following result:
Proposition 2.5 [8, Theorem 3.4]. - Let A be a one-dimensional Noetherian domain such that \bar{A} is finite over A. Then: $A \rightarrow^{+} A\left(\right.$ resp. $\left.{ }^{+} A \rightarrow{ }^{t} A,{ }^{t} A \rightarrow \bar{A}\right)$ is a composite of finitely many ramified (resp. decomposed, inert) morphisms, and is not factorized by another type of minimal morphism in any decomposition into minimal morphism.

In particular, we have $A \neq \bar{A}$ if and only if there exist some maximal ideal P in A and an element $x \in \bar{A} \backslash A$ such that $x P \subset P$.

For a Dedekind domain R (in particular if $R=\mathbb{Z}$) and an element α of some integral domain which contains R such that α is integral over R, the ring $R[\alpha]$ satisfies the assumptions of 2.5 .

Next we give some results on maximal ideals in $\mathbb{Z}[\alpha]$ needed in the following.

Let α be an algebraic integer with minimal polynomial $f(X)$. Any element z of $\mathbb{Z}[\alpha]$ can be written $\alpha(\alpha)$, where $a(X)$ is a unique polynomial in $\mathbb{Z}[X]$, such that $\operatorname{deg} a(X)<\operatorname{deg} f(X)$.

Let p be a prime integer. For a polynomial $a(X)=\sum a_{i} X^{i} \in \mathbb{Z}[X]$, we denote by $\bar{a}(X)$ the polynomial $\sum \bar{a}_{i} X^{i} \in \mathbb{F}_{p}[X]$, where \bar{a}_{i} is the p-residue of a_{i} in F_{p}.

For a given prime integer p, let $\bar{f}(X)=\prod \bar{f}_{i}(X)^{e_{i}}$ be the decomposition of $\bar{f}(X)$ into irreducible distinct polynomials $\bar{f}_{i}(X)$, where $f_{i}(X)$ is a monic polynomial and $e_{i} \in \mathbb{N}^{*}$. In particular, $f_{i}(X)$ and $\bar{f}_{i}(X)$ have the same degree.

Now we give a key lemma. As far as we know, this is a new result which looks like the results of T. Albu, G. Maury and K. Uchida (cf. 1.1). Unlike their results, we do not need any hypothesis on the ring $\mathbb{Z}[\alpha]$.

Lemma 2.6. - Let p be a prime integer and $M=(p, f(X))$ be an ideal of $\mathbb{Z}[X]$ such that $f(X)$ is a monic polynomial. Then p is not in M^{2}.

Proof. - We have $M^{2}=\left(p^{2}, p f(X), f^{2}(X)\right)$. Assume $p \in M^{2}$. Hence, there exist $a(X), b(X), c(X) \in \mathbb{Z}[X]$ such that $p=p^{2} a(X)+p f(X) b(X)+f^{2}(X) c(X)$. As $f(X)$ is a monic polynomial, there exists α a zero of $f(X)$ in the integral closure A of some finite algebraic extension of \mathbb{Q}. Then we get $p=p^{2} \alpha(\alpha)$; as $p \neq$ 0 , we have $p a(\alpha)=1$; thus p is a unit of A, which leads to a contradiction since there are maximal ideals in A lying over $p \mathbb{Z}$: indeed, A is integral over \mathbb{Z}. Therefore, we get $p \notin M^{2}$.

Proposition 2.7. - Let α be an algebraic integer with minimal polynomial $f(X)$. For a given prime integer p, let $\bar{f}(X)=\prod_{i=1}^{n} \bar{f}_{i}(X)^{e_{i}}$ be the decomposition of $\bar{f}(X)$ into irreducible distinct polynomials, where $f_{i}(X)$ is monic and $e_{i} \in \mathbb{N}^{*}$. The maximal ideals of $\mathbb{Z}[\alpha]$ lying over $p \not Z$ are $\left(p, f_{i}(\alpha)\right)$, for $i=1, \ldots$, n, and $p \mathbb{Z}[\alpha]$ if $\bar{f}(X)$ is irreducible in $\mathbb{F}_{p}[X]$.

Proof. - We know that the maximal ideals of $Z[\alpha]$ arise from maximal ideals of $\mathbb{Z}[X]$ containing $f(X)$, due to the isomorphism $\mathbb{Z}[\alpha] \simeq \mathbb{Z}[X] /(f(X))$. Because $f(X)$ is a monic polynomial, a maximal ideal M^{\prime} of $\mathbb{Z}[X]$ containing $f(X)$ and a prime integer p can be written $M^{\prime}=(p, g(X))$, where $g(X)$ is a monic polynomial such that $\bar{g}(X)$ is irreducible in $\mathbb{F}_{p}[X]$. Thus $f(X)=p a(X)+$ $g(X) b(X)$, where $a(X), b(X) \in \mathbb{Z}[X]$, implies $\bar{f}(X)=\bar{g}(X) \bar{b}(X)$ in $\mathbb{F}_{p}[X]$. Therefore $\bar{g}(X)$ is a monic irreducible polynomial dividing $\bar{f}(X)$, so that $\bar{g}(X)=\bar{f}_{i}(X)$, for some i. Hence $M^{\prime}=\left(p, f_{i}(X)\right)$ shows that $P_{i}=\left(p, f_{i}(\alpha)\right)$ is a maximal ideal in $\mathbb{Z}[\alpha]$.

If $\bar{f}(X)$ is irreducible in $\mathbb{F}_{p}[X]$, we get $\bar{f}(X)=\bar{f}_{i}(X)$, whence $f(X)=f_{i}(X)$ and $f_{i}(\alpha)=0$.

Definitions 2.8. - From now, we denote by $M_{i}=\left(p, f_{i}(X)\right)\left(\right.$ resp. $P_{i}=$ $\left(p, f_{i}(\alpha)\right)$) the maximal ideals in $\mathbb{Z}[X]$ containing $f(X)$ (resp. in $\left.\mathbb{Z}[\alpha]\right)$.

LEMMA 2.9. - Let $P_{i}=\left(p, f_{i}(\alpha)\right)$ be a maximal ideal in $\mathbb{Z}[\alpha]$, with $f_{i}(\alpha) \neq 0$.
(1) For $g(\alpha) \in \mathbb{Z}[\alpha]$, we get $g(\alpha) \in P_{i}$ if and only if $\bar{g}(X) \in\left(\bar{f}_{i}(X)\right)$ in $\mathbb{F}_{p}[X]$.
(2) Any element $g(\alpha) \in P_{i}$ can be written: $g(\alpha)=\alpha(\alpha) f_{i}(\alpha)+p b(\alpha)$, where $a(X), b(X) \in \mathbb{Z}[X]$, and $\operatorname{deg} b(X)<\operatorname{deg} f_{i}(X)$.
(3) If $g(\alpha) \in P_{i}$ and $\operatorname{deg} g(X)<\operatorname{deg} f_{i}(X)$, then $a(\alpha)=0$ and $g(\alpha) \in$ $p Z[\alpha]$.

Proof. - First we show (1). Let $g(\alpha) \in \mathbb{Z}[\alpha]$. Then we have $g(\alpha) \in P_{i}$ if and only if there exist $a(\alpha), b(\alpha) \in \mathbb{Z}[\alpha]$ such that $g(\alpha)=a(\alpha) f_{i}(\alpha)+p b(\alpha)$, that is to say $g(X)-a(X) f_{i}(X)-p b(X)=f(X) c(X)$, with $c(X) \in \mathbb{Z}[X]$, from which it follows that $\bar{g}(X)=\bar{a}(X) \bar{f}_{i}(X)+\bar{f}(X) \bar{c}(X)$ in $\mathbb{F}_{p}[X]$. Since $\bar{f}(X)$ is divided by $\bar{f}_{i}(X)$, so is $\bar{g}(X)$.

Conversely, if $\bar{g}(X) \in\left(\bar{f}_{i}(X)\right)$, we can write $\bar{g}(X)=\bar{a}(X) \bar{f}_{i}(X)$ in $\mathbb{F}_{p}[X]$. So, there is $b(X) \in \mathbb{Z}[X]$ such that $g(X)=a(X) f_{i}(X)+p b(X)$, whence $g(\alpha)=$ $a(\alpha) f_{i}(\alpha)+p b(\alpha) \in P_{i}$.
(2) For $g(\alpha) \in \mathbb{Z}[\alpha]$, let $g(X)=a(X) f_{i}(X)+a^{\prime}(X)$ be the Euclidean division of $g(X)$ by $f_{i}(X)$, with $\operatorname{deg} a^{\prime}(X)<\operatorname{deg} f_{i}(X)$. This equality leads to $g(\alpha)=$ $a(\alpha) f_{i}(\alpha)+a^{\prime}(\alpha)$. Thus $g(\alpha) \in P_{i} \Leftrightarrow a^{\prime}(\alpha) \in P_{i} \Leftrightarrow \bar{a}^{\prime}(X) \in\left(\bar{f}_{i}(X)\right)$ by (1). But, $\operatorname{deg} \bar{a}^{\prime}(X) \leqslant \operatorname{deg} a^{\prime}(X)<\operatorname{deg} f_{i}(X)=\operatorname{deg} \bar{f}_{i}(X)$ implies $\bar{a}^{\prime}(X)=\overline{0}$ and $a^{\prime}(X)=$
$p b(X) \quad$ in $\mathbb{Z}[X]$, with $\quad \operatorname{deg} b(X)=\operatorname{deg} a^{\prime}(X)<\operatorname{deg} f_{i}(X)$. Then, $g(\alpha)=$ $a(\alpha) f_{i}(\alpha)+p b(\alpha)$, with $\operatorname{deg} b(X)<\operatorname{deg} f_{i}(X)$.
(3) If $\operatorname{deg} g(X)<\operatorname{deg} f_{i}(X)$, the Euclidean division of $g(X)$ by $f_{i}(X)$ gives $g(X)=0 f_{i}(X)+g(X)$. With the notations of (2), we get then $a(X)=0, g(X)=$ $p b(X)$, so that $a(\alpha)=0$ and $g(\alpha)=p b(\alpha) \in p \mathbb{Z}[\alpha]$.

Assume that the polynomial $\bar{f}(X)$ is not irreducible in $\mathbb{F}_{p}[X]$ for a prime $p \in$ Z. Let $\bar{f}_{i}(X)$ be an irreducible monic divisor of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$. If $f_{i}(X)$ is a monic polynomial in $\mathbb{Z}[X]$ with residue $\bar{f}_{i}(X)$ in $\mathbb{F}_{p}[X]$, consider $f(X)=q(X) f_{i}(X)+$ $c(X)$ the Euclidean division of $f(X)$ by $f_{i}(X)$, and $q(X)=a(X) f_{i}(X)+b(X)$ the Euclidean division of $q(X)$ by $f_{i}(X)$. Thus we obtain unique polynomials $a(X), b(X), c(X) \in \mathbb{Z}[X]$ such that:

$$
\begin{equation*}
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X) \tag{*}
\end{equation*}
$$

where $\operatorname{deg} b(X), \operatorname{deg} c(X)<\operatorname{deg} f_{i}(X)$.
Definition 2.10. - Under the above conditions, we say that
$f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X), \quad$ where $\quad \operatorname{deg} b(X), \operatorname{deg} c(X)<\operatorname{deg} f_{i}(X)$ is the double Euclidean division of $f(X)$ by $f_{i}(X)$.

In $\mathbb{F}_{p}[X]$ we get $\bar{f}(X)=\bar{a}(X) \bar{f}_{i}^{2}(X)+\bar{b}(X) \bar{f}_{i}(X)+\bar{c}(X)$. Since $\bar{f}_{i}(X)$ divides $\bar{f}(X)$, it divides also $\bar{c}(X)$; inequalities between degrees give then

$$
\operatorname{deg} \bar{c}(X) \leqslant \operatorname{deg} c(X)<\operatorname{deg} f_{i}(X)=\operatorname{deg} \bar{f}_{i}(X)
$$

So $\bar{c}(X)=\overline{0}$ and $c(X) \in p Z[X]$.
Relation (*) implies the relation in $\mathbb{Z}[\alpha]$:
$(* *) \quad a(\alpha) f_{i}^{2}(\alpha)+b(\alpha) f_{i}(\alpha)+c(\alpha)=0$.

In the next two sections, we are looking for seminormality or t-closedness criteria of $\mathbb{Z}[\alpha]$. The next result will be useful in these two sections:

Proposition 2.11. - Let $P_{i}=\left(p, f_{i}(\alpha)\right)$ be a maximal ideal of $\mathbb{Z}[\alpha]$. There exists $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ such that $x P_{i} \subset P_{i}$ if and only if $\bar{f}_{i}^{2}(X)$ divides $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$ and $p \notin P_{i}^{2}$.

Under these conditions and with notation 2.10, we have $b(X) \in p \mathbb{Z}[X]$, $c(X) \in p^{2} \mathbb{Z}[X]$ and $f(X) \in\left(p, f_{i}(X)\right)^{2}$.

