BOLLETTINO UNIONE MATEMATICA ITALIANA

C. BONMASSAR, C. M. SCOPPOLA

Normally constrained *p*-groups

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **2-B** (1999), n.1, p. 161–168.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1999_8_2B_1_161_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1999.

Normally Constrained *p*-Groups.

C. BONMASSAR - C. M. SCOPPOLA(*)

Sunto. – In questo lavoro si studiano i gruppi finiti di ordine una potenza di un numero primo in cui i sottogruppi normali sono compresi tra due termini successivi della serie centrale discendente. Si ottengono numerose proprietà generali di questi gruppi, e una loro dettagliata descrizione in classe di nilpotenza 2.

1. – Introduction and examples.

In this paper G will denote a finite p-group, where p is a prime. With the exception of the last example in section 2, p will be odd. Let $\{G_i\}$ be the lower central series of G.

DEFINITION. – We say that G is normally constrained (NC for short) if for every $i, 1 \le i \le c, G_i$ satisfies the following equivalent conditions:

- (i) G_i is the only normal subgroup of G of order $|G_i|$,
- (ii) if $N \lhd G$, we have $N \leq G_i$ or $N \geq G_i$,
- (iii) if $x \in G G_i$ then $G_i \leq \langle x \rangle^G$.

Note that factor groups of NC-*p*-groups are NC. Other elementary properties of NC-*p*-groups are found in [Bo]. We now list some examples, to show that the class of NC-*p*-groups is rather rich. This list is by no means complete. However we will characterize below the NC-*p*-groups of class 2, showing that they are like one of those listed in examples 1, 2, or 4. Furthermore, we will show that the associated Lie algebra (as described *e.g.* on [HB, VIII.9]) of the central factor of a NC-*p*-group of sufficiently large nilpotency class can be obtained as a factor of a tensor product over GF(p) of a 2-generated Lie algebra with a larger finite field. Therefore the groups described in example 3 seem really to be the crucial examples of NC-*p*-groups of large class, at least under the point of view of the associated Lie algebra. It is well known that the associated Lie algebra of a p-group does not capture all the structural features of

(*) The author was partially supported by MURST, Italy, and he is a member of CNR-GNSAGA, Italy.

the group itself, but our results here, with those of [CMNS]), suggest that in the case of NC-*p*-groups a classification up to *isomorphism of the associated Lie algebras* should be both possible and interesting, while a classification up to group isomorphism seems to be completely out of reach.

EXAMPLES. – 1. If G is of class 2, and G is monolithic with monolith G', then clearly G is normally constrained: *e.g.*, the split extension of a cyclic p-group of order larger than p with the group generated by its automorphism of order p.

2. If G is a p-group of class 2 or 3 such that every nontrivial coset of G' consists of conjugate elements, then, by the results of [McD], G is normally constrained. Furthermore, we have that |G: G'| is a square and that G/G_3 is special. (We say, in this case, that (G, G') is a *Camina pair*, or , if G has class 2, that G is a *semi-extraspecial p*-group; see also [Be], [MS]). An example here is given by a Sylow p-subgroup of SL(3, q), where $q = p^n$.

3. The class of NC-*p*-groups includes all the *p*-groups of maximal class and thin *p*-groups (see [B1], [BCS], [CMNS]). Among these, we note in particular the finite quotients of some *p*-adic analytic groups, like $M_{0,1,1}$, in the notation of [H, III.17], and the finite quotients of the well-known «Nottingham group» (see [Y]).

4. Let $Z = C_{p^2} \times C_{p^2}$ (additive notation) and let α act on Z as

$$\begin{pmatrix} 1 & p\nu \\ p & 1 \end{pmatrix}$$
,

where ν is not a square mod p. Now α is an automorphism of Z, and we construct the semidirect product $\langle \alpha \rangle Z = G$. We note that G has class 2, $G' = G^p = pZ$, and that for $x \in G - Z$ we have [x, G] = G', while for $x \in Z - G'$ we have $G' = \langle px, [x, G] \rangle$. Then G is an NC-*p*-group.

