Bollettino

Unione Matematica Italiana

C. Bonmassar, C. M. Scoppola

Normally constrained p-groups

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B (1999), n.1, p. 161-168.

Unione Matematica Italiana
http://wWw.bdim.eu/item?id=BUMI_1999_8_2B_1_161_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Normally Constrained p-Groups.

C. Bonmassar - C. M. Scoppola (*)

Sunto. - In questo lavoro si studiano i gruppi finiti di ordine una potenza di un numero primo in cui i sottogruppi normali sono compresi tra due termini successivi della serie centrale discendente. Si ottengono numerose proprietà generali di questi gruppi, e una loro dettagliata descrizione in classe di nilpotenza 2.

1. - Introduction and examples.

In this paper G will denote a finite p-group, where p is a prime. With the exception of the last example in section 2 , p will be odd. Let $\left\{G_{i}\right\}$ be the lower central series of G.

Definition. - We say that G is normally constrained (NC for short) if for every $i, 1 \leqslant i \leqslant c, G_{i}$ satisfies the following equivalent conditions:
(i) G_{i} is the only normal subgroup of G of order $\left|G_{i}\right|$,
(ii) if $N \triangleleft G$, we have $N \leqslant G_{i}$ or $N \geqslant G_{i}$,
(iii) if $x \in G-G_{i}$ then $G_{i} \leqslant\langle x\rangle^{G}$.

Note that factor groups of NC-p-groups are NC. Other elementary properties of NC-p-groups are found in [Bo]. We now list some examples, to show that the class of NC-p-groups is rather rich. This list is by no means complete. However we will characterize below the NC-p-groups of class 2, showing that they are like one of those listed in examples 1, 2, or 4 . Furthermore, we will show that the associated Lie algebra (as described e.g. on [HB, VIII.9]) of the central factor of a NC-p-group of sufficiently large nilpotency class can be obtained as a factor of a tensor product over $G F(p)$ of a 2 -generated Lie algebra with a larger finite field. Therefore the groups described in example 3 seem really to be the crucial examples of NC-p-groups of large class, at least under the point of view of the associated Lie algebra. It is well known that the associated Lie algebra of a p-group does not capture all the structural features of
(*) The author was partially supported by MURST, Italy, and he is a member of CNR-GNSAGA, Italy.
the group itself, but our results here, with those of [CMNS]), suggest that in the case of NC-p-groups a classification up to isomorphism of the associated Lie algebras should be both possible and interesting, while a classification up to group isomorphism seems to be completely out of reach.

Examples. - 1. If G is of class 2 , and G is monolithic with monolith G^{\prime}, then clearly G is normally constrained: e.g., the split extension of a cyclic p group of order larger than p with the group generated by its automorphism of order p.
2. If G is a p-group of class 2 or 3 such that every nontrivial coset of G^{\prime} consists of conjugate elements, then, by the results of [McD], G is normally constrained. Furthermore, we have that $\left|G: G^{\prime}\right|$ is a square and that G / G_{3} is special. (We say, in this case, that (G, G^{\prime}) is a Camina pair, or , if G has class 2 , that G is a semi-extraspecial p-group; see also [Be], [MS]). An example here is given by a Sylow p-subgroup of $S L(3, q)$, where $q=p^{n}$.
3. The class of NC-p-groups includes all the p-groups of maximal class and thin p-groups (see [Bl], [BCS], [CMNS]). Among these, we note in particular the finite quotients of some p-adic analytic groups, like $M_{0,1,1}$, in the notation of [H, III.17], and the finite quotients of the well-known «Nottingham group» (see [Y]).
4. Let $Z=C_{p^{2}} \times C_{p^{2}}$ (additive notation) and let α act on Z as

$$
\left(\begin{array}{cc}
1 & p v \\
p & 1
\end{array}\right)
$$

where v is not a square mod p . Now α is an automorphism of Z, and we construct the semidirect product $\langle\alpha\rangle Z=G$. We note that G has class $2, G^{\prime}=G^{p}=$ $p Z$, and that for $x \in G-Z$ we have $[x, G]=G^{\prime}$, while for $x \in Z-G^{\prime}$ we have $G^{\prime}=\langle p x,[x, G]\rangle$. Then G is an NC-p-group.

2. - NC-p-groups of class 2.

We give here an elementary account of the structure of the normally constrained p-groups of class 2 .