Proof. - As we have $P_{i}=\left(p, f_{i}(\alpha)\right)$, the condition $x P_{i} \subset P_{i}$ is equivalent to $p x, x f_{i}(\alpha) \in P_{i}$. Thus we can write $x=\left[p h(\alpha)+f_{i}(\alpha) k_{1}(\alpha)\right] p^{-1}$, where $h(X), k_{1}(X) \in \mathbb{Z}[X]$.

We get $f_{i}(\alpha) k_{1}(\alpha) p^{-1} \notin \mathbb{Z}[\alpha]$ due to $x \notin \mathbb{Z}[\alpha]$, so that $f_{i}(\alpha) k_{1}(\alpha) \notin p \mathbb{Z}[\alpha]$. Furthermore, the condition $f_{i}(\alpha) x \in P_{i}$ gives $h(\alpha) f_{i}(\alpha)+f_{i}^{2}(\alpha) k_{1}(\alpha) p^{-1} \in P_{i}$, which is equivalent to $f_{i}^{2}(\alpha) k_{1}(\alpha) \in p P_{i}$. But this last condition is satisfied if and only if there exist $g_{1}(X), h_{1}(X), k(X) \in \mathbb{Z}[X]$ such that

$$
f_{i}^{2}(X) k_{1}(X)=p^{2} g_{1}(X)+p f_{i}(X) h_{1}(X)+k(X) f(X)
$$

which gives $\bar{f}_{i}^{2}(X) \bar{k}_{1}(X)=\bar{k}(X) \bar{f}(X)$ in $\mathbb{F}_{p}[X]$. If $\bar{f}_{i}(X)$ divides $\bar{k}(X)$, we obtain $\bar{f}_{i}(X) \bar{k}_{1}(X)=\bar{k}_{2}(X) \bar{f}(X)$, with $\bar{k}_{2}(X) \in \mathbb{F}_{p}[X]$ and then we have $f_{i}(X) k_{1}(X)=$ $k_{2}(X) f(X)+p k_{3}(X)$ in $\mathbb{Z}[X]$; so, $f_{i}(\alpha) k_{1}(\alpha)=p k_{3}(\alpha) \in p \mathbb{Z}[\alpha]$, a contradiction. Then, $\bar{f}_{i}(X)$ and $\bar{k}(X)$ are coprime and $\bar{f}_{i}^{2}(X)$ divides $\bar{f}(X)$. By (*), we get that $\bar{f}_{i}(X)$ divides $\bar{b}(X)$ in $\mathbb{F}_{p}[X]$; it follows from $\operatorname{deg} \bar{b}(X)<\operatorname{deg} \bar{f}_{i}(X)$ that $\bar{b}(X)=\overline{0}$, whence $b(X) \in p \mathbb{Z}[X]$. As $k(X) f(X) \in\left(p, f_{i}(X)\right)^{2}$ and $k(X)$ does not belong to the maximal ideal $\left(p, f_{i}(X)\right.$), we obtain in addition that $f(X)$ belongs to the primary ideal $\left(p, f_{i}(X)\right)^{2}$.

But, we can write $c(X)=p c_{2}(X)=f(X)-a(X) f_{i}^{2}(X)-b(X) f_{i}(X)$ which implies $p c_{2}(X) \in\left(p, f_{i}(X)\right)^{2}$, with $p \notin\left(p, f_{i}(X)\right)^{2}$ by 2.6 ; for the same reason, we get $c_{2}(X) \in\left(p, f_{i}(X)\right)$, and $c_{2}(X) \in p \not Z[X], c(X) \in p^{2} \mathbb{Z}[X]$, since $\operatorname{deg} c_{2}(X)=$ $\operatorname{deg} c(X)<\operatorname{deg} f_{i}(X)$.

If $p \in P_{i}^{2}$, we get that $p=p^{2} a^{\prime}(X)+p f_{i}(X) b^{\prime}(X)+f_{i}^{2}(X) c^{\prime}(X)+$ $f(X) d^{\prime}(X)$ where $a^{\prime}(X), b^{\prime}(X), c^{\prime}(X), d^{\prime}(X) \in \mathbb{Z}[X]$; as $f(X) \in\left(p, f_{i}(X)\right)^{2}$, we should have $p \in\left(p, f_{i}(X)\right)^{2}$, in contradiction with 2.6. Thus we get $p \notin P_{i}^{2}$.

Conversely, assume $\bar{f}_{i}(X)^{2}$ divides $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$ and $p \notin P_{i}^{2}$. Then we have $x=f_{i}(\alpha) a(\alpha) p^{-1} \notin \mathbb{Z}[\alpha]$ (if not, we get $\bar{f}_{i}(X) \bar{a}(X) \in(\bar{f}(X))$ in $\left.\mathbb{F}_{p}[X]\right)$. Obviously, we have $p x \in P_{i}$, as well as $f_{i}(\alpha) x$, since $f_{i}(\alpha) x=a(\alpha) f_{i}^{2}(\alpha) p^{-1}=-$ $\left[b(\alpha) f_{i}(\alpha)+c(\alpha)\right] p^{-1}$ by $(* *)$: indeed, we have just seen that $b(X) \in p \mathbb{Z}[X]$ since $\bar{f}_{i}^{2}(X)$ divides $\bar{f}(X)$ and $c_{2}(\alpha) \in P_{i}$ since $c(\alpha)=p c_{2}(\alpha)=-\alpha(\alpha) f_{i}^{2}(\alpha)-$ $b(\alpha) f_{i}(\alpha) \in P_{i}^{2}$, with $p \notin P_{i}^{2}$.

Remarks 2.12.
(1) From $x P_{i} \subset P_{i}$ where $P_{i}=\left(p, f_{i}(\alpha)\right)$, we deduce the system:

$$
\left\{\begin{array}{l}
{[A(\alpha)-x] p+B(\alpha) f_{i}(\alpha)=0} \\
C(\alpha) p+[D(\alpha)-x] f_{i}(\alpha)=0
\end{array}\right.
$$

where $A(\alpha), B(\alpha), C(\alpha), D(\alpha) \in \mathbb{Z}[\alpha]$.
It follows that $x^{2}-[A(\alpha)+D(\alpha)] x+[A(\alpha) D(\alpha)-B(\alpha) C(\alpha)]=0$; hence x satisfies a quadratic relation over $\mathbb{Z}[\alpha]$ and is integral over $\mathbb{Z}[\alpha]$.
(2) Under assumptions of 2.11, we can henceforth put $b(X)=p b_{1}(X)$ and $c(X)=p^{2} c_{1}(X)$, with $b_{1}(X), c_{1}(X) \in \mathbb{Z}[X]$. Then 2.10 gives:

$$
\begin{equation*}
a(\alpha) f_{i}^{2}(\alpha)=-p b_{1}(\alpha) f_{i}(\alpha)-p^{2} c_{1}(\alpha) \in p P_{i} \tag{***}
\end{equation*}
$$

Proposition 2.13. - Let α be an algebraic integer with minimal polynomial $f(X)$; the following conditions are equivalent:
(1) $\mathbb{Z}[\alpha]$ is not integrally closed.
(2) There is a maximal ideal $\left(p, f_{i}(X)\right)$ in $\mathbb{Z}[X]$ such that $f(X) \in$ $\left(p, f_{i}(X)\right)^{2}$.
(3) There exist a prime integer p and an irreducible monic polynomial $f_{i}(X) \in \mathbb{Z}[X]$ such that $\bar{f}_{i}^{2}(X)$ divides $\bar{f}(X)$ and $p \notin\left(p, f_{i}(\alpha)\right)^{2}$.

Furthermore, if one of these equivalent conditions holds, $f(X)$ belongs to the square of a maximal ideal $\left(p, f_{i}(X)\right)$ in $\mathbb{Z}[X]$ if and only if $\bar{f}_{i}^{2}(X)$ divides $\bar{f}(X)$ and $p \notin\left(\left(p, f_{i}(\alpha)\right)^{2}\right.$.

PRoof. $-(1) \Leftrightarrow(2)$ is 1.1. We have $(1) \Rightarrow(3)$ by 2.11 (we cannot have $P_{i}=$ $p \mathbb{Z}[\alpha]$ since $x \notin \mathbb{Z}[\alpha]$). Conversely, by 2.11 , (3) yields $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ such that $x P_{i} \subset P_{i}$, for a maximal ideal P_{i} of $\mathbb{Z}[\alpha]$. Now 2.12 (1) shows that x is integral over $\mathbb{Z}[\alpha]$, so that $\mathbb{Z}[\alpha]$ is not integrally closed.

When $\mathbb{Z}[\alpha]$ is not integrally closed, there are maximal ideals $\left(p, f_{i}(X)\right)$ in $\mathbb{Z}[X]$ such that $f(X) \in\left(p, f_{i}(X)\right)^{2}$ (see 1.1). We can ask what is the link between α and the prime integers p. The answer is given by the following proposition:

Proposition 2.14. - Let α be an algebraic integer with minimal polynomial $f(X)$ such that $\mathbb{Z}[\alpha]$ is not integrally closed. Let $n \mathbb{Z}$ be the annihilator of the \mathbb{Z}-module $\overline{\mathbb{Z}[\alpha]} / \mathbb{Z}[\alpha]$, where $\overline{\mathbb{Z}[\alpha]}$ is the integral closure of $\mathbb{Z}[\alpha]$. If $\left(p, f_{i}(X)\right)$ is a maximal ideal of $Z[X]$, then $f(X) \in\left(p, f_{i}(X)\right)^{2}$ if and only if p divides n and $\bar{f}_{i}(X)$ is a monic irreducible divisor of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$.

Proof. - Let $n \mathbb{Z}$ be the conductor in \mathbb{Z} of $\mathbb{Z}[\alpha] \rightarrow \overline{\mathbb{Z}[\alpha]}$. For a prime integer p, set $S=\mathbb{Z} \backslash p \mathbb{Z}$. Obviously $\mathbb{Z}[\alpha]_{S} \rightarrow \bar{Z}[\alpha]_{S}$ is an isomorphism if and only if $n \notin p \mathbb{Z}$. Then $\mathbb{Z}[\alpha]_{S}$ is integrally closed if and only if $n \notin p \mathbb{Z}$. But we have $\mathbb{Z}[\alpha]_{S}=\mathbb{Z}_{S}[\alpha]$ and $f(X) \in \mathbb{Z}_{S}[X]$ is still the minimal polynomial of α. Since \mathbb{Z}_{S} is a Dedekind domain, $\mathbb{Z}_{S}[\alpha]$ is integrally closed if and only if $f(X)$ is not contained in the square of any maximal ideal of $Z_{S}[X]$ by 1.1. But the maximal ideals of $\mathbb{Z}_{S}[X]$ containing $f(X)$ are of the form $\left(p, f_{i}(X)\right.$), where $\bar{f}_{i}(X)$ is an irreducible factor of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$.

To sum up, the following statements are equivalent:

- p divides n,
- $\mathbb{Z}_{S}[\alpha]$ is not integrally closed,
- $f(X) \in\left(p, f_{i}(X)\right)^{2} \mathbb{Z}_{S}[X]$ for some $f_{i}(X)$ in $\mathbb{Z}_{S}[X]$.

This last condition is equivalent to the following:

- $f(X) \in\left(p, f_{i}(X)\right)^{2} \mathbb{Z}[X]$ for some $f_{i}(X)$ in $\mathbb{Z}[X]$.

One implication is obvious. Conversely, assume that $f(X) \in$ $\left(p, f_{i}(X)\right)^{2} \mathbb{Z}_{S}[X]$, where $f_{i}(X) \in \mathbb{Z}_{S}[X]$. As \mathbb{F}_{p} is the residue class field of \mathbb{Z} and \mathbb{Z}_{S}, there exists $f_{i}^{\prime}(X) \in \mathbb{Z}[X]$ such that $f_{i}(X)-f_{i}^{\prime}(X) \in p \mathbb{Z}_{S}[X]$ so that we can choose $f_{i}(X) \in \mathbb{Z}[X]$. Since $f(X) \in\left(p, f_{i}(X)\right)^{2} Z_{S}[X]$, we can write in a unique way : $f(X)=a(X) f_{i}^{2}(X)+p b(X) f_{i}(X)+p^{2} c(X)$, with $a(X), b(X), c(X) \in \mathbb{Z}_{S}[X]$ and $\operatorname{deg} b(X), \operatorname{deg} c(X)<\operatorname{deg} f_{i}(X)$. But, as $f(X)$ and $f_{i}(X) \in \mathbb{Z}[X]$, we can also consider the double Euclidean division of $f(X)$ by $f_{i}(X)$ in $\mathbb{Z}[X]$. We have then, in a unique way:

$$
f(X)=a^{\prime}(X) f_{i}^{2}(X)+b^{\prime}(X) f_{i}(X)+c^{\prime}(X)
$$

with $a^{\prime}(X), b^{\prime}(X), c^{\prime}(X) \in \mathbb{Z}[X]$ and $\operatorname{deg} b^{\prime}(X), \operatorname{deg} c^{\prime}(X)<\operatorname{deg} f_{i}(X)$. By unicity of the division in $\mathbb{Z}_{S}[X]$ we have:

$$
a(X)=a^{\prime}(X), \quad b^{\prime}(X)=p b(X) \in p \mathbb{Z}_{S}[X] \cap \mathbb{Z}[X]
$$

If $b^{\prime}(X)=\sum_{j=1}^{m} b_{j}^{\prime} X^{j}$ and $b(X)=\sum_{j=1}^{m} b_{j} s_{j}^{-1} X^{j}$, with $b_{j}, b_{j}^{\prime} \in \mathbb{Z}$ and $s_{j} \in S$, then $s_{j} b_{j}^{\prime}=p b_{j}$ for each j yield $b_{j}^{\prime} \in p \not Z^{Z}$, since $s_{j} \notin p \not Z_{Z}$. So $b^{\prime}(X) \in p^{\prime} \mathbb{Z}[X]$. In the same way, we get $c^{\prime}(X)=p^{2} c(X) \in p^{2} \mathbb{Z}_{S}[X] \cap \mathbb{Z}[X]=p^{2} \mathbb{Z}[X]$. Thus we have $f(X) \in\left(p, f_{i}(X)\right)^{2} \mathbb{Z}[X]$ with $f_{i}(X) \in \mathbb{Z}[X]$.