2. – NC-*p*-groups of class 2.

We give here an elementary account of the structure of the normally constrained p-groups of class 2.

PROPOSITION 2.1. – Let p be an odd prime. Then G is a NC p-group of class 2 if and only if either G is one of the groups described in examples 1, 2, or G is special, $G' = \langle x^p \rangle [x, G]$ for every $x \in G - G'$, $|G: G'| = p^{2n+1}$, $G^p = G'$, and $|G'| \leq p^{n+1}$.

PROOF. – If G is a group like those described in the statement, and $x \in G - G'$, we have $\langle x \rangle^G \ge G'$, and G is NC. Note that examples 1, 2, 4 show that all the classes listed in the statement are non-empty.

To show the converse, assume first that G' < Z(G). Then Z(G) is cyclic, because it has only one subgroup of order G'. Since G is noncyclic, it has a normal elementary subgroup N of order p^2 , by [H, III.7.5(a)]. We have $N \notin G'$, since G' < Z(G) is cyclic. Then N > G', |G'| = p and G is like in example 1.

Then we may assume G' = Z(G), |G'| > p. Set $\overline{G} = G/(G')^p$. Note that \overline{G} is NC. If $Z(\overline{G}) > \overline{G}'$ we would get, as above, $|\overline{G}'| = p$, and G' would be cyclic. By [H, III.7.5(a)] again, we would have |G'| = p, contradiction. Hence $Z(\overline{G}) = \overline{G}'$, and $G/G' \simeq \overline{G}/Z(\overline{G})$ has exponent p, by [H, III.2.13(a)]. Then $G^p \leq G'$, and G is special.

If |G: G'| is a square, *G* is like in example 2, because, for every maximal subgroup *K* of *G'*, *G/K* is NC, *Z*(*G/K*) is cyclic, and *G/K* is extraspecial, by [H, III.13.7]. If $|G: G'| = p^{2n+1}$, we apply again [H, III.13.7] to *G/K*, for every maximal subgroup *K* of *G'*, and we get that $G' = \langle x \rangle^p [x, G]$ for every $x \in G - G'$, and that $G^p = G'$. Thus we are only left to show that, in this case, $|G'| \leq p^{n+1}$.

Let x_1, \ldots, x_{2n+1} be generators of G, z_1, \ldots, z_l be generators of Z(G) = G', where $|Z(G)| = p^l$. We now switch to additive notation, for G/G' and G', and we describe the *p*-th power map and the commutation in *G* in terms of matrices, as follows:

$$x_i^p = \sum_{k=1}^l lpha_{i0k} z_k$$
, $[x_i, x_j] = \sum_{k=1}^l lpha_{ijk} z_k$.

Our Condition NC can now be rephrased in any of the following, obviously equivalent, ways (for $1 \le i \le 2n + 1$, $0 \le j \le 2n + 1$, $1 \le k \le l$):

(1) $\forall x \in G - G', x^p \text{ and } \{[x, x_i]\}(j = 1, ..., 2n + 1) \text{ generate } G';$

(2)
$$\forall (\beta) = (\beta_1, \ldots, \beta_{2n+1}) \neq (0, \ldots, 0)$$
 we have $G' = \langle \sum_{i=k} \beta_i \alpha_{ijk} z_k \rangle$;

(3) $\forall (\beta) \neq (0, ..., 0)$ the matrix *B*, defined by $(B)_{j,k} = \sum_{i} \beta_i \alpha_{ijk}$ has rank *l*;

- (4) \forall (β) \neq (0, ..., 0) the matrix *B* has independent columns;
- (5) $\forall (\beta) \neq (0, ..., 0), \sum_{i, k} \beta_i \alpha_{ijk} \gamma_k = 0$ implies $(\gamma) = (0, ..., 0);$
- (6) $\forall (\gamma) = (\gamma_1, \dots, \gamma_l) \neq (0, \dots, 0) \sum_{i, k} \beta_i \alpha_{ijk} \gamma_k = 0 \text{ implies } (\beta) = (0, \dots, 0);$

(7) $\forall (\gamma) \neq (0, ..., 0)$ the matrix Γ , defined by $(\Gamma)_{i,j} = \sum_{k} \alpha_{ijk} \gamma_k$ has independent rows;

(8) Γ has rank 2n + 1, for every $(\gamma) \neq (0, ..., 0)$.