Proposition 2.1. - Let p be an odd prime. Then G is a NC p-group of class 2 if and only if either G is one of the groups described in examples 1,2 , or G is special, $G^{\prime}=\left\langle x^{p}\right\rangle[x, G]$ for every $x \in G-G^{\prime},\left|G: G^{\prime}\right|=p^{2 n+1}, G^{p}=G^{\prime}$, and $\left|G^{\prime}\right| \leqslant p^{n+1}$.

Proof. - If G is a group like those described in the statement, and $x \in G-$ G^{\prime}, we have $\langle x\rangle^{G} \geqslant G^{\prime}$, and G is NC. Note that examples $1,2,4$ show that all the classes listed in the statement are non-empty.

To show the converse, assume first that $G^{\prime}<Z(G)$. Then $Z(G)$ is cyclic, because it has only one subgroup of order G^{\prime}. Since G is noncyclic, it has a normal elementary subgroup N of order p^{2}, by [H, III.7.5(a)]. We have $N \nless G^{\prime}$, since $G^{\prime}<Z(G)$ is cyclic. Then $N>G^{\prime},\left|G^{\prime}\right|=p$ and G is like in example 1.

Then we may assume $G^{\prime}=Z(G),\left|G^{\prime}\right|>p$. Set $\bar{G}=G /\left(G^{\prime}\right)^{p}$. Note that \bar{G} is NC. If $Z(\bar{G})>\bar{G}^{\prime}$ we would get, as above, $\left|\bar{G}^{\prime}\right|=p$, and G^{\prime} would be cyclic. By [H, III.7.5(a)] again, we would have $\left|G^{\prime}\right|=p$, contradiction. Hence $Z(\bar{G})=$ \bar{G}^{\prime}, and $G / G^{\prime} \simeq \bar{G} / Z(\bar{G})$ has exponent p, by [H, III.2.13(a)]. Then $G^{p} \leqslant G^{\prime}$, and G is special.

If $\left|G: G^{\prime}\right|$ is a square, G is like in example 2 , because, for every maximal subgroup K of $G^{\prime}, G / K$ is NC, $Z(G / K)$ is cyclic, and G / K is extraspecial, by [H, III.13.7]. If $\left|G: G^{\prime}\right|=p^{2 n+1}$, we apply again [H, III.13.7] to G / K, for every maximal subgroup K of G^{\prime}, and we get that $G^{\prime}=\langle x\rangle^{p}[x, G]$ for every $x \in G-$ G^{\prime}, and that $G^{p}=G^{\prime}$. Thus we are only left to show that, in this case, $\left|G^{\prime}\right| \leqslant p^{n+1}$.

Let $x_{1}, \ldots, x_{2 n+1}$ be generators of G, z_{1}, \ldots, z_{l} be generators of $Z(G)=G^{\prime}$, where $|Z(G)|=p^{l}$. We now switch to additive notation, for G / G^{\prime} and G^{\prime}, and we describe the p-th power map and the commutation in G in terms of matrices, as follows:

$$
\begin{gathered}
x_{\imath}^{p}=\sum_{k=1}^{l} \alpha_{i 0 k} z_{k} \\
{\left[x_{i}, x_{j}\right]=\sum_{k=1}^{l} \alpha_{i j k} z_{k}}
\end{gathered}
$$

Our Condition NC can now be rephrased in any of the following, obviously equivalent, ways (for $1 \leqslant i \leqslant 2 n+1,0 \leqslant j \leqslant 2 n+1,1 \leqslant k \leqslant l$):
(1) $\forall x \in G-G^{\prime}, x^{p}$ and $\left\{\left[x, x_{j}\right]\right\}(j=1, \ldots, 2 n+1)$ generate G^{\prime};
(2) $\forall(\beta)=\left(\beta_{1}, \ldots, \beta_{2 n+1}\right) \neq(0, \ldots, 0)$ we have $G^{\prime}=\left\langle\sum_{i, k} \beta_{i} \alpha_{i j k} z_{k}\right\rangle$;
(3) $\forall(\beta) \neq(0, \ldots, 0)$ the matrix B, defined by $(B)_{j, k}=\sum_{i} \beta_{i} \alpha_{i j k}$ has rank l;
(4) $\forall(\beta) \neq(0, \ldots, 0)$ the matrix B has independent columns;
(5) $\forall(\beta) \neq(0, \ldots, 0), \sum_{i, k} \beta_{i} \alpha_{i j k} \gamma_{k}=0$ implies $(\gamma)=(0, \ldots, 0)$;
(6) $\forall(\gamma)=\left(\gamma_{1}, \ldots, \gamma_{l}\right) \neq(0, \ldots, 0) \sum_{i, k} \beta_{i} \alpha_{i j k} \gamma_{k}=0$ implies $(\beta)=(0, \ldots, 0)$;
(7) $\forall(\gamma) \neq(0, \ldots, 0)$ the matrix Γ, defined by $(\Gamma)_{i, j}=\sum_{k} \alpha_{i j k} \gamma_{k}$ has independent rows;
(8) Γ has rank $2 n+1$, for every $(\gamma) \neq(0, \ldots, 0)$.