Remark. - We can find prime integers p such that $\mathbb{Z}_{S}[\alpha]$ is not integrally closed in another way : let d be the discriminant of $f(X)$; if $f(X) \in\left(p, f_{i}(X)\right)^{2}$, then p divides d. So, we have only to consider the prime divisors of d.

Let R be a Dedekind domain. The double Euclidean division obtained in 2.10 is still valid for a Dedekind domain. For each maximal ideal P in R, the ring R_{P} is a principal domain. Let α be an element of some integral domain which contains R and such that α is integral over R and let $f(X) \in R[X]$ be the minimal polynomial of α. Then α is also integral over R_{P} and $f(X)$ is still its minimal polynomial in R_{P} [X]. Moreover, for a maximal ideal P in R, we can identify R / P and $R_{P} / P R_{P}$. So, let $f_{i}(X)$ be a monic polynomial in $R[X]$ such that $\bar{f}_{i}(X)$ is a monic irreducible divisor of $\bar{f}(X)$ in $R / P[X]$; we get then that $f_{i}(X)$ is also a monic polynomial in $R_{P}[X]$ such that $\bar{f}_{i}(X)$ is a monic irreducible divisor of $\bar{f}(X)$ in $R_{P} / P R_{P}[X]$. Hence it follows that the double Euclidean division of $f(X)$ by $f_{i}(X)$ in $R[X]$ given in 2.10 is still the double Euclidean division of $f(X)$ by $f_{i}(X)$ in $R_{P}[X]$ and, for $f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)$ with $a(X), b(X), c(X) \in R[X]$, we also have $a(X), b(X), c(X) \in R_{P}[X]$.

Now, if P is a maximal ideal in R, there exists $p \in P$ such that $P R_{P}=p R_{P}$, where p is an irreducible element in R_{P}. A maximal ideal in $R[X]$ containing $f(X)$ is of the form $\left(P, f_{i}(X)\right)$ [12, Lemma] so that $\left(p, f_{i}(X)\right)$ is a maximal ideal
in $R_{P}[X]$ containing $f(X)$. Conversely, a maximal ideal in $R_{P}[X]$ containing $f(X)$ is of the form ($p, f_{i}(X)$) and comes from a maximal ideal $\left(P, f_{i}(X)\right.$) in $R[X]$. So we get:

Lemma 2.15. - Let R be a Dedekind domain and P be a maximal ideal in R such that $P R_{P}=p R_{P}$, with $p \in P$. For any monic polynomial $f(X) \in R[X]$ such that $(P, f(X))$ is a maximal ideal in $R[X]$, we have $(P, f(X))=$ $(p, f(X)) \cap R[X]\left(\right.$ resp. $\left.(P, f(X))^{2}=(p, f(X))^{2} \cap R[X]\right)$, where $(p, f(X))$ is a maximal ideal in $R_{P}[X]$.

Proof. - We have obviously $(P, f(X)) \subset(p, f(X)) \cap R[X]$.
Let $g(X) \in(p, f(X)) \cap R[X]$. The Euclidean division of $g(X)$ by $f(X)$ in $R[X]$ gives $g(X)=a(X) f(X)+b(X)$, with $\operatorname{deg} b(X)<\operatorname{deg} f(X)$ and $a(X), b(X) \in$ $R[X]$. We get then $b(X) \in p R_{P}[X] \cap R[X]=P R[X]$. Thanks to $p^{2} R_{P}[X] \cap$ $R[X]=P^{2} R[X]$ we obtain the second equality by considering the double Euclidean division of a polynomial by $f(X)$.

To close the section, we have the following result:

Proposition 2.16. - Let R be a Dedekind domain and α be an element of some integral domain which contains R where α is integral over R. Then $R[\alpha]$ is seminormal (resp. t-closed) if and only if $R_{P}[\alpha]$ is seminormal (resp. t-closed) for each maximal ideal P in R.

Proof. - Consider a maximal ideal P in R. We have obviously $R_{P}[\alpha]=$ $(R[\alpha])_{P}$. If $R[\alpha]$ is seminormal or t-closed, so is $R_{P}[\alpha][10$, Proposition 3.7] and [7, Proposition 1.15].

Conversely, as $R[\alpha]$ is an R-module, we have $R[\alpha]=\bigcap_{P \in \operatorname{Max} R}(R[\alpha])_{P}=$ $\bigcap_{P \in \operatorname{Max} R}\left(R_{P}[\alpha]\right)$. Then, if $R_{P}[\alpha]$ is seminormal (resp. t-closed) for each maximal ideal P in R, so is $R[\alpha]$ by [10, Corollary 3.2] and [7, Proposition 1.14].

3. - When is $\mathbb{Z}[\alpha]$ seminormal?

In view of 2.4 and 2.5 , a nonseminormality condition for $\mathbb{Z}[\alpha]$ is the following : there is some $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ such that $x^{2}, x^{3} \in \mathbb{Z}[\alpha]$ and $x M \subset M$, for a maximal ideal M of $\mathbb{Z}[\alpha]$: indeed, $\mathbb{Z}[\alpha]$ is not seminormal if and only if $\mathbb{Z}[\alpha] \neq$ $+\mathbb{Z}[\alpha]$, or equivalently, if and only if there exists a subring B of the integral closure of $\mathbb{Z}[\alpha]$ such that $\mathbb{Z}[\alpha] \rightarrow B$ is a ramified morphism.

Proposition 3.1. - Let α be an algebraic integer with minimal polynomial $f(X)$.

For each maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ containing $f(X)$, let

$$
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)
$$

be the double Euclidean division of $f(X)$ by $f_{i}(X)$.
Then, $\mathbb{Z}[\alpha]$ is not seminormal if and only if there exists a maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ containing $f(X)$ such that $f(X) \in M_{i}^{2}$ and

$$
b^{2}(X)-4 a(X) c(X) \in p^{2} M_{i}
$$

Proof. - As we have just seen, $\mathbb{Z}[\alpha]$ is not seminormal if and only if there exists $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ such that $x^{2}, x^{3} \in \mathbb{Z}[\alpha]$ and $x P_{i} \subset P_{i}$, for a maximal ideal P_{i} in $\mathbb{Z}[\alpha]$. Such an ideal P_{i} is the conductor of $\mathbb{Z}[\alpha] \rightarrow \mathbb{Z}[\alpha, x]$ where $\mathbb{Z}[\alpha, x]$ is a $\mathbb{Z}[\alpha]$-module generated by 1 and x. Thus, $\mathbb{Z}[\alpha]$ is not seminormal if and only if there exists $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ such that $x^{2} \in P_{i}$ and $x P_{i} \subset P_{i}$, for a maximal ideal P_{i} of $\mathbb{Z}[\alpha]$. The condition $x P_{i} \subset P_{i}$ is characterized in 2.11 , and we have $x=\left[p h(\alpha)+f_{i}(\alpha) k_{1}(\alpha)\right] p^{-1}$, under the notations of 2.11 ; furthermore, we got in the proof of 2.11 that $\bar{f}_{i}^{2}(X) \bar{k}_{1}(X)=\bar{f}(X) \bar{k}(X)$, where $\bar{k}(X)$ and $\bar{f}_{i}(X)$ are coprime; then we have $\bar{k}_{1}(X)=\bar{k}(X) \bar{a}(X)$ by (*). We can now write, with new notations: $x=\left[p h(\alpha)+f_{i}(\alpha) k(\alpha) a(\alpha)\right] p^{-1}$, where $\bar{k}(X)$ and $\bar{f}_{i}(X)$ are coprime in $\mathbb{F}_{p}[X]$.

Now consider condition (i): $x^{2} \in P_{i}$. The following statements are equivalent to (i):
(ii) $p^{2} h^{2}(\alpha)+2 p f_{i}(\alpha) h(\alpha) k(\alpha) a(\alpha)+f_{i}^{2}(\alpha) k^{2}(\alpha) a^{2}(\alpha) \in p^{2} P_{i}$;
(iii) $p h^{2}(\alpha)+2 f_{i}(\alpha) h(\alpha) k(\alpha) a(\alpha)-k^{2}(\alpha) \alpha(\alpha)\left[f_{i}(\alpha) b_{1}(\alpha)+p c_{1}(\alpha)\right] \in p P_{i}$;
(iv) $p h^{2}(X)+2 f_{i}(X) h(X) k(X) a(X)-k^{2}(X) a(X)\left[f_{i}(X) b_{1}(X)+p c_{1}(X)\right]=$ $p^{2} r(X)+p f_{i}(X) s(X)+t(X)\left[a(X) f_{i}^{2}(X)+p b_{1}(X) f_{i}(X)+p^{2} c_{1}(X)\right]$, where $r(X), s(X), t(X) \in \mathbb{Z}[X]$.

Now, (iv) implies: $\bar{f}_{i}(X) \bar{k}(X) \bar{a}(X)\left[\overline{2} \bar{h}(X)-\bar{k}(X) \bar{b}_{1}(X)\right]=\bar{t}(X) \bar{a}(X) \bar{f}_{i}^{2}(X)$ in $\mathbb{F}_{p}[X]$, which is equivalent to: $\bar{k}(X)\left[\overline{2} \bar{h}(X)-\bar{k}(X) \bar{b}_{1}(X)\right]=\bar{t}(X) \bar{f}_{i}(X)$. As $\bar{k}(X)$ and $\bar{f}_{i}(X)$ are coprime, $\bar{f}_{i}(X)$ divides $\overline{2} \bar{h}(X)-\bar{k}(X) \bar{b}_{1}(X)$ whence $2 h(\alpha)-$ $k(\alpha) b_{1}(\alpha) \in P_{i}$. Since $f_{i}^{2}(\alpha) a(\alpha) \in p P_{i}$, we have $a(\alpha) f_{i}(\alpha) P_{i} \subset p P_{i}$ (indeed, $p a(\alpha) f_{i}(\alpha) \in p P_{i}$ and $\left.a(\alpha) f_{i}^{2}(\alpha) \in p P_{i}\right)$. So, condition $2 h(\alpha)-k(\alpha) b_{1}(\alpha) \in P_{i}$ implies that (i) is equivalent to: $p h^{2}(\alpha)-p k^{2}(\alpha) a(\alpha) c_{1}(\alpha) \in p P_{i}$, from which it follows that $h^{2}(\alpha)-k^{2}(\alpha) a(\alpha) c_{1}(\alpha) \in P_{i}$; this last condition is equivalent to $\bar{f}_{i}(X)$ divides $\bar{h}^{2}(X)-\bar{k}^{2}(X) \bar{a}(X) \bar{c}_{1}(X)$ in $\mathbb{F}_{p}[X]$. Thus we get from (i) the two
conditions: $\bar{f}_{i}(X)$ divides $\overline{2} \bar{h}(X)-\bar{k}(X) \bar{b}_{1}(X)$ and $\bar{h}^{2}(X)-\bar{k}^{2}(X) \bar{a}(X) \bar{c}_{1}(X)$ in $\mathbb{F}_{p}[X]$. Hence we have in $\mathbb{F}_{p}[X]$ congruences $\bmod \left(\bar{f}_{i}(X)\right)$:

$$
\left\{\begin{array}{l}
\overline{2} \bar{h}(X) \equiv \bar{k}(X) \bar{b}_{1}(X) \\
\bar{h}^{2}(X) \equiv \bar{k}^{2}(X) \bar{a}(X) \bar{c}_{1}(X)
\end{array}\right.
$$

Eliminating $\bar{h}(X)$, these two relations combine to yield: $\bar{f}_{i}(X)$ divides $\bar{k}^{2}(X)\left[\bar{b}_{1}^{2}(X)-\overline{4} \bar{a}(X) \bar{c}_{1}(X)\right]$. Since $\bar{k}(X)$ and $\bar{f}_{i}(X)$ are coprime, $\bar{f}_{i}(X)$ divides $\bar{b}_{1}^{2}(X)-\overline{4} \bar{a}(X) \bar{c}_{1}(X)$. Then it follows from 2.9 that $b_{1}^{2}(X)-4 a(X) c_{1}(X) \in$ $\left(p, f_{i}(X)\right)$ and $b^{2}(X)-4 a(X) c(X) \in p^{2}\left(p, f_{i}(X)\right)$, since $b(X)=p b_{1}(X)$ and $c(X)=p^{2} c_{1}(X)$. The direct part of the proof is done.