Note now that, if we define $\alpha_{0jk} = -\alpha_{j0k}\delta_{ij}$, and $\alpha_{00k} = 0$, we can complete Γ to a skew-symmetric matrix $\tilde{\Gamma}$, $(\tilde{\Gamma})_{i,j} = \sum_{k} \alpha_{ijk}\gamma_{k}$.

The rank of $\tilde{\Gamma}$ is at least 2n + 1, but, by [H, III.9.6(a)], that rank is even; therefore $\tilde{\Gamma}$ is nonsingular, for every $(\gamma) \neq (0, ..., 0)$.

We now proceed as in [McD], [Be]: det $(\tilde{\Gamma}) = (Pf(\tilde{\Gamma}))^2$ can be seen as a polynomial in the indeterminates γ_k , and, by Chevalley-Warning's theorem, det $(\tilde{\Gamma}) = 0$ has nontrivial solutions if l > n + 1. Thus $l \le n + 1$.

REMARK. – A. Caranti and A. Mann have independently noticed that we can equivalently obtain the last part of the proof of Proposition 2.1 extending our group *G* by the automorphism of *G* that sends $x \in G$ into x^{p+1} . This extension is easily seen to form a Camina pair with its commutator subgroup, and as in [McD], [Be] we can conclude $l \leq n+1$.

EXAMPLE. – The hypothesis $p \neq 2$ cannot be removed from the statement of Proposition 2.1, as shown by the following construction, due to H. Heineken.

Let F = GF(8), and set

$$L = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & a^2 \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b \in F \right\}.$$

Clearly $|L| = 2^6$. Furthermore

$$L' = L^{2} = Z(L) = \left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| a \in F \right\}$$

and L/L' = L' is elementary abelian of order 8. To show that L is NC, we will show that, if $x \in L - L'$, then $\langle x \rangle^L = \langle x, L' \rangle$. Let

$$x = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a^2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad y = \begin{pmatrix} 1 & r & s \\ 0 & 1 & r^2 \\ 0 & 0 & 1 \end{pmatrix},$$

so that

$$x^{2} = \begin{pmatrix} 1 & 0 & a^{3} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad [x, y] = \begin{pmatrix} 1 & 0 & ar^{2} + a^{2}r \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

164

and therefore if $a \neq 0$ we have $C_L(x) = \langle x, L' \rangle$. Thus we have that $\langle x \rangle^L \neq \langle x, L' \rangle$ if and only if there exists a value of r such that $ar^2 + a^2r = r^3$. But, setting $u = ra^{-1}$, our condition becomes $u^2 + u + 1 = 0$, and this last equation does not have any solution in F.

3. – Associated Lie algebras of NC-*p*-groups.

From now on, we assume that p is an odd prime, and we study some properties of the lower central sections of NC-p-groups.

PROPOSITION 3.1. – Let G be an NC-p-group, with $\operatorname{cl}(G) \ge 3$. Then G/G_3 is special of exponent p, and $|G'/G_3|^2 = |G/G'|$.