Note now that, if we define $\alpha_{0 j k}=-\alpha_{j 0 k} \delta_{i j}$, and $\alpha_{00 k}=0$, we can complete Γ to a skew-symmetric matrix $\tilde{\Gamma},(\tilde{\Gamma})_{i, j}=\sum_{k} \alpha_{i j k} \gamma_{k}$.

The rank of $\tilde{\Gamma}$ is at least $2 n+1$, but, by [H, III.9.6(a)], that rank is even; therefore $\tilde{\Gamma}$ is nonsingular, for every $(\gamma) \neq(0, \ldots, 0)$.

We now proceed as in [McD], [Be]: $\operatorname{det}(\tilde{\Gamma})=(P f(\tilde{\Gamma}))^{2}$ can be seen as a polynomial in the indeterminates γ_{k}, and, by Chevalley-Warning's theorem, $\operatorname{det}(\tilde{\Gamma})=0$ has nontrivial solutions if $l>n+1$. Thus $l \leqslant n+1$.

Remark. - A. Caranti and A. Mann have independently noticed that we can equivalently obtain the last part of the proof of Proposition 2.1 extending our group G by the automorphism of G that sends $x \in G$ into x^{p+1}. This extension is easily seen to form a Camina pair with its commutator subgroup, and as in $[\mathrm{McD}],[\mathrm{Be}]$ we can conclude $l \leqslant n+1$.

Example. - The hypothesis $p \neq 2$ cannot be removed from the statement of Proposition 2.1, as shown by the following construction, due to H . Heineken.

Let $F=G F(8)$, and set

$$
L=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & a^{2} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b \in F\right\} .
$$

Clearly $|L|=2^{6}$. Furthermore

$$
L^{\prime}=L^{2}=Z(L)=\left\{\left.\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in F\right\}
$$

and $L / L^{\prime} \simeq L^{\prime}$ is elementary abelian of order 8 . To show that L is NC, we will show that, if $x \in L-L^{\prime}$, then $\langle x\rangle^{L}=\left\langle x, L^{\prime}\right\rangle$. Let

$$
x=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & a^{2} \\
0 & 0 & 1
\end{array}\right), \quad y=\left(\begin{array}{ccc}
1 & r & s \\
0 & 1 & r^{2} \\
0 & 0 & 1
\end{array}\right)
$$

so that

$$
x^{2}=\left(\begin{array}{ccc}
1 & 0 & a^{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad[x, y]=\left(\begin{array}{ccc}
1 & 0 & a r^{2}+a^{2} r \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and therefore if $a \neq 0$ we have $C_{L}(x)=\left\langle x, L^{\prime}\right\rangle$. Thus we have that $\langle x\rangle^{L} \neq$ $\left\langle x, L^{\prime}\right\rangle$ if and only if there exists a value of r such that $a r^{2}+a^{2} r=r^{3}$. But, setting $u=r a^{-1}$, our condition becomes $u^{2}+u+1=0$, and this last equation does not have any solution in F.

3. - Associated Lie algebras of NC- p-groups.

From now on, we assume that p is an odd prime, and we study some properties of the lower central sections of NC-p-groups.

Proposition 3.1. - Let G be an NC-p-group, with $\operatorname{cl}(G) \geqslant 3$. Then G / G_{3} is special of exponent p, and $\left|G^{\prime} / G_{3}\right|^{2}=\left|G / G^{\prime}\right|$.

Proof. - We may assume that $\left|G_{3}\right|=p$. Let $\bar{G}=G / G_{3}$. We first show that \bar{G} is special. Otherwise, by Prop. 2.1, we have that $\left|\bar{G}^{\prime}\right|=p$, and that $Z(\bar{G})$ is cyclic. Again, if $Z(\bar{G})=\bar{G}^{\prime}$, we get easily that $\bar{G} / \bar{G}^{\prime}$ is of exponent $p, \bar{G}^{p} \leqslant \bar{G}^{\prime}$, and \bar{G} is (extra-)special. Hence $Z(\bar{G})>\bar{G}^{\prime}$, and
(*)

$$
|Z(\bar{G})| \geqslant p^{2}
$$

Now $|Z(G)|>p$, or we would have a contradiction by (*) and [H, III.2.13(a)]. But since G^{\prime} is the only subgroup of order p^{2} of G, we get $Z(G) \geqslant G^{\prime}$, a contradiction with $\operatorname{cl}(G)=3$. Thus \bar{G} is special.