Conversely, assume that there exists a maximal ideal $M_{i}=\left(p_{i}, f_{i}(X)\right)$ in $\mathbb{Z}[X]$ such that $f(X) \in M_{i}^{2}$ and $b^{2}(X)-4 a(X) c(X) \in p^{2} M_{i}$. Thus we have by 2.11: $b_{1}^{2}(\alpha)-4 a(\alpha) c_{1}(\alpha) \in P_{i}=\left(p, f_{i}(\alpha)\right)$. Now we have to consider two cases: $p=2$ and $p \neq 2$.

- If $p=2$.

Observe that $b_{1}^{2}(\alpha) \in P_{i}$; it follows that $b_{1}(\alpha) \in P_{i}$, since P_{i} is a prime ideal. As $\operatorname{deg} b_{1}(X)<\operatorname{deg} f_{i}(X)$, we get $b_{1}(X) \in 2 \mathbb{Z}[X]$ and $b_{1}(\alpha) \in 2 \mathbb{Z}[\alpha]$.

Each element of the finite field $K=\mathbb{F}_{2}[X] /\left(\bar{f}_{i}(X)\right)$ is a square since the characteristic of K is 2 . Thus there exists $h(X) \in \mathbb{Z}[X]$ such that $\bar{h}^{2}(X)-$ $\bar{c}_{1}(X) \bar{a}(X) \in\left(\bar{f}_{i}(X)\right)$, or equivalently, such that $h^{2}(\alpha)-c_{1}(\alpha) \alpha(\alpha) \in P_{i}$. Set $x=h(\alpha)+f_{i}(\alpha) a(\alpha) 2^{-1}$. We have $x \notin \mathbb{Z}[\alpha]$, otherwise relation $f_{i}(\alpha) a(\alpha) \in$ $2 \mathbb{Z}[\alpha]$ implies that $\bar{f}(X)$ divides $\bar{f}_{i}(X) \bar{a}(X)$ in $\mathbb{F}_{2}[X]$, a contradiction by 2.10. Such an x satisfies $x P_{i} \subset P_{i}$ since $f_{i}^{2}(\alpha) a(\alpha) \in 2 P_{i}$. Furthermore, we have:
$x^{2}=h^{2}(\alpha)+h(\alpha) f_{i}(\alpha) a(\alpha)+f_{i}^{2}(\alpha) a^{2}(\alpha) 2^{-2}=$

$$
h(\alpha) f_{i}(\alpha) a(\alpha)+\left[h^{2}(\alpha)-c_{1}(\alpha) a(\alpha)\right]-a(\alpha) b_{1}(\alpha) f_{i}(\alpha) 2^{-1} \in P_{i}
$$

since $h^{2}(\alpha)-c_{1}(\alpha) a(\alpha) \in P_{i}$ and $b_{1}(\alpha) \in 2 \mathbb{Z}[\alpha]$. So, there exists $x \in \mathbb{Q}[\alpha]-$ $\mathbb{Z}[\alpha]$ such that $x P_{i} \subset P_{i}$ and $x^{2} \in P_{i}$. Therefore $\mathbb{Z}[\alpha]$ is not seminormal.

- If $p \neq 2$.

As p is odd, we can write $p=2 n-1$, where $n \in \mathbb{N}^{*}$. Set $x=n b_{1}(\alpha)+$ $\alpha(\alpha) f_{i}(\alpha) p^{-1}$. We obtain $x \notin \mathbb{Z}[\alpha]$ as above, since $a(\alpha) f_{i}(\alpha) \notin p \mathbb{Z}[\alpha]$; furthermore $x P_{i} \subset P_{i}$ because $f_{i}^{2}(\alpha) \alpha(\alpha) \in p P_{i}$. Thus we get $x^{2}=n^{2} b_{1}^{2}(\alpha)+$ $2 n b_{1}(\alpha) f_{i}(\alpha) a(\alpha) p^{-1}+f_{i}^{2}(\alpha) a^{2}(\alpha) p^{-2}$. But $b_{1}^{2}(\alpha)-4 a(\alpha) c_{1}(\alpha)=b_{2}(\alpha) \in$
P_{i} implies

$$
\begin{aligned}
x^{2}=n^{2} b_{2}(\alpha)+ & 4 n^{2} a(\alpha) c_{1}(\alpha)+ \\
& 2 n b_{1}(\alpha) f_{i}(\alpha) a(\alpha) p^{-1}+a(\alpha) p^{-2}\left[-p b_{1}(\alpha) f_{i}(\alpha)-p^{2} c_{1}(\alpha)\right]= \\
& n^{2} b_{2}(\alpha)+\left(4 n^{2}-1\right) a(\alpha) c_{1}(\alpha)+(2 n-1) p^{-1} b_{1}(\alpha) f_{i}(\alpha) a(\alpha) .
\end{aligned}
$$

Thus $p=2 n-1$ implies $x^{2} \in P_{i}$ and $\mathbb{Z}[\alpha]$ is not seminormal.
Next, we give one of our main results, a seminormality criterion for an order $\mathbb{Z}[\alpha]$.

Theorem 3.2. - Let α be an algebraic integer with minimal polynomial $f(X)$.

For each maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ containing $f(X)$, let

$$
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)
$$

be the double Euclidean division of $f(X)$ by $f_{i}(X)$.
Then $\mathbb{Z}[\alpha]$ is seminormal if and only if $b^{2}(X)-4 a(X) c(X) \notin p^{2} M_{i}$ for each prime $p \in \mathbb{Z}$ and $f_{i}(X)$ for which $f(X) \in M_{i}^{2}$.

Proof. - We know that integral closedness implies seminormality. $\mathbb{Z}[\alpha]$ is seminormal if and only if the conditions of 3.1 are not fulfilled, that is to say, for each maximal ideal $\left(p, f_{i}(X)\right)$ in $\mathbb{Z}[X]$, either $f(X) \notin\left(p, f_{i}(X)\right)^{2}$ or $f(X) \in$ $\left(p, f_{i}(X)\right)^{2}$ and $b^{2}(X)-4 a(X) c(X) \notin p^{2}\left(p, f_{i}(X)\right.$. If we have $f(X) \notin$ $\left(p, f_{i}(X)\right)^{2}$ for each maximal ideal $\left(p, f_{i}(X)\right)$ in $\mathbb{Z}[X]$, apply 1.1 to get that $\mathbb{Z}[\alpha]$ is integrally closed.

Corollary 3.3. - Let R be a Dedekind domain and α be an element of some integral domain which contains R where α is integral over R. Let $f(X) \in R[X]$ be the minimal polynomial of α. For each maximal ideal $M_{i}=$ $\left(P, f_{i}(X)\right)$ in $R[X]$ containing $f(X)$, let

$$
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)
$$

be the double Euclidean division of $f(X)$ by $f_{i}(X)$ in $R[X]$ and let $p \in P$ be such that $P R_{P}=p R_{P}$. Then $R[\alpha]$ is seminormal if and only if, for each maximal ideal $M_{i}=\left(P, f_{i}(X)\right)$ in $R[X]$ such that $f(X) \in M_{i}^{2}$, we have:

- $2 \notin P$ implies $b^{2}(X)-4 a(X) c(X) \notin P^{2} M_{i}$,
- $2 \in P$ implies $b(X) \notin P^{2} R[X]$ or $p^{-2} a(X) c(X)$ is not a quadratic residue $\bmod \left(M_{i}\right)_{P}$.

Proof. - By 2.16, $R[\alpha]$ is not seminormal if and only if there exists a maximal ideal P in R such that $R_{P}[\alpha]$ is not seminormal. As far as the PID property of the ring \mathbb{Z} is used we can go back to the proof of 3.1 since R_{P} is a principal domain. If $R_{P}[\alpha]$ is not seminormal, by the first part of the proof of 3.1, there exists a maximal ideal $\left(M_{i}\right)_{P}=\left(p, f_{i}(X)\right)$ in $R_{P}[X]$, where $M_{i}=\left(P, f_{i}(X)\right)$ is a maximal ideal in $R[X]$, such that $f(X) \in\left(M_{i}\right)_{P}^{2}$ and $b^{2}(X)-4 a(X) c(X) \in$ $p^{2}\left(M_{i}\right)_{P} \cap R[X]=P^{2} M_{i}$. Moreover, we have $b(X)=p b_{1}(X)$ and $c(X)=$ $p^{2} c_{1}(X)$, with $b_{1}(X), c_{1}(X) \in R_{P}[X]$. So we get $b_{1}^{2}(X)-4 a(X) c_{1}(X) \in\left(M_{i}\right)_{P}$. Following the notations of the proof of 3.1, we still have in $R_{P} / P R_{P}[X]$ the congruence $\bar{h}^{2}(X) \equiv \bar{k}^{2}(X) \bar{a}(X) \bar{c}_{1}(X) \bmod \left(\bar{f}_{i}(X)\right)$.

If $2 \in P$, condition $b^{2}(X)-4 a(X) c(X) \in P^{2} M_{i}$ implies $b^{2}(X) \in P^{2} M_{i}$, since $c(X) \in M_{i}$. Because we can write $b(X)=p b_{1}(X)$ in $R_{P}[X]$, we get $b_{1}^{2}(X) \in$ $\left(M_{i}\right)_{P}$. As in the proof of 3.1, we get then $b_{1}(X) \in p R_{P}[X]$, which implies $b(X) \in p^{2} R_{P}[X] \cap R[X]=P^{2} R[X]$.

Conversely, let us assume that there exists a maximal ideal $M_{i P}=$ ($p, f_{i}(X)$) in $R_{P}[X]$ such that $f(X) \in\left(M_{i}\right)_{P}^{2}$ and such that:

- if $2 \notin P$, then $b^{2}(X)-4 a(X) c(X) \in P^{2} M_{i}$,
- if $2 \in P$, then $b(X) \in P^{2} R[X]$ and $p^{-2} a(X) c(X)$ is a quadratic residue $\bmod \left(M_{i}\right)_{P}$.
- If $2 \notin P$, we get that 2 and p are coprime in R_{P}. Hence we can write $2 n+m p=1$, with $n, m \in R_{P}$ and the proof of 3.1 is again valid with $x=n b_{1}(\alpha)+\alpha(\alpha) f_{i}(\alpha) p^{-1}$.
- If $2 \in P$, as R / P is not necessarily a finite field with characteristic 2 , any element may not be a quadratic residue $\bmod \left(M_{i}\right)_{P}$. Anyway, we can set $2=p n, n \in R_{P}$. If $a(X) c_{1}(X)=a(X) c(X) p^{-2}$ is a quadratic residue mod $\left(M_{i}\right)_{P}$, there exists $h(X) \in R_{P}[X]$ such that $\bar{h}^{2}(X)-\bar{c}_{1}(X) \bar{a}(X) \in\left(\bar{f}_{i}(X)\right)$ in $R_{P} / P R_{P}[X]$. Moreover, we have $b_{1}(X) \in p R_{P}[X]$ since $b(X) \in P^{2} R[X]$. We take then $x=h(\alpha)+f_{i}(\alpha) a(\alpha) p^{-1}$ and we end the proof as in 3.1.

So we get the following result:
$R[\alpha]$ is not seminormal if and only if there exists a maximal ideal $M_{i}=$ $\left(P, f_{i}(X)\right)$ in $R[X]$ such that $f(X) \in M_{i}^{2}$ and such that:

- if $2 \notin P$, then $b^{2}(X)-4 a(X) c(X) \in P^{2} M_{i}$
- if $2 \in P$, then $b(X) \in P^{2} R[X]$ and $p^{-2} a(X) c(X)$ is a quadratic residue $\bmod \left(M_{i}\right)_{P}$.

Then the seminormality criteria follows immediately.
Remark. - If 2 is a unit in R or if R / P is a finite field for each maximal ideal P in R containing 2 , we recover the condition of 2.2 .

4. - When is $\mathbb{Z}[\alpha]$ t-closed?

As in the previous section, we begin to give conditions for $\mathbb{Z}[\alpha]$ not to be tclosed. By 2.3, $\mathbb{Z}[\alpha]$ is not t-closed if and only if $\mathbb{Z}[\alpha] \not{ }^{t} \mathbb{Z}[\alpha]$, or equivalently, $\mathbb{Z}[\alpha] \rightarrow^{t} \mathbb{Z}[\alpha]$ is composed only of ramified or decomposed minimal morphisms (by 2.5). So, it follows from 2.4 that $\mathbb{Z}[\alpha]$ is not t-closed if and only if there exists a subring B of the integral closure of $\mathbb{Z}[\alpha]$ such that $\mathbb{Z}[\alpha] \rightarrow B$ is a ramified or a decomposed morphism. Hence, we deduce from 2.4 that $\mathbb{Z}[\alpha]$ is not $\mathrm{t}-$ closed if and only if there is some $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ and a maximal ideal P of $\mathbb{Z}[\alpha]$ with $x P \subset P$, where P is the conductor of $\mathbb{Z}[\alpha] \rightarrow \mathbb{Z}[\alpha, x]$, such that:
(1) either $x^{2}, x^{3} \in \mathbb{Z}[\alpha]$,
(2) or $x^{2}-x, x^{3}-x^{2} \in \mathbb{Z}[\alpha]$.