PROOF. – We may assume that $|G_3| = p$. Let $\overline{G} = G/G_3$. We first show that \overline{G} is special. Otherwise, by Prop. 2.1, we have that $|\overline{G}'| = p$, and that $Z(\overline{G})$ is cyclic. Again, if $Z(\overline{G}) = \overline{G}'$, we get easily that $\overline{G}/\overline{G}'$ is of exponent $p, \overline{G}^p \leq \overline{G}'$, and \overline{G} is (extra-)special. Hence $Z(\overline{G}) > \overline{G}'$, and

$$(*) \qquad |Z(\overline{G})| \ge p^2.$$

Now |Z(G)| > p, or we would have a contradiction by (*) and [H, III.2.13(a)]. But since G' is the only subgroup of order p^2 of G, we get $Z(G) \ge G'$, a contradiction with cl(G) = 3. Thus \overline{G} is special.

We now show that G/G' has even rank. By way of contradiction, assume $|G: G'| = p^{2n+1}$. By proposition 2.1, we have that \overline{G} has exponent p^2 . Note first that G' does not have exponent p. In fact, let $x \in G - G'$ such that $x^p \notin G_3$. Then $H = \langle x \rangle G'$ is a normal subgroup of class at most 2, and, if G' is of exponent p, $|H^p| = p$, but $H^p \neq G_3$, contradiction. Now \overline{G} is regular, because p is odd, and, by Prop. 2.1, there exists $x \in G - G'$ such that $x^p \in G_3$. Set $H = G' \langle x \rangle$. H has class at most 2, $H \lhd G$, and thus $\Omega_1(H) \lhd G$. Now $|\Omega_1(H)| = |H: H^p| = |H: G_3| = |G'|$, because H is regular, and $\Omega_1(H)$ has exponent p. But we have seen that G' does not have exponent p, and thus $G' \neq \Omega_1(H)$, contradiction. Then G/G' has even rank. By Proposition 2.1, G/G_3 is like in example 2, and by [M, 1.1] we have that G/G_3 has exponent p and $|G'/G_3|^2 = |G/G'|$.

COROLLARY 3.2. – Let G be a NC-p-group of class at least 3. Then G_i/G_{i+2} is elementary abelian for every $i \ge 2$.

We can now state one more condition which is equivalent to any of those defining NC-*p*-groups:

PROPOSITION 3.3. – Let G be a p-group of class $c \ge 3$. The following are equivalent:

- (a) G is a NC-p-group;
- (b) $\forall i \ge 1, \forall x \in G_i G_{i+1}, we have [x, G] G_{i+2} = G_{i+1}.$

PROOF. – By Corollary 3.2, if $x \in G_i - G_{i+1}$, we have that $[x, G] G_{i+2}$ is maximal in $\langle x \rangle^G$. But $[x, G] G_{i+2} \leq G_{i+1}$, and by (a) we get that G_{i+1} is properly contained in $\langle x \rangle^G$, whence (b).

Conversely, we show that, for any $c \ge 1$, if a *p*-group *G* of class *c* satisfies (*b*) then *G* is NC. We proceed by induction on *c*, starting with c = 1: in this case the result is trivial. Assume it true for groups of class less than *c*. It is then enough to show that, if $N \triangleleft G$, then either $N \le G_c$ or $G_c \le N$. Let $N \not\le G_c$, and $x \in N - G_c$. By our hypothesis, we may assume that $x \in G_{c-1} - G_c$, and therefore $G_c \le N$.

REMARK. - Note that (b) is equivalent to the apparently stronger:

(b') $\forall i \ge 1$, $\forall x \in G_i - G_{i+1}$, we have $[x, G] = G_{i+1}$.

In fact, (b) inductively implies that $\forall i \ge 1$, $\forall x \in G_i - G_{i+1}$ we have $[x, G] G_{i+j+1} \ge G_{i+j}$. However, the equivalence holds for finite *p*-groups only, while (b) can be extended to pro-*p*-groups with open lower central subgroups. Furthermore, (b) stresses the Lie theoretical nature of our condition. In fact, we can define a NC-Lie algebra as a finitely generated Lie algebra *L* over the field GF(p), graded by its lower central factors L_i , such that the following condition holds:

 $\forall i \ge 1, \forall x \in L_i, x \neq 0$, we have $[x, L_1] = L_{i+1}$.