We now show that G / G^{\prime} has even rank. By way of contradiction, assume $\left|G: G^{\prime}\right|=p^{2 n+1}$. By proposition 2.1, we have that \bar{G} has exponent p^{2}. Note first that G^{\prime} does not have exponent p. In fact, let $x \in G-G^{\prime}$ such that $x^{p} \notin$ G_{3}. Then $H=\langle x\rangle G^{\prime}$ is a normal subgroup of class at most 2 , and, if G^{\prime} is of exponent $p,\left|H^{p}\right|=p$, but $H^{p} \neq G_{3}$, contradiction. Now \bar{G} is regular, because p is odd, and, by Prop. 2.1, there exists $x \in G-G^{\prime}$ such that $x^{p} \in G_{3}$. Set $H=$ $G^{\prime}\langle x\rangle . H$ has class at most $2, H \triangleleft G$, and thus $\Omega_{1}(H) \triangleleft G$. Now $\left|\Omega_{1}(H)\right|=$ $\left|H: H^{p}\right|=\left|H: G_{3}\right|=\left|G^{\prime}\right|$, because H is regular, and $\Omega_{1}(H)$ has exponent p. But we have seen that G^{\prime} does not have exponent p, and thus $G^{\prime} \neq \Omega_{1}(H)$, contradiction. Then G / G^{\prime} has even rank. By Proposition 2.1, G / G_{3} is like in example 2, and by [M, 1.1] we have that G / G_{3} has exponent p and $\left|G^{\prime} / G_{3}\right|^{2}=$ $\left|G / G^{\prime}\right|$.

Corollary 3.2. - Let G be a NC-p-group of class at least 3. Then G_{i} / G_{i+2} is elementary abelian for every $i \geqslant 2$.

We can now state one more condition which is equivalent to any of those defining NC-p-groups:

Proposition 3.3. - Let G be a p-group of class $c \geqslant 3$. The following are equivalent:
(a) G is a NC-p-group;
(b) $\forall i \geqslant 1, \forall x \in G_{i}-G_{i+1}$, we have $[x, G] G_{i+2}=G_{i+1}$.

Proof. - By Corollary 3.2, if $x \in G_{i}-G_{i+1}$, we have that $[x, G] G_{i+2}$ is maximal in $\langle x\rangle^{G}$. But $[x, G] G_{i+2} \leqslant G_{i+1}$, and by (a) we get that G_{i+1} is properly contained in $\langle x\rangle^{G}$, whence (b).

Conversely, we show that, for any $c \geqslant 1$, if a p-group G of class c satisfies (b) then G is NC. We proceed by induction on c, starting with $c=1$: in this case the result is trivial. Assume it true for groups of class less than c. It is then enough to show that, if $N \triangleleft G$, then either $N \leqslant G_{c}$ or $G_{c} \leqslant N$. Let $N \nless G_{c}$, and $x \in N-G_{c}$. By our hypothesis, we may assume that $x \in G_{c-1}-G_{c}$, and therefore $G_{c} \leqslant N$.

Remark. - Note that (b) is equivalent to the apparently stronger:
(b^{\prime}) $\forall i \geqslant 1, \forall x \in G_{i}-G_{i+1}$, we have $[x, G]=G_{i+1}$.
In fact, (b) inductively implies that $\forall i \geqslant 1, \forall x \in G_{i}-G_{i+1}$ we have $[x, G] G_{i+j+1} \geqslant G_{i+j}$. However, the equivalence holds for finite p-groups only, while (b) can be extended to pro-p-groups with open lower central subgroups. Furthermore, (b) stresses the Lie theoretical nature of our condition. In fact, we can define a NC-Lie algebra as a finitely generated Lie algebra L over the field $G F(p)$, graded by its lower central factors L_{i}, such that the following condition holds:

$$
\forall i \geqslant 1, \forall x \in L_{i}, x \neq 0, \text { we have }\left[x, L_{1}\right]=L_{i+1} .
$$

Corollary 3.4. - Let G be a NC-p-group of class at least 3. Then the upper and lower central series of G coincide.