Condition (1) means that $\mathbb{Z}[\alpha]$ is not seminormal and is 3.1.
Thus we are aiming to give a necessary and sufficient condition for the existence of $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ and a maximal ideal P of $\mathbb{Z}[\alpha]$ such that $x P \subset P$ and x satisfies (2).

Lemma 4.1. - Let a be an algebraic integer with minimal polynomial $f(X)$. For each maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ containing $f(X)$, let

$$
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)
$$

be the double Euclidean division of $f(X)$ by $f_{i}(X)$.
Then, there exist $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ and a maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ containing $f(X)$ such that $x\left(p, f_{i}(\alpha)\right) \subset\left(p, f_{i}(\alpha)\right)$ and $x^{2}-x \in\left(p, f_{i}(\alpha)\right)$ if and only if $f(X) \in M_{i}^{2}$ and:

- if $p \neq 2,\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is a nonzero quadratic residue $\bmod M_{i}$.
- if $p=2, b(X) \notin 4 \mathbb{Z}[X]$ and there exists $h(X) \in \mathbb{Z}[X]$ such that

$$
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \in 4 M_{i} .
$$

Proof. - For a maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$, let P_{i} be the maximal ideal $\left(p, f_{i}(\alpha)\right)$ of $\mathbb{Z}[\alpha]$. As in 3.1, the condition $x P_{i} \subset P_{i}$, for $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ gives $x=\left[p h(\alpha)+f_{i}(\alpha) k(\alpha) a(\alpha)\right] p^{-1}$, where $\bar{k}(X)$ and $\bar{f}_{i}(X)$ are coprime in $\mathbb{F}_{p}[X]$, so that $f_{i}(\alpha) k(\alpha) a(\alpha) \notin p \mathbb{Z}[\alpha]$. The following statements are equivalent:
(i) $x^{2}-x \in P_{i}$,
(ii) $p\left[h^{2}(\alpha)-h(\alpha)\right]+f_{i}(\alpha) k(\alpha) a(\alpha)[2 h(\alpha)-1]-k^{2}(\alpha) a(\alpha)\left[b_{1}(\alpha) f_{i}(\alpha)+\right.$ $\left.p c_{1}(\alpha)\right] \in p P_{i}$,
(iii) $p\left[h^{2}(X)-h(X)\right]+f_{i}(X) k(X) a(X)[2 h(X)-1]-k^{2}(X) a(X)\left[b_{1}(X) f_{i}(X)+\right.$ $\left.p c_{1}(X)\right]=p^{2} a_{2}(X)+p f_{i}(X) b_{2}(X)+c_{2}(X) f(X)$, with $a_{2}(X), b_{2}(X), c_{2}(X) \in \mathrm{Z}[X]$.

Then (iii) implies in $\mathbb{F}_{p}[X]$ the relation:

$$
\bar{f}_{i}(X) \bar{k}(X) \bar{a}(X)\left[\overline{2} \bar{h}(X)-\overline{1}-\bar{k}(X) \bar{b}_{1}(X)\right]=\bar{c}_{2}(X) \bar{f}_{i}^{2}(X) \bar{a}(X)
$$

so that: $\bar{k}(X)\left[\overline{2} \bar{h}(X)-\overline{1}-\bar{k}(X) \bar{b}_{1}(X)\right]=\bar{c}_{2}(X) \bar{f}_{i}(X)$. But, as $\bar{k}(X)$ and $\bar{f}_{i}(X)$ are coprime, we get the following condition

$$
\bar{f}_{i}(X) \text { divides } \overline{2} \bar{h}(X)-\overline{1}-\bar{k}(X) \bar{b}_{1}(X)(\dagger)
$$

Thus, $2 h(\alpha)-1-k(\alpha) b_{1}(\alpha) \in P_{i}$ allows us to write:

$$
2 h(\alpha)-1-k(\alpha) b_{1}(\alpha)=p a_{3}(\alpha)+f_{i}(\alpha) b_{3}(\alpha), \text { with } a_{3}(X), b_{3}(X) \in \mathbb{Z}[X] .
$$

So (ii) implies $p\left[h^{2}(\alpha)-h(\alpha)\right]+f_{i}(\alpha) k(\alpha) a(\alpha)\left[p a_{3}(\alpha)+f_{i}(\alpha) b_{3}(\alpha)\right]-$ $p k^{2}(\alpha) a(\alpha) c_{1}(\alpha) \in p P_{i}$ which gives $h^{2}(\alpha)-h(\alpha)-k^{2}(\alpha) a(\alpha) c_{1}(\alpha) \in P_{i}$ and then

$$
\bar{f}_{i}(X) \text { divides } \bar{h}^{2}(X)-\bar{h}(X)-\bar{k}^{2}(X) \bar{a}(X) \bar{c}_{1}(X)(\dagger \dagger) .
$$

To sum up, (i) implies (\dagger) and ($\dagger \dagger$). To carry on the direct part of the proof we have to consider two cases.

- If $p=2$, condition (\dagger) becomes : $\bar{f}_{i}(X)$ divides $\overline{1}+\bar{k}(X) \bar{b}_{1}(X)$. So, $\bar{f}_{i}(X)$ and $\bar{b}_{1}(X)$ are coprime, $b(X) \notin 4 \mathbb{Z}[X]$ and we get:
$(\dagger \dagger) \Rightarrow \bar{f}_{i}(X)$ divides $\bar{b}_{1}^{2}(X)\left[\bar{h}^{2}(X)+\bar{h}(X)\right]-\bar{a}(X) \bar{c}_{1}(X)$
\Rightarrow there exists $h(X) \in \mathbb{Z}[X]$ such that $b_{1}^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c_{1}(X) \in\left(2, f_{i}(X)\right)$
\Rightarrow there exists $h(X) \in \mathbb{Z}[X]$ such that $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \in 4\left(2, f_{i}(X)\right)$.
- If $p \neq 2$, as in 3.1, set $p=2 n-1$. Eliminating $\bar{h}(X)$ between (\dagger) and $(\dagger \dagger)$, we get that $(\dagger) \Leftrightarrow \bar{f}_{i}(X)$ divides $\bar{h}(X)-\bar{n}\left[\overline{1}+\bar{k}(X) \bar{b}_{1}(X)\right]$ and this last condition combines with ($\dagger \dagger$) to give the following equivalent conditions to $(\dagger \dagger):$
- $\bar{f}_{i}(X) \quad$ divides $\quad \bar{n}^{2}\left[\overline{1}+\overline{2} \bar{k}(X) \bar{b}_{1}(X)+\bar{k}^{2}(X) \bar{b}_{1}^{2}(X)\right]-\bar{n}[\overline{1}+$ $\left.\bar{k}(X) \bar{b}_{1}(X)\right]-\bar{k}^{2}(X) \bar{a}(X) \bar{c}_{1}(X)$
- $\bar{f}_{i}(X) \quad$ divides $\quad \bar{n}^{2}-\bar{n}+(\overline{2 n}-\overline{1}) \bar{n} \bar{k}(X) \bar{b}_{1}(X)+\bar{k}^{2}(X)\left[\bar{n}^{2} \bar{b}_{1}^{2}(X)-\right.$ $\left.\bar{a}(X) \bar{c}_{1}(X)\right]$.
- $\bar{f}_{i}(X)$ divides $\overline{4}\left(\bar{n}^{2}-\bar{n}\right)+\overline{4} \bar{k}^{2}(X)\left[\bar{n}^{2} \bar{b}_{1}^{2}(X)-\bar{a}(X) \bar{c}_{1}(X)\right]$,
- $\bar{f}_{i}(X)$ divides $\bar{k}^{2}(X)\left[\bar{b}_{1}^{2}(X)-\overline{4} \bar{a}(X) \bar{c}_{1}(X)\right]-\overline{1}$.

Now, bearing in mind that $\bar{k}(X)$ and $\bar{f}_{i}(X)$ are coprime, we observe that there exists $\bar{k}_{1}(X)$ such that $\bar{f}_{i}(X)$ divides $\bar{k}(X) \bar{k}_{1}(X)-\overline{1}$. Therefore, we get that $(\dagger \dagger)$ is equivalent to

$$
\bar{f}_{i}(X) \text { divides } \bar{b}_{1}^{2}(X)-\overline{4} \bar{a}(X) \bar{c}_{1}(X)-\bar{k}_{1}^{2}(X)
$$

which implies $b_{1}^{2}(X)-4 a(X) c_{1}(X)=\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is a nonzero quadratic residue $\bmod \left(p, f_{i}(X)\right)$.

Conversely, let us assume that the conditions of 4.1 are fulfilled.
If $p \neq 2$ and if there exists $k_{1}(X) \in \mathbb{Z}[X] \backslash\left(p, f_{i}(X)\right)$ such that

$$
\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}-k_{1}^{2}(X) \in\left(p, f_{i}(X)\right)
$$

we have $b_{1}^{2}(\alpha)-4 a(\alpha) c_{1}(\alpha)-k_{1}^{2}(\alpha) \in P_{i}$.
Consider $h(X)=n\left[1+k(X) b_{1}(X)\right]$, with $k(X) k_{1}(X)-1 \in\left(p, f_{i}(X)\right)$, since $\bar{k}_{1}(X)$ and $\bar{f}_{i}(X)$ are coprime. By the direct part of the proof, we get:

$$
h^{2}(X)-h(X)-k^{2}(X) a(X) c_{1}(X) \in\left(p, f_{i}(X)\right)
$$

setting $x=h(\alpha)+f_{i}(\alpha) k(\alpha) a(\alpha) p^{-1}$, we have: $x \notin \mathbb{Z}[\alpha], x^{2}-x \in P_{i}$ and $x P_{i} \subset$ P_{i}, since $2 h(X)-1-k(X) b_{1}(X) \in\left(p, f_{i}(X)\right)$.

If $p=2$, assume that $b(X) \notin 4 \mathbb{Z}[X]$ and that there exist $h(X) \in \mathbb{Z}[X]$ such that $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \in 4\left(2, f_{i}(X)\right)$ and $k(X) \in \mathbb{Z}[X]$ such that $k(X) b_{1}(X)-1 \in\left(2, f_{i}(X)\right)$. Then, for $x=h(\alpha)+f_{i}(\alpha) k(\alpha) \alpha(\alpha) 2^{-1}$, we still have $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ such that $x P_{i} \subset P_{i}$ and $x^{2}-x \in P_{i}$ and we are done.

Proposition 4.2. - Let α be an algebraic integer with minimal polynomial $f(X)$.

For each maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ containing $f(X)$, let

$$
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)
$$

be the double Euclidean division of $f(X)$ by $f_{i}(X)$.
Then, $\mathbb{Z}[\alpha]$ is not t-closed if and only if there exists a maximal ideal $M_{i}=$ $\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ such that $f(X) \in M_{i}^{2}$ and:
(a) if $p \neq 2,\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is a quadratic residue mod M_{i}.
(b) if $p=2, b(X) \in 4 \mathbb{Z}[X]$, or there exists $h(X) \in \mathbb{Z}[X]$ such that

$$
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \in 4 M_{i} .
$$

Proof. - Come back to the beginning of this section. We have seen that $\mathbb{Z}[\alpha]$ is not t -closed if and only if there exist some $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ and a maximal ideal P of $\mathbb{Z}[\alpha]$ with $x P \subset P$ such that:
(1) either $x^{2}, x^{3} \in \mathbb{Z}[\alpha]$,
(2) or $x^{2}-x, x^{3}-x^{2} \in \mathbb{Z}[\alpha]$.

If (1) is satisfied, $\mathbb{Z}[\alpha]$ is not seminormal and there exists, by 3.1 , a maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ such that $f(X) \in M_{i}^{2}$ and $b^{2}(X)-4 a(X) c(X) \in$ $p^{2} M_{i}$, that is to say, $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2} \in M_{i}$.

If (2) is satisfied, P is the conductor of $\mathbb{Z}[\alpha] \rightarrow \mathbb{Z}[\alpha, x]$ and $x^{3}-x^{2} \in \mathbb{Z}[\alpha]$ implies $x^{2}-x \in P$; we are then under the assumption of 4.1 and we get $f(X) \in M_{i}^{2}$.

If $p \neq 2$, with the notations of 4.1, we get that $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is a nonzero quadratic residue $\bmod M_{i}$. But, $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2} \in M_{i}$ implies $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is a zero quadratic residue $\bmod M_{i}$.

Hence in any case $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is a quadratic residue $\bmod M_{i}$.
If $p=2$, and if (1) is satisfied, we still have $\left[b^{2}(X)-4 a(X) c(X)\right] 2^{-2} \in M_{i}=$ ($2, f_{i}(X)$), with $f(X) \in M_{i}^{2}$. Remember that this last condition implies $b_{1}^{2}(X)-$ $4 a(X) c_{1}(X) \in M_{i}$, where $b(X)=2 b_{1}(X)$ and $c(X)=4 c_{1}(X)$; this implies that $b_{1}(X) \in 2 \mathbb{Z}[X]$.