COROLLARY 3.4. – Let G be a NC-p-group of class at least 3. Then the upper and lower central series of G coincide.

PROOF. – Since G/G_3 is special, it is enough to show, by induction, that $Z(G) = G_c$. If $x \in Z(G) - G_c$ we have $1 = [x, G] \ge G_c$, contradiction.

We now adapt some techniques from [DS]. We begin extending [M, 1.1]:

THEOREM 3.5. – Let G be a NC-p-group of class $c \ge 3$ such that $|G:G'| = p^{2n}$. Then for $2 \le i < c$ we have $p^n \le |G_i:G_{i+1}| \le p^{2n}$.

PROOF. – The second inequality is an immediate consequence of Proposition 3.3.

We already know $|G_2: G_3| = p^n$, if cl(G) = 3, and we prove the first inequality by way of contradiction. Let *G* be a a NC-*p*-group of class $c \ge 4$ such that $|G: G'| = p^{2n}$, $p^n \le |G_i: G_{i+1}|$ for $2 \le i < c-1$, and $|G_{c-1}: G_c| = p^r < p^n$. We may assume, without loss of generality, $|G_c| = p$. Set $C = C_G(G_{c-1})$, $Z = G_{c-2} \cap Z(G')$. Since the centralizers of the elements of $G_{c-1} - G_c$ are

166

maximal subgroups, we have $|G: C| \leq p^r$. Note here that, in fact, we have $|G: C| = p^r$, as G_{c-1}/G_c can be identified with a subspace of the GF(p)-dual space of G/C. Let $x \in G_{c-2} - Z$. Setting $D = C_G(x)$ we have easily $|G: D| \leq p^{r+1}$. As r < n, there exists $b \in C \cap D - G'$. Let $g \in G$. We have [x, b, g] = 1, since $b \in D$, and [g, x, b] = 1, since $b \in C$. Then Witt identity gives [b, g, x] = 1, and by the remark after Proposition 3.3, [G', x] = 1, as g is arbitrary. This contradicts with our choice of x. Then $G_{c-2} = Z$. Note that [Z, G, C] = [G, C, Z] = 1, and, by the three-subgroup lemma, also [C, Z, G] = 1. Therefore $[C, G_{c-2}] \leq G_c$. Let now M be a maximal subgroup of G_{c-1} containing G_c . We apply our inductive hypothesis to G/M, and conclude that $|G: C_G(G_{c-2}/M)| = |G_{c-2}/G_{c-1}| \geq p^n$. But $C \leq C_G(G_{c-2}/G_c) \leq C_G(G_{c-2}/M)$, and $p^r = |G: C| \geq |G: C_G(G_{c-2}/M)| \geq p^n$.

THEOREM 3.6. – Let G be a NC-p-group of class $c \ge 3$ such that $|G: G'| = p^{2n}$. If $|G_3| \ge p^n$ we have that G/G_3 is isomorphic to a Sylow p-subgroup of $SL(3, p^n)$.

PROOF. – By Theorem 3.5, we may assume that G has class 3, and that $|G_3| = p^n$. Let $x \in G - G_2$. We will show that $C_G(xG_3)/G_3$ is abelian, and by Lemma 1.2 of [MS], we will get the result. Assume first that $[x, G'] < G_3$, and let M be a maximal subgroup of G_3 that contains [x, G']. Then xM centralizes G'/M in G/M. As in [MS, 1.3(v)] we conclude easily that $C_G(xG_3)/G_3$ is abelian. Assume then that $[x, G'] = G_3$. We have $|[x, G']| = p^n$, and $|C_{G'}(x)| = p^n$, then $G_3 = C_{G'}(x)$. We have $[C_G(x): C_{G'}(x)] = p^n$, since $|C_G(x)| = p^{2n}$; but $C_G(x)/C_{G'}(x)$ is abelian, thus $C_G(xG_3)/G_3 = G'/G_3 \times C_G(x)/G_3$ is abelian.