Proof. - Since G / G_{3} is special, it is enough to show, by induction, that $Z(G)=G_{c}$. If $x \in Z(G)-G_{c}$ we have $1=[x, G] \geqslant G_{c}$, contradiction.

We now adapt some techniques from [DS]. We begin extending [M, 1.1]:
Theorem 3.5. - Let G be a NC-p-group of class $c \geqslant 3$ such that $\left|G: G^{\prime}\right|=$ $p^{2 n}$. Then for $2 \leqslant i<c$ we have $p^{n} \leqslant\left|G_{i}: G_{i+1}\right| \leqslant p^{2 n}$.

Proof. - The second inequality is an immediate consequence of Proposition 3.3.

We already know $\left|G_{2}: G_{3}\right|=p^{n}$, if $\operatorname{cl}(G)=3$, and we prove the first inequality by way of contradiction. Let G be a a NC-p-group of class $c \geqslant 4$ such that $\left|G: G^{\prime}\right|=p^{2 n}, p^{n} \leqslant\left|G_{i}: G_{i+1}\right|$ for $2 \leqslant i<c-1$, and $\left|G_{c-1}: G_{c}\right|=p^{r}<$ p^{n}. We may assume, without loss of generality, $\left|G_{c}\right|=p$. Set $C=C_{G}\left(G_{c-1}\right)$, $Z=G_{c-2} \cap Z\left(G^{\prime}\right)$. Since the centralizers of the elements of $G_{c-1}-G_{c}$ are
maximal subgroups, we have $|G: C| \leqslant p^{r}$. Note here that, in fact, we have $|G: C|=p^{r}$, as G_{c-1} / G_{c} can be identified with a subspace of the $G F(p)$-dual space of G / C. Let $x \in G_{c-2}-Z$. Setting $D=C_{G}(x)$ we have easily $|G: D| \leqslant$ p^{r+1}. As $r<n$, there exists $b \in C \cap D-G^{\prime}$. Let $g \in G$. We have $[x, b, g]=1$, since $b \in D$, and $[g, x, b]=1$, since $b \in C$. Then Witt identity gives $[b, g, x]=$ 1 , and by the remark after Proposition $3.3,\left[G^{\prime}, x\right]=1$, as g is arbitrary. This contradicts with our choice of x. Then $G_{c-2}=Z$. Note that $[Z, G, C]=$ $[G, C, Z]=1$, and, by the three-subgroup lemma, also $[C, Z, G]=1$. Therefore $\left[C, G_{c-2}\right] \leqslant G_{c}$. Let now M be a maximal subgroup of G_{c-1} containing G_{c}. We apply our inductive hypothesis to G / M, and conclude that $\left|G: C_{G}\left(G_{c-2} / M\right)\right|=\left|G_{c-2} / G_{c-1}\right| \geqslant p^{n}$. But $C \leqslant C_{G}\left(G_{c-2} / G_{c}\right) \leqslant C_{G}\left(G_{c-2} / M\right)$, and $p^{r}=|G: C| \geqslant\left|G: C_{G}\left(G_{c-2} / M\right)\right| \geqslant p^{n}$.

Theorem 3.6. - Let G be a NC-p-group of class $c \geqslant 3$ such that $\left|G: G^{\prime}\right|=$ $p^{2 n}$. If $\left|G_{3}\right| \geqslant p^{n}$ we have that G / G_{3} is isomorphic to a Sylow p-subgroup of $S L\left(3, p^{n}\right)$.

Proof. - By Theorem 3.5, we may assume that G has class 3, and that $\left|G_{3}\right|=p^{n}$. Let $x \in G-G_{2}$. We will show that $C_{G}\left(x G_{3}\right) / G_{3}$ is abelian, and by Lemma 1.2 of [MS], we will get the result. Assume first that [x, G^{\prime}] $<G_{3}$, and let M be a maximal subgroup of G_{3} that contains [x, G^{\prime}]. Then $x M$ centralizes G^{\prime} / M in G / M. As in [MS, 1.3(v)] we conclude easily that $C_{G}\left(x G_{3}\right) / G_{3}$ is abelian. Assume then that $\left[x, G^{\prime}\right]=G_{3}$. We have $\left|\left[x, G^{\prime}\right]\right|=p^{n}$, and $\left|C_{G^{\prime}}(x)\right|=p^{n}$, then $G_{3}=C_{G^{\prime}}(x)$. We have $\left[C_{G}(x): C_{G^{\prime}}(x)\right]=p^{n}$, since $\left|C_{G}(x)\right|=p^{2 n}$; but $C_{G}(x) / C_{G^{\prime}}(x)$ is abelian, thus $C_{G}\left(x G_{3}\right) / G_{3}=G^{\prime} / G_{3} \times C_{G}(x) / G_{3}$ is abelian.