If (2) is satisfied, we have seen in 4.1 that $b(X) \notin 4 \mathbb{Z}[X]$ and that there exists $h(X) \in \mathbb{Z}[X]$ such that $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \in 4 M_{i}$.

Conversely, let us assume the conditions of 4.2 are fulfilled. Let $M_{i}=$ ($p, f_{i}(X)$) be a maximal ideal of $\mathbb{Z}[X]$ such that $f(X) \in M_{i}^{2}$ and satisfying (a) or (b):
(a) If $p \neq 2$ then $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is a quadratic residue $\bmod M_{i}$. If this quadratic residue is nonzero, by 4.1, there exists $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ such that $x^{2}-x \in P_{i}=\left(p, f_{i}(\alpha)\right)$, with $x P_{i} \subset P_{i}$. This implies $x^{3}-x^{2} \in \mathbb{Z}[\alpha]$ and $\mathbb{Z}[\alpha]$ is not t -closed.

If $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2} \in M_{i}$, then $\mathbb{Z}[\alpha]$ is not seminormal in view of 3.1, whence is not t -closed.
(b) If $p=2$ and $b(X) \in 4 \mathbb{Z}[X]$, then $b^{2}(X)-4 a(X) c(X) \in 4 M_{i}$ and $\mathbb{Z}[\alpha]$ is still not t -closed.

If $p=2$ and $b(X) \notin 4 \mathbb{Z}[X]$, there exists $h(X) \in \mathbb{Z}[X]$ such that

$$
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \in 4 M_{i}
$$

then it follows again that $\mathbb{Z}[\alpha]$ is not t -closed by 4.1.

Remarks.
(1) If $f(X) \in\left(p, f_{i}(X)\right)^{2}$ is such that $\bar{f}_{i}^{3}(X)$ divides $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$, we can observe that for any prime integer p, the conditions of 4.2 are fulfilled:

Indeed $\bar{f}_{i}(X)$ divides $\bar{a}(X)$ whence $a(X) \in\left(p, f_{i}(X)\right)$.
If $p \neq 2$, the condition $« b_{1}^{2}(X)-4 a(X) c_{1}(X)$ is a quadratic residue \bmod ($p, f_{i}(X)$)» is always satisfied.

If $p=2$, the condition $« b(X) \in 4 \mathbb{Z}[X]$ or there exists $h(X) \in \mathbb{Z}[X]$ such that $b_{1}^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c_{1}(X) \in\left(2, f_{i}(X)\right)$ » is satisfied, since we can choose $h(X)=0$ if $b(X) \notin 4 \mathbb{Z}[X]$.
(2) The map $z \mapsto z^{2}+z$ is an additive group endomorphism of $\mathbb{F}_{2}[X] /\left(\bar{f}_{i}(X)\right)$, the kernel of which is $\{0,1\}$. Since this map is not surjective, for a given $\bar{k}^{2}(X) \bar{a}(X) \bar{c}_{1}(X) \in \mathbb{F}_{2}[X]$, there is not always $\bar{h}(X) \in \mathbb{F}_{2}[X]$ such that ($\dagger \dagger$) is satisfied; nevertheless half of the elements of $\mathbb{F}_{2}[X] /\left(\bar{f}_{i}(X)\right)$ can be written $z^{2}+z$, with $z \in \mathbb{F}_{2}[X] /\left(\bar{f}_{i}(X)\right)$.

We are now able to give a characterization for $\mathbb{Z}[\alpha]$ to be t-closed.
Theorem 4.3. - Let α be an algebraic integer with minimal polynomial $f(X)$.

For each maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ of $\mathbb{Z}[X]$ containing $f(X)$, let

$$
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)
$$

be the double Euclidean division of $f(X)$ by $f_{i}(X)$.
Then $\mathbb{Z}[\alpha]$ is t-closed if and only if, for each maximal ideal $M_{i}=$ ($p, f_{i}(X)$) for which $f(X) \in M_{i}^{2}$, we have:

- if $p \neq 2,\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is not a quadratic residue mod $M_{i}(\ddagger)$.
- if $p=2, b(X) \notin 4 \mathbb{Z}[X]$ and, for each $h(X) \in \mathbb{Z}[X]$, we have:

$$
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin 4 M_{i}(\neq \ddagger) .
$$

Moreover, if $\mathbb{Z}[\alpha]$ is t-closed, for each maximal ideal $M_{i}=\left(p, f_{i}(X)\right)$ for which $f(X) \in M_{i}^{2}$, we have $\bar{f}(X) \notin\left(\bar{f}_{i}^{3}(X)\right)$ in $\mathbb{F}_{p}[X]$.

Proof. - The proof is similar to the proof of 3.2 .
Remark. - Set $K=\mathbb{F}_{p}[X] /\left(\bar{f}_{i}(X)\right)$ and denote by $\pi(x)$ the residue class of $x \in \mathbb{Z}[X]$. Then:

If $p \neq 2$, condition (\ddagger) is equivalent to: $Y^{2}-\pi\left[\left(b^{2}(X)-4 a(X) c(X)\right) p^{-2}\right]$ is irreducible in $K[Y]$.

If $p=2$, condition ($\ddagger \ddagger$) is equivalent to: $\left(Y^{2}+Y\right) \pi\left(b^{2}(X) 2^{-2}\right)-$ $\pi\left(a(X) c(X) 2^{-2}\right)$ is irreducible in $K[Y]$.

Proposition 4.4. - Let $\mathbb{Z}[\alpha]$ be a t-closed, non integrally closed ring, with integral closure $\bar{Z}[\alpha]$. There exist $P \in \operatorname{Spec}(\mathbb{Z}[\alpha])$ and $Q \in \operatorname{Spec}(\bar{Z}[\alpha])$ lying over P, such that $[\bar{Z}[\alpha] / Q: \mathbb{Z}[\alpha] / P]$ is even.

Proof. - Remark 2.12 (1) shows that there is some $x \in \overline{\mathbb{Z}[\alpha]} \backslash \mathbb{Z}[\alpha]$ satisfying a quadratic relation over $\mathbb{Z}[\alpha]$. Denote by A (resp. B) the ring $\mathbb{Z}[\alpha]$ (resp. $\mathbb{Z}[\alpha, x])$. We have seen that there exists a maximal ideal P in A such that $x P \subset$ $P:$ in fact, P is the conductor of t-closed minimal morphism $A \rightarrow B$ since A is a t-closed ring [6, Remark 2 of Definition 3.1]. Thus, P is a maximal ideal in B by [6, Theorem 3.15] and $B / P=(A / P)[\bar{x}]$ is a two-dimensional vector space over A / P. As $A \rightarrow \overline{\mathbb{Z}[\alpha]}$ is a finite (order) morphism, we get the result.

Remark. - Assume that $A=\mathbb{Z}[\alpha]$ is not integrally closed, with integral closure \bar{A}. Then there exists an element $x \in \bar{A} \backslash A$ which is a zero of a monic polynomial $f(X) \in A[X]$ with degree 2 :

- if $\mathbb{Z}[\alpha]$ is t-closed, the result is given by 4.4,
- if $\mathbb{Z}[\alpha]$ is not t -closed, the result is given by 2.5 .

We recall that an integral domain A is quadratically integrally closed if $x^{2}+a x+b=0$, for x in the quotient field of A and $a, b \in A$, implies $x \in A$ [2].

This implies the following result:
Proposition 4.5. - Let α be an algebraic integer. Then, $\mathbb{Z}[\alpha]$ is quadratically integrally closed if and only if it is integrally closed.

Proof. - Obviously, an integrally closed ring is quadratically integrally closed. Conversely, assume that $\mathbb{Z}[\alpha]$ is quadratically integrally closed and not integrally closed. By 2.11 and Remark 2.12 (1), there exists $x \in \mathbb{Q}[\alpha] \backslash \mathbb{Z}[\alpha]$ satisfying a quadratic (integral) relation over $\mathbb{Z}[\alpha]$, i.e., there exist $a(\alpha), b(\alpha) \in \mathbb{Z}[\alpha]$ such that $x^{2}+a(\alpha) x+b(\alpha)=0$. Then, the assumption on $\mathbb{Z}[\alpha]$ implies $x \in \mathbb{Z}[\alpha]$, a contradiction. Therefore, $\mathbb{Z}[\alpha]$ is integrally closed.

Corollary 4.6. - Let R be a Dedekind domain and α be an element of some integral domain which contains R where α is integral over R. Let $f(X) \in R[X]$ be the minimal polynomial of α. For each maximal ideal $M_{i}=$ $\left(P, f_{i}(X)\right)$ in $R[X]$ containing $f(X)$, let

$$
f(X)=a(X) f_{i}^{2}(X)+b(X) f_{i}(X)+c(X)
$$

be the double Euclidean division of $f(X)$ by $f_{i}(X)$ in $R[X]$ and let $p \in P$ be such that $P R_{P}=p R_{P}$. Then $R[\alpha]$ is t-closed if and only if, for each maximal ideal $M_{i}=\left(P, f_{i}(X)\right)$ in $R[X]$ such that $f(X) \in M_{i}^{2}$, we have:

- $2 \notin P$ implies $\left[b^{2}(X)-4 a(X) c(X)\right] p^{-2}$ is not a quadratic residue $\bmod \left(M_{i}\right)_{P}$
- $2 \in P$ implies:
- if $b(X) \notin P^{2} R[X]$, then $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin P^{2} M_{i}$ for each $h(X) \in R[X]$
- if $b(X) \in P^{2} R[X]$, then, $p^{-2} a(X) c(X)$ is not a quadratic residue \bmod $\left(M_{i}\right)_{P}$.

Proof. - By 2.16, $R[\alpha]$ is not t-closed if and only if there exists a maximal ideal P in R such that $R_{P}[\alpha]$ is not t-closed. Then, there exists a maximal ideal in $R_{P}[X]$, of the form $\left(M_{i}\right)_{P}$, where $M_{i}=\left(P, f_{i}(X)\right)$ is a maximal ideal in $R[X]$ such that $f(X) \in\left(M_{i}^{2}\right)_{P}$.

Following the proof of 4.3, we begin to give conditions for the existence of an element x in the integral closure of $R_{P}[\alpha]$ such that $x^{2}-x$ or $x^{2} \in\left(P_{i}\right)_{P}$ and $x\left(P_{i}\right)_{P} \subset\left(P_{i}\right)_{P}$, where $P_{i}=\left(P, f_{i}(\alpha)\right)$ is a maximal ideal in $R[\alpha]$. We get then $\left(P_{i}\right)_{P}=\left(p, f_{i}(\alpha)\right)$ in $R_{P}[\alpha]$, where $p \in P$ is such that $P R_{P}=p R_{P}$.

Condition $x^{2}-x \in\left(P_{i}\right)_{P}$ is the same as the one get in 4.1, considering the cases $2 \in P$ and $2 \notin P$ instead of $p=2$ and $p \neq 2$. Now, we have seen in 3.3 that, if $2 \in P$, there exists x in the integral closure of $R_{P}[\alpha]$ such that $x^{2} \in\left(P_{i}\right)_{P}$ and $x\left(P_{i}\right)_{P} \subset\left(P_{i}\right)_{P}$ if and only if $b(X) \in P^{2} R[X]$ and $a(X) c(X) p^{-2}$ is a quadratic residue $\bmod \left(M_{i}\right)_{P}$. When $2 \in P$, the condition of non t-closedness of $R_{P}[\alpha]$ gotten in 4.2 for $p=2$ is changed into one of the two following conditions:
$« b(X) \notin P^{2} R_{P}[X]$ and there exists $h(X) \in R_{P}[X]$ such that

$$
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \in p^{2}\left(M_{i}\right)_{P} \gg
$$

or
$« b(X) \in P^{2} R_{P}[X]$ and $p^{-2} a(X) c(X)$ is a quadratic residue $\bmod \left(M_{i}\right)_{P}$ ».
We get then the two following conditions for t-closedness of $R_{P}[\alpha]$, when $2 \in P$:
$« b(X) \in P^{2} R_{P}[X]$ or $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin p^{2}\left(M_{i}\right)_{P}$
for each $h(X) \in R_{P}[X]$ »
and
« $b(X) \notin P^{2} R_{P}[X]$ or $p^{-2} a(X) c(X)$ is not a quadratic residue $\bmod \left(M_{i}\right)_{P}$ ».
Hence it results that $R_{P}[\alpha]$ is t-closed, when $2 \in P$, if and only if the two following conditions are satisfied:
$« b(X) \notin P^{2} R_{P}[X]$ implies that for each $h(X) \in R_{P}[X]$ we have

$$
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin p^{2}\left(M_{i}\right)_{P} \gg
$$

and
$« b(X) \in P^{2} R_{P}[X]$ implies that $p^{-2} a(X) c(X)$
is not a quadratic residue $\bmod \left(M_{i}\right)_{P}$ ".
In fact, the condition
for each $h(X) \in R_{P}[X]$ we have $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin p^{2}\left(M_{i}\right)_{P}$
is equivalent to:
for each $h(X) \in R[X]$ we have $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin P^{2} M_{i}$.