We now fix some notation: if F is a field, we denote the free Lie algebra on d generators over F by $L_F(d)$. We can look at $L_F(d)$ as a graded Lie algebra, with graduation $\bigoplus L_F(d)_i$ associated with the filtration given by the lower central series. If L^i is a Lie algebra over F, and F is an extension of the field K, we denote by L_K the algebra L viewed as a Lie algebra over K.

LEMMA 3.7 [DS]. – Let $F = GF(p^n)$, K = GF(p). Then the kernel of the canonical homomorphism from $L_K(2n)$ onto $L_F(2)_K$ is generated, as a Lie ideal, by elements of degree 2.

THEOREM 3.8. – Let G be an NC-p-group of class $c \ge 4$. Let L be the associated graded Lie algebra of the group G/G_c . Let F and K be as above. Then there exists an F-Lie ideal J of $L_F(2)$ such that L is isomorphic to $(L_F(2)/J)_K$.

PROOF. – By Theorem 3.6, $(L_F(2)_K)_1 \oplus (L_F(2)_K)_2$ is isomorphic, as a K-Lie algebra, to $L_1 \oplus L_2$. Thus, by Lemma 3.7, $L_F(2)_K$ projects canonically onto L.

Consider $J = \text{Ker } \varphi$, where φ is the canonical projection of $L_F(2)_K$ onto L, as K-Lie algebras. We show that J is closed under field multiplication by elements of F. Let $x \in J$. We may assume $x \in J_r$, for some r < c. If $\vartheta \in F$, we show that $x\vartheta \in J_r$. By our assumption on G, and Proposition 3.3, we would have otherwise $[x\vartheta, L_F(2)_1] \notin J_{r+1}$. But $[x\vartheta, L_F(2)_1] = [x, (L_F(2)_1)\vartheta] = [x, L_F(2)_1] \subseteq J_{r+1}$, contradiction.

Acknowledgements. – The authors wish to thank A. Caranti, R. Dark, H. Heineken, A. Mann for valuable comments and discussions while this paper was written.

REFERENCES

- [Be] B. BEISIEGEL, Semi-extraspezielle p-Gruppen, Math. Z. (1977), 247-254.
- [B1] N. BLACKBURN, On a special class of p-groups, Acta Math., 100 (1958), 45-92.
- [Bo] C. BONMASSAR, Tesi di laurea, Trento (1990).
- [BCS] R. BRANDL A. CARANTI C. M. SCOPPOLA, *Thin metabelian p-groups*, Quart. J. Math. Oxford, 50 (1992), 157-173.
- [CMNS] A. CARANTI S. MATTAREI M. F. NEWMAN C. M. SCOPPOLA, *Thin groups of prime power order and thin Lie algebras*, to appear.
- [DS] R. S. DARK C. M. SCOPPOLA CAMINA GROUPS, to appear.
- [H] B. HUPPERT, Endliche Gruppen I, Springer, Berlin, 1967.
- [HB] B. HUPPERT N. BLACKBURN, Finite groups II, Springer, Berlin (1982).
- [McD] I. D. MACDONALD, Some p-groups of Frobenius and extra-special type, Isr. J. Math., 40 (1981), 350-364.
- [M] A. MANN, Some finite groups with large conjugacy classes, Isr. J. Math., 71 (1990), 55-63.
- [MS] A. MANN C. M. SCOPPOLA, On p-groups of Frobenius type, Arch. Math., 56 (1991), 320-332.
- [Y] I. O. YORK, The group of formal power series under substitution, Ph. D. Thesis, Nottingham (1990).

C. Bonmassar: Dipartimento di Matematica Pura e Applicata Università di L'Aquila, Via Vetoio I-67010, Coppito (L'Aquila)

C. M. Scoppola: Dipartimento di Matematica Pura e Applicata Università di L'Aquila, Via Vetoio I-67010, Coppito (L'Aquila) scoppola@univaq.it

Pervenuta in Redazione il 13 marzo 1998