We now fix some notation: if F is a field, we denote the free Lie algebra on d generators over F by $L_{F}(d)$. We can look at $L_{F}(d)$ as a graded Lie algebra, with graduation $\bigoplus_{F}(d)_{i}$ associated with the filtration given by the lower central series. If L^{i} is a Lie algebra over F, and F is an extension of the field K, we denote by L_{K} the algebra L viewed as a Lie algebra over K.

Lemma 3.7[DS]. - Let $F=G F\left(p^{n}\right), K=G F(p)$. Then the kernel of the canonical homomorphism from $L_{K}(2 n)$ onto $L_{F}(2)_{K}$ is generated, as a Lie ideal, by elements of degree 2.

Theorem 3.8. - Let G be an NC-p-group of class $c \geqslant 4$. Let L be the associated graded Lie algebra of the group G / G_{c}. Let F and K be as above. Then there exists an F-Lie ideal J of $L_{F}(2)$ such that L is isomorphic to $\left(L_{F}(2) / J\right)_{K}$.

Proof. - By Theorem 3.6, $\left(L_{F}(2)_{K}\right)_{1} \oplus\left(L_{F}(2)_{K}\right)_{2}$ is isomorphic, as a K-Lie algebra, to $L_{1} \oplus L_{2}$. Thus, by Lemma 3.7, $L_{F}(2)_{K}$ projects canonically onto L.

Consider $J=\operatorname{Ker} \varphi$, where φ is the canonical projection of $L_{F}(2)_{K}$ onto L, as K-Lie algebras. We show that J is closed under field multiplication by elements of F. Let $x \in J$. We may assume $x \in J_{r}$, for some $r<c$. If $\vartheta \in F$, we show that $x \vartheta \in J_{r}$. By our assumption on G, and Proposition 3.3, we would have otherwise $\left[x \vartheta, L_{F}(2)_{1}\right] \nsubseteq J_{r+1}$. But $\left[x \vartheta, L_{F}(2)_{1}\right]=\left[x,\left(L_{F}(2)_{1}\right) \vartheta\right]=\left[x, L_{F}(2)_{1}\right] \subseteq$ J_{r+1}, contradiction.

Acknowledgements. - The authors wish to thank A. Caranti, R. Dark, H. Heineken, A. Mann for valuable comments and discussions while this paper was written.

REFERENCES

[Be] B. Beisiegel, Semi-extraspezielle p-Gruppen, Math. Z. (1977), 247-254.
[Bl] N. Blackburn, On a special class of p-groups, Acta Math., 100 (1958), 45-92.
[Bo] C. Bonmassar, Tesi di laurea, Trento (1990).
[BCS] R. Brandl - A. Caranti - C. M. Scoppola, Thin metabelian p-groups, Quart. J. Math. Oxford, 50 (1992), 157-173.
[CMNS] A. Caranti - S. Mattarei - M. F. Newman - C. M. Scoppola, Thin groups of prime power order and thin Lie algebras, to appear.
[DS] R. S. Dark - C. M. Scoppola - Camina Groups, to appear.
[H] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[HB] B. Huppert - N. Blackburn, Finite groups II, Springer, Berlin (1982).
[McD] I. D. MacDonald, Some p-groups of Frobenius and extra-special type, Isr. J. Math., 40 (1981), 350-364.
[M] A. Mann, Some finite groups with large conjugacy classes, Isr. J. Math., 71 (1990), 55-63.
[MS] A. Mann - C. M. Scoppola, On p-groups of Frobenius type, Arch. Math., $5 \mathbf{6}$ (1991), 320-332.
[Y] I. O. York, The group of formal power series under substitution, Ph. D. Thesis, Nottingham (1990).
C. Bonmassar: Dipartimento di Matematica Pura e Applicata Università di L'Aquila, Via Vetoio I-67010, Coppito (L'Aquila)
C. M. Scoppola: Dipartimento di Matematica Pura e Applicata Università di L'Aquila, Via Vetoio I-67010, Coppito (L'Aquila) scoppola@univaq.it

[^0]
[^0]: Pervenuta in Redazione
 il 13 marzo 1998