Indeed, we have seen in 3.3 that $p^{2}\left(M_{i}\right)_{P} \cap R[X]=P^{2} M_{i}$. So, if $h(X) \in R[X]$ is such that

$$
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin p^{2}\left(M_{i}\right)_{P}
$$

we get then $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin P^{2} M_{i}$. Conversely, assume that for each $h(X) \in R[X]$, we have $b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X) \notin P^{2} M_{i}$ and let $g(X) \in R_{P}[X]$. Thanks to the isomorphism $R / P \simeq R_{P} / P R_{P}$, there exists $h(X) \in R[X]$ such that $g(X)=h(X)+p k(X)$, where $k(X) \in R_{P}[X]$. Now

$$
\begin{array}{r}
b^{2}(X)\left[h^{2}(X)+h(X)\right]-a(X) c(X)=p^{2}\left[b_{1}^{2}(X)\left[g^{2}(X)+g(X)\right]-a(X) c_{1}(X)\right]+ \\
p^{2} b_{1}^{2}(X)\left[p^{2} k^{2}(X)-2 p g(X) k(X)-p k(X)\right] \notin p^{2}\left(M_{i}\right)_{P} .
\end{array}
$$

But $p^{2} b_{1}^{2}(X)\left[p^{2} k^{2}(X)-2 p g(X) k(X)-p k(X)\right] \in p^{2}\left(M_{i}\right)_{P}$ implies

$$
b_{1}^{2}(X)\left[g^{2}(X)+g(X)\right]-a(X) c_{1}(X) \notin\left(M_{i}\right)_{P}
$$

and then $b^{2}(X)\left[g^{2}(X)+g(X)\right]-a(X) c(X) \notin p^{2}\left(M_{i}\right)_{P}$.

5. - Application to simple cubic orders.

H. Tanimoto [11, Theorem 2.3, Theorem 4.4 and Theorem 5.1], D. Dobbs and M. Fontana [3, Theorem 2.5 and Corollary 4.5] obtained characterizations for a quadratic order to be integrally closed, quasinormal or GPVD (which is equivalent to be t-closed in our situation) or seminormal. Their results can be deduced from 2.12, 3.2 and 4.3. Now we study the situation for another special class of algebraic orders : a cubic order $\mathbb{Z}[\alpha]$, where α is a zero of the irreducible polynomial $f(X)=X^{3}+a X+b$ (in $\mathbb{Z}[X]$).

Let p be a prime integer. The decomposition in $\mathbb{F}_{p}[X]$ of $\bar{f}(X)$ into monic irreducible polynomials $\bar{f}_{i}(X)$ give $\bar{f}(X)=\prod \bar{f}_{i}^{e_{i}}(X)$, with an index e_{i} such that $e_{i} \geqslant 2$ if and only if $\bar{f}(X)$ has a multiple zero, that is to say if and only if p divides the discriminant $\Delta=-\left(4 a^{3}+27 b^{2}\right)$ of $f(X)$.

Proposition 5.1. - Let α be an algebraic integer with minimal polynomial

$$
f(X)=X^{3}+a X+b \in \mathbb{Z}[X] .
$$

Then, $\mathbb{Z}[\alpha]$ is integrally closed if and only if, for each prime integer p dividing the discriminant $\Delta=-\left(4 a^{3}+27 b^{2}\right)$ of $f(X)$, we have:

- if $p=2,3$ or divides both a and b, then p^{2} does not divide $f(a-b)$,
- for all other p dividing Δ, then p^{2} does not divide Δ.

Proof. - We know by 2.13 that $\mathbb{Z}[\alpha]$ is integrally closed if and only if, for each prime integer p and each monic irreducible divisor $\bar{f}_{i}(X)$ of $X^{3}+\bar{a} X+\bar{b}$ in $\mathbb{F}_{p}[X]$, we have $X^{3}+a X+b \notin\left(p, f_{i}(X)\right)^{2}$, where $f_{i}(X)$ is a monic polynomial in $\mathbb{Z}[X]$ with residue $\bar{f}_{i}(X)$ in $\mathbb{F}_{p}[X]$.

If $\operatorname{deg} \bar{f}_{i}(X) \geqslant 2$, we get $X^{3}+a X+b \notin\left(p, f_{i}(X)\right)^{2}$, since $\bar{f}_{i}^{2}(X)$ cannot divide $\bar{f}(X)$.

Hence it is enough to consider the case $\operatorname{deg} \bar{f}_{i}(X)=1$, i.e., $\bar{f}_{i}(X)=X-\bar{a}_{1}$. Then $a_{1} \in \mathbb{Z}$, with residue $\bar{a}_{1} \in \mathbb{F}_{p}$, satisfies the relation $f\left(a_{1}\right)=a_{1}^{3}+a a_{1}+b \in$ $p \not Z$. With definition 2.10, we obtain $f(X)=\left(X-a_{1}\right)^{2}\left(X+2 a_{1}\right)+\left(X-a_{1}\right) k+$ $f\left(a_{1}\right)$, where $k=f^{\prime}\left(a_{1}\right)=3 a_{1}^{2}+a$, that is:

$$
f(X)=\left(X-a_{1}\right)^{2}\left(X+2 a_{1}\right)+\left(X-a_{1}\right)\left(3 a_{1}^{2}+a\right)+f\left(a_{1}\right)(*) .
$$

Consider the relation $f(X) \in\left(p, X-a_{1}\right)^{2}$, which is equivalent to

$$
\left(X-a_{1}\right) f^{\prime}\left(a_{1}\right)+f\left(a_{1}\right) \in\left(p, X-a_{1}\right)^{2},
$$

and also, after an easy calculation, to $f^{\prime}\left(a_{1}\right) \in p \not Z_{(* *)}$ and $f\left(a_{1}\right) \in p^{2} \mathbb{Z}_{(}(* * *)$.

Then, for such an $a_{1} \in \mathbb{Z}$, we have in \mathbb{F}_{p} :

$$
\left\{\begin{array}{l}
\bar{a}_{1}^{3}+\bar{a} \bar{a}_{1}+\bar{b}=\overline{0} \tag{S}\\
\overline{3} \bar{a}_{1}^{2}+\bar{a}=\overline{0}
\end{array}\right.
$$

where the last condition is equivalent to ($* *$), which implies $\bar{\Delta}=-$ $\overline{4 a^{3}+27 b^{2}}=\overline{0}$ in \mathbb{F}_{p}. Conversely, if $\bar{\Delta}=\overline{0}$ in \mathbb{F}_{p}, there exists $a_{1} \in \mathbb{Z}$ satisfying (S).

Now, if p is a prime integer such that p divides Δ, there exists $a_{1} \in \mathbb{Z}$ satisfying (S).

- If $p=2,3$ or divides both a and b, relation (S) is fulfilled by $a_{1}=a-b$. So, $f(X) \in\left(p, X-a_{1}\right)^{2}$ if and only if p^{2} divides $(a-b)^{3}+a(a-b)+b$.
- If $p \neq 2,3$ and does not divide both a and b, relation (S) yields $\overline{2 a a_{1}+3 b}=\overline{0}$ in \mathbb{F}_{p}; thus we get $\bar{a}_{1}=-(\overline{3 b})(\overline{2 a})^{-1}$. Furthermore, we can write $a_{1}^{3}+a a_{1}+b=n p$ and $3 a_{1}^{2}+a=m p$, with $n, m \in \mathbb{Z}$. Thus, we observe that:

$$
-\Delta=4 a^{3}+27 b^{2}=4 m^{3} p^{3}+9 p^{2}\left(3 n^{2}-6 n m a_{1}-a_{1}^{2} m^{2}\right)+108 a_{1}^{3} p n .
$$

As $\overline{3} \bar{a}_{1}^{2}=-\bar{a}$ in \mathbb{F}_{p}, we get that p does not divide a_{1}. So, $f\left(a_{1}\right) \in p^{2} \not Z_{1}$ if and only if p divides n, or also, if and only if p^{2} divides Δ.

To sum up, for $a_{1} \in \mathbb{Z}$ such that $f\left(a_{1}\right) \in p \mathbb{Z}$, the following conditions are equivalent:

- $f(X) \notin\left(p, X-a_{1}\right)^{2}$,
- $f\left(a_{1}\right) \notin p^{2} \mathbb{Z}_{1}$ or $f^{\prime}\left(a_{1}\right) \notin p \mathbb{Z}$,
- either \bar{a}_{1} is not a multiple zero of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$ or \bar{a}_{1} is a multiple zero of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$ (and, in this case, p divides Δ) and $f\left(a_{1}\right) \notin p^{2} Z$,
- either \bar{a}_{1} is not a multiple zero of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$ or p divides Δ and
- if $p=2,3$ or divides both a and b, then p^{2} does not divide $(a-b)^{3}+$ $a(a-b)+b$,
- for all other p dividing Δ, then p^{2} does not divide Δ.

Thus the result is gotten.

Remark. - We have shown, under suitable assumptions (Δ is coprime to $2,3, a$ and b), a noteworthy converse to the well known result: if the discriminant of an integral ring extension A of \mathbb{Z} is square-free, then A is integrally closed (see for instance [9, 5.3, Proposition 1]). Let α be an algebraic integer with minimal polynomial $f(X)=X^{3}+a X+b \in \mathbb{Z}[X]$.

If the discriminant Δ of $f(X)$ is coprime to $2,3, a$ and b and $\mathbb{Z}[\alpha]$ is integrally closed, then Δ is square-free.

Example. - Let α be an algebraic integer with minimal polynomial $X^{3}+$ $2 X+2$ (an irreducible polynomial by Eisenstein's criterion). Here $a=b=2$, so $\Delta=-140=-7 \times 5 \times 4$. Then, 25 and 49 does not divide Δ, 2 divides Δ, but 4 does not divide $(a-b)^{3}+a(a-b)+b=2$. So, $\mathbb{Z}[\alpha]$ is integrally closed although 4 divides Δ.

Proposition 5.2. - Let α be an algebraic integer with minimal polynomial

$$
f(X)=X^{3}+a X+b \in \mathbb{Z}[X]
$$

Then, $\mathbb{Z}[\alpha]$ is t-closed if and only if for each prime integer p dividing the discriminant $\Delta=-\left(4 a^{3}+27 b^{2}\right)$ of $f(X)$, conditions (1) and (2) are verified:
(1) if $p \neq 2,3$, does not divide both a and b and if p^{2} divides Δ, we have Δp^{-2} is not a quadratic residue $\bmod (p)$.
(2) if $p=2,3$ or divides both a and b and if p^{2} divides $f(a-b)$, then $p=$ 2 and 8 divides neither $f(a-b)$ nor $2 f^{\prime}(a-b)$ (or, equivalently 4 divides $a+1)$.

Proof. - Let us assume that $\mathbb{Z}[\alpha]$ is not integrally closed. So, with the notations of 4.3, there must be a prime p and $f_{i}(X) \in \mathbb{Z}[X]$ such that $f(X) \in$ $\left(p, f_{i}(X)\right)^{2}$. According to the proof of 5.1, we must have $\operatorname{deg} \bar{f}_{i}(X)=1$, so that $f_{i}(X)=X-a_{1}$ and \bar{a}_{1} is a multiple root of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$.

As we get $f(X)=\left(X-a_{1}\right)^{2}\left(X+2 a_{1}\right)+\left(X-a_{1}\right)\left(3 a_{1}^{2}+a\right)+f\left(a_{1}\right)$, it follows from 4.3 that $\mathbb{Z}[\alpha]$ is t-closed if and only if, for each prime $p \in \mathbb{Z}$ and $f_{i}(X)$ for which $f(X) \in\left(p, f_{i}(X)\right)^{2}$, we have:

- if $p \neq 2,\left[\left(a+3 a_{1}^{2}\right)^{2}-4\left(X+2 a_{1}\right) f\left(a_{1}\right)\right] p^{-2}$ is not a quadratic residue $\bmod \left(p, X-a_{1}\right)(\ddagger)$,
- if $p=2, a+3 a_{1}^{2} \notin 4 \mathbb{Z}$ and, for each $h(X) \in \mathbb{Z}[X]$, we get:

$$
\left(a+3 a_{1}^{2}\right)^{2}\left[h^{2}(X)+h(X)\right]-\left(X+2 a_{1}\right) f\left(a_{1}\right) \notin 4\left(2, X-a_{1}\right)(\ddagger \ddagger) .
$$

For $p \neq 2$, condition (\ddagger) is equivalent to:

$$
\forall h(X) \in \mathbb{Z}[X], \quad\left(a+3 a_{1}^{2}\right)^{2}-12 a_{1} f\left(a_{1}\right)-p^{2} h^{2}(X) \notin p^{2}\left(p, X-a_{1}\right)
$$

But, we can write $h(X)=\left(X-a_{1}\right) g(X)+k, k \in \mathbb{Z}$. So, we have

$$
\begin{aligned}
(\ddagger) & \Leftrightarrow \forall k \in \mathbb{Z},\left(a+3 a_{1}^{2}\right)^{2}-12 a_{1}\left(a_{1}^{3}+a a_{1}+b\right)-k^{2} p^{2} \notin p^{3} \mathbb{Z} \\
& \Leftrightarrow \forall k \in \mathbb{Z}, a^{2}-3 a_{1}^{4}-6 a a_{1}^{2}-12 a_{1} b-k^{2} p^{2} \notin p^{3} \mathbb{Z}
\end{aligned}
$$

As p^{2} divides Δ, we can write $\Delta=-\left(4 a^{3}+27 b^{2}\right)=-r p^{2}$, with $r \in \mathbb{Z}$, and $2 a a_{1}+3 b=s p$, with $s \in \mathbb{Z}$, since a_{1} is such that $\overline{2 a a_{1}+3 b}=\overline{0}$ in \mathbb{F}_{p}.

Moreover, if $p \neq 3$ and does not divide a and b, we get then:
$(\ddagger) \Leftrightarrow \forall k \in \mathbb{Z}, 16 a^{4}\left(a^{2}-3 a_{1}^{4}-6 a a_{1}^{2}-12 a_{1} b-k^{2} p^{2}\right) \notin p^{3} \mathbb{Z}$
$\Leftrightarrow \forall k \in \mathbb{Z}, 16 a^{6}-3(s p-3 b)^{4}-24 a^{3}(s p-3 b)^{2}-$
$96 a^{3} b(s p-3 b)-16 a^{4} k^{2} p^{2} \notin p^{3} Z$
$\Leftrightarrow \forall k \in \mathbb{Z},\left(4 a^{3}+27 b^{2}\right)\left(-6 s^{2} p^{2}+12 s p b+4 a^{3}-9 b^{2}\right)-16 a^{4} k^{2} p^{2} \notin p^{3} \mathbb{Z}$
$\Leftrightarrow \forall k \in \mathbb{Z}, r\left(4 a^{3}-9 b^{2}\right)-k^{2} \notin p \mathbb{Z}$, since $\overline{4 a^{2}}$ is invertible in \mathbb{F}_{p}
$\Leftrightarrow \forall k \in \mathbb{Z},-36 b^{2} r-k^{2} \notin p \mathbb{Z}$ since $4 a^{3}+27 b^{2} \in p^{2} \mathbb{Z}$
$\Leftrightarrow \forall k \in \mathbb{Z},-r-k^{2} \notin p \mathbb{Z}$ since $\overline{6 b}$ is invertible in \mathbb{F}_{p}.
So (\ddagger) is equivalent to $-\left(4 a^{3}+27 b^{2}\right) p^{-2}=\Delta p^{-2}$ is not a quadratic residue modulo p.

If $p=3$, we know that 9 divides $f\left(a_{1}\right)$ so that $12 a_{1}\left(a_{1}^{3}+a a_{1}+b\right) \in 27 \mathbb{Z}$.
In the same way, if p divides both a and b, we obtain that p^{2} divides $f\left(a_{1}\right)$ and we have seen in 5.1 that we can choose $a_{1}=0$.

In these two cases, (\ddagger) is equivalent to $\left(a+3 a_{1}^{2}\right)^{2} p^{-2}$ is not a quadratic residue $\bmod (p)$, a contradiction. So, we cannot have $p=3$ or p divides both a and b.

If $p=2$, the same argumentation for $h(X)$ shows that condition ($\ddagger \ddagger)$ is equivalent to: for each $k \in \mathbb{Z},\left(a+3 a_{1}^{2}\right)^{2}\left(k^{2}+k\right)-3 a_{1} f\left(a_{1}\right) \notin 8 \mathbb{Z}$ and $a+$ $3 a_{1}^{2} \notin 4 Z$. But, since 2 divides $a+3 a_{1}^{2}$ and $k^{2}+k$ for each $k \in \mathbb{Z}$, condition ($\left.\ddagger \ddagger\right)$ is equivalent to $a_{1} f\left(a_{1}\right)$ and $2 f^{\prime}\left(a_{1}\right) \notin 8 \mathbb{Z}$. Furthermore, we have only to consider the case where $f(X) \in\left(2, X-a_{1}\right)^{2}$, which, by the proof of 5.1 , is equivalent to 2 divides Δ and 4 divides $f\left(a_{1}\right)$. So, it implies that a is odd, 4 divides $a+$ 1 , and $a_{1} f\left(a_{1}\right) \notin 8 \mathbb{Z}$ is then equivalent to $(a-b)^{3}+a(a-b)+b \notin 8 \mathbb{Z}$. Conversely, this last condition, combined with 4 divides $a+1$ implies ($\ddagger \ddagger)$ and the proof of the proposition is done.

Example. - Consider $f(X)=X^{3}+8 X+1$. Since $\bar{f}(X)$ has no zero in \mathbb{F}_{3}, we get that $f(X)$ is irreducible in $\mathbb{Z}[X]$. Let α be a zero of $f(X)$ and consider $\mathbb{Z}[\alpha]$. The discriminant of $f(X)$ is $\Delta=-(2048+27)=-2075=-25 \times 83$. By 5.1, we get that $\mathbb{Z}[\alpha]$ is not integrally closed. The only prime p such that p^{2} divides Δ
is 5 , and $5 \neq 3,2$, divides neither 8 nor 1 . As we have $-\left(4 a^{3}+27 b^{2}\right) 5^{-2}=-$ $83 \equiv 2 \bmod (5)$ and as 2 is not a quadratic residue modulo 5 , then $\mathbb{Z}[\alpha]$ is t-closed.

Proposition 5.3. - Let α be an algebraic integer with minimal polynomial

$$
f(X)=X^{3}+a X+b \in \mathbb{Z}[X] .
$$

Then, $\mathbb{Z}[\alpha]$ is seminormal if and only if for each prime integer p dividing the discriminant $\Delta=-\left(4 a^{3}+27 b^{2}\right)$ of $f(X)$, conditions (1) and (2) are verified:
(1) if $p \neq 2,3$, does not divide both a and b and if p^{2} divides the discriminant Δ, we have that p^{3} does not divide Δ.
(2) if $p=2,3$ or divides both a and b and if p^{2} divides $f(a-b)$, then $f^{\prime}(a-b) \notin p^{2} Z$.

Proof. - Let us assume that $\mathbb{Z}[\alpha]$ is not integrally closed. So, with the notations of 3.2 , there must be a prime $p \in \mathbb{Z}$ and $f_{i}(X) \in \mathbb{Z}[X]$ such that $f(X) \in$ $\left(p, f_{i}(X)\right)^{2}$. According to the proof of 5.1 , we must have $\operatorname{deg} \bar{f}_{i}(X)=1$, so that $f_{i}(X)=X-a_{1}$ and \bar{a}_{1} is a multiple root of $\bar{f}(X)$ in $\mathbb{F}_{p}[X]$.

As we get $f(X)=\left(X-a_{1}\right)^{2}\left(X+2 a_{1}\right)+\left(X-a_{1}\right)\left(3 a_{1}^{2}+a\right)+f\left(a_{1}\right)$, the following conditions are equivalent:

- $\mathbb{Z}[\alpha]$ is seminormal,
- according to 3.2, for each prime integer p and each $f_{i}(X) \in \mathbb{Z}[X]$ for which $f(X) \in\left(p, f_{i}(X)\right)^{2}$, we have $b^{2}(X)-4 a(X) c(X) \notin p^{2}\left(p, f_{i}(X)\right)$,
- for each prime integer p and $a_{1} \in \mathbb{Z}$ for which $f(X) \in\left(p, X-a_{1}\right)^{2}$, we have $\left(a+3 a_{1}^{2}\right)^{2}-4\left(X+2 a_{1}\right) f\left(a_{1}\right) \notin p^{2}\left(p, X-a_{1}\right)$,
- p^{3} does not divide $\left(a+3 a_{1}^{2}\right)^{2}-12 a_{1}\left(a_{1}^{3}+a a_{1}+b\right)$ for each prime integer p and $a_{1} \in \mathbb{Z}$ for which $f(X) \in\left(p, X-a_{1}\right)^{2}$, that is such that p divides Δ.

Consider a prime integer p dividing Δ.

- if $p \neq 2,3$, does not divide both a and b and is such that p^{2} divides Δ, we get: p^{3} does not divide $\left(a+3 a_{1}^{2}\right)^{2}-12 a_{1}\left(a_{1}^{3}+a a_{1}+b\right)$ if and only if p^{3} does not divide $16 a^{4}\left[\left(a+3 a_{1}^{2}\right)^{2}-12 a_{1}\left(a_{1}^{3}+a a_{1}+b\right)\right]$ if and only if $\left(4 a^{3}-\right.$ $\left.9 b^{2}\right)\left(4 a^{3}+27 b^{2}\right) \notin p^{3} \mathbb{Z}$ by using notation and calculation of 5.2.

But $4 a^{3}-9 b^{2}=\left(4 a^{3}+27 b^{2}\right)-36 b^{2}$ and $4 a^{3}+27 b^{2} \in p^{2} Z$. So, the following conditions are equivalent:

- $\left(4 a^{3}-9 b^{2}\right)\left(4 a^{3}+27 b^{2}\right) \notin p^{3} \mathbb{Z}$,
- $-36 b^{2}\left(4 a^{3}+27 b^{2}\right) \notin p^{3} Z$,
- $4 a^{3}+27 b^{2} \notin p^{3} \mathbb{Z}$, since $p \neq 2,3$ and does not divide b.

Thus we obtain (1).

- if $p=2,3$ or divides both a and b, we have seen in 5.1 that we can choose $a_{1}=a-b$. In any case, p^{2} divides $f\left(a_{1}\right)$, and, if $p=2,3$ or divides both a and b, then p^{3} divides $12 a_{1} f\left(a_{1}\right)$; then p^{3} does not divide $\left(a+3 a_{1}^{2}\right)^{2}-12 a_{1}\left(a_{1}^{3}+\right.$ $\left.a a_{1}+b\right)$ is equivalent to p^{3} does not divide $\left(a+3 a_{1}^{2}\right)^{2}$, which is equivalent to p^{2} does not divide $a+3 a_{1}^{2}=a+3(a-b)^{2}$.

Example. - Consider $f(X)=X^{3}+2 X+4$. As $\bar{f}(X)$ has no zero in $\mathbb{F}_{5}, f(X)$ is irreducible in $\mathbb{Z}[X]$. Let α be a zero of $f(X)$ and consider $\mathbb{Z}[\alpha]$. The discriminant of $f(X)$ is $\Delta=-(32+27 \times 16)=-16 \times 29$. So, $p=2$ is the only prime such that p^{2} divides Δ. Here, 8 divides $f(a-b)=-8$; thus $\mathbb{Z}[\alpha]$ is not t-closed by 5.2 . But, $f^{\prime}(a-b)=14 \notin 4 \mathbb{Z}$, so $\mathbb{Z}[\alpha]$ is seminormal.

Remarks. - (1) When $a=0$, we recover the results obtained by H. Tanimoto for $\mathbb{Z}\left[{ }^{n} \sqrt{m}\right]$ to be normal, seminormal and quasinormal when $n=3$ [11].
(2) In this section, we did not study the situation for a ring $R[\alpha]$, where R is a Dedekind domain and α is an element of some integral domain which contains R where α is integral over R. Indeed, for $R=\mathbb{Z}$, special cases where p is a prime integer dividing the discriminant such that $p=2,3$ or divides both a and b imply: $\overline{a_{1}}=\overline{a-b}$ is a common zero of $\bar{f}(X)$ and $\bar{f}^{\prime}(X)$ in $\mathbb{F}_{p}[X]$, which may no longer be verified when taking another Dedekind domain R. Hence we cannot give an explicit expression of a_{1} when $R \neq \mathbb{Z}$.

REFERENCES

[1] T. Albu, On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16 (1979), 65-69.
[2] D. F. Anderson - D. E. Dobbs - J. A. Huckaba, On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448.
[3] D. E. Dobbs - M. Fontana, Seminormal rings generated by algebraic integers, Matematika, 34 (1987), 141-154.
[4] D. Ferrand - J. P. Olivier, Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471.
[5] G. Maury, La condition «intégralement clos» dans quelques structures algébriques, Ann. Sci. Ecole Norm. Sup., 78 (1961), 31-100.
[6] G. Picavet - M. Picavet-L’Hermitte, Morphismes t-clos, Comm. Algebra, 21 (1993), 179-219.
[7] G. Picavet - M. Picavet-L’Hermitte, Anneaux t-clos, Comm. Algebra, 23 (1995), 2643-2677.
[8] M. Picavet-L'Hermitte, Decomposition of order morphisms into minimal morphisms, Math. J. Toyama Univ., 19 (1996), 17-45.
[9] P. Samuel, Théorie Algébrique des Nombres (Hermann, Paris) 1967.
[10] R. G. Swan, On seminormality, J. Algebra, 67 (1980), 210-229.
[11] H. Tanimoto, Normality, seminormality and quasinormality of $Z{ }^{2}[\sqrt{m}], \mathrm{Hi}-$ roshima Math. J., 17 (1987), 29-40.
[12] K. Uchida, When is $\mathbb{Z}[\alpha]$ the ring of the integers?, Osaka J. Math., 14 (1977), 155-157.

Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont II)
63177 Aubière Cedex, France
e-mail: picavet@ucfma.univ-bpclermont.fr

[^0]
[^0]: Pervenuta in Redazione
 il 6 maggio 1997

