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Divisible Designs Admitting a Suzuki Group
as an Automorphism Group.

RALPH-HARDO SCHULZ - ANTONINO GIORGIO SPERA

Sunto. – Si costruiscono, facendo uso delle rette dei piani di Lüneburg e degli ovali di
Tits, due classi di disegni divisibili ipersemplici che ammettono il gruppo di Suzu-
ki S(q) (q422 t11 con tF1) come gruppo di automorfismi. Inoltre si studiano le
strutture ottenute determinandone le orbite di S(q).

1. – Introduction.

The Suzuki group are among the finite simple groups which allow a repre-
sentation as a permutation group on interesting geometrical objects, for in-
stance on the Tits ovoids and the Lüneburg planes (see for instance [Lu1 ]).
Starting from these geometries we construct divisible designs (see the next
section and [BJL] for the notation and definitions) admitting a Suzuki group
as an automorphism group.

In a previus paper, one of the authors has defined the concept of a 2-R-ho-
mogeneous permutation group (for an equivalence relation R on a set X) by
the property that the group respects the equivalence classes of R and is tran-
sitive on the transversal sets of size two of X (see Spera [Sp2 ]). Such a 2-R-ho-
mogeneous group G allows the construction of an (s , k , l)-divisible design
(X , B G ) (see [Sp2 ]) where B denotes an R-transversal k-subset chosen as
starter block. This generalizes the construction of 2-designs by 2-homoge-
neous permutation groups.

The idea of using the set of all lines of a finite translation plane p as the set
X, the parallelism relation as R and an automorphism group G which is 2-R-
transitive on the set X (and therefore 2-transitive on the line at infinity) re-
stricts the possibilities for p to the desarguesian planes and the Lüneburg
planes (Schulz [Sch], Czerwinski [Cz], see also [Ka] or [Lu1 ]). The desargue-
sian case has been considered in [Sp3 ] where a class of divisible designs has
been constructed choosing a subovoid of the Tits ovoid as base block.

So in the present paper, the set X is taken to be the set of lines of the Lüne-
burg plane p(L) of order q 2 with q422 t11 , tD1, the equivalence relation R as
the parallelism relation on X and the group G as the product of the translation
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group of p(L) and the Suzuki group S(q) in the representation on the Lüneburg
plane. We consider three possibilities for the starter block. Besides the divisible
design obtained in a standard way from the dual structure of the Lüneburg
plane, one construction gives a (q 2 , q , q21)-divisible design with q 2 (q 211)
points and q 5 (q 2 11) blocks, and one a (q 2 , q 2 112q , (q 2 112q)(q21))-
divisible design on the same set of points and, in some way, complementary
blocks. Both types admit S(q) as an automorphism group and are hypersimple.

2. – Basic definitions.

Let X be a set and R an equivalence relation on X. If x is an element of X,
we shall denote by [x] the equivalence class containing x and by R the set of
all equivalence classes. A subset B of X is said to be an R-transversal k-subset
of X if NBN4k and B meets each equivalence class in at most one element of X.
If Y%X, we will denote by [Y] the union of all equivalence classes which meet
Y. Suppose now that s , k , l and v are positive integers with 1 EkEv and
sEv. Let X be a finite set of cardinality v endowed with an equivalence rela-
tion R and B a family of R-transversal k-subsets of X. Then D4 (X , B) is said
to be an (s , k , l)-divisible design (in short an (s , k , l)-DD) if:

i) [x] 4s for every x�X;

ii) for every x , y�X with [x] c [y] there are exactly l elements of B

containing x and y.

The elements of X are called points, the elements of B blocks and those of
R point classes. In the case where every block meets every points class, D is
called transversal. It is well known that, for an (s , k , l)-DD with v points and
b blocks,each point belongs to exactly r blocks and

r(k21) 4 (v2s)l and bk4vr .

A DD is called m-near-symmetric if m4b/(sv) is a positive integer which di-
vides l, whereas it is said to be hypersimple if, for every B� B and x , y� [B]
with [x] c [y] there exists exactly one block B 8 containing x and y and such
that [B 8 ] 4 [B]. Notice that the notion of hypersimple DD contains the one of
simple DD (that is without repeated blocks).

Let G be a permutation group on the set X and R an equivalence relation
on X which is G-admissible (that is x , y�X and xRy imply (x g ) R(y g )
for every g�G). Then the triple (G , X , R) is said to be an R-permutation
group (see [Sp1 ]). If t is a positive integer and V4 (G , X , R) is an R-permuta-
tion group, then V will be called t-R-homogeneous (t-R-transitive) if for every
two R-transversal t-subsets S4 ]x1 , x2 , R , xt ( and S 84 ]y1 , y2 , R , yt ( of X
there exists g�G such that S 84S g (yi 4 (xi )g for all i41, 2 , R , t). The fol-
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Moreover we put
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and denote with m*(k) the projectivity associated with m(k). It is well-known
that T4 ]d*(a , b)Na , b�K( and Z4 ]m*(k) N k�K2 ]0(( are subgroup
of S(q).

THEOREM 1 ([Su]). – i) S(q) acts 2-transitively on the ovoid D.

ii) ZT is a group of order q 2 (q21) and it is the stabilizer of U in S(q),
that is ZT4 (S(q) )U .

iii) If g� (S(q) )U , then g can be written uniquely as g4m*(k) d*(a , b) Q
v* d*(c , d) where k�K20, a , b , c , d�K and v* is the projectivity associ-
ated with
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Notice that d(a , b), m(k) and v belong to SL(4 , q) fot every a , b�K and
k�K *.

Now, let H(Q) be the cone over the line I4 ]P�PG(3 , q)NP is a zero of
x0 40 4x2 (, that is H(Q) 4 ](0 , x1 , 0 , x3 ) �K 4 Nx1 , x3 �K(, and H(a , b) the
one over I v* d*(a , b). Then L4 ]H(a , b)Na , b�K(N ]H(Q)( is a spread of K 4

whose associated plane p(L) is the Lüneburg plane. The line at infinity of p(L)
is (or can be thought as) D.

REMARK 1. – Remember that T acts regularly on D 2 ]U(. From which we
have that, if P� D 2 ]U( then there exists exacly one d*(a , b) �T such that
P4a(1, 0, 0, 0)bd*(a , b)4a(1, 0, 0, 0)d(a , b) b. If we set v(a , b)»4 (1, 0, 0, 0)d(a , b)

and define C : DKL by C(U)»4H(Q) and C(P)»4H(a , b) if P�D2]U( and
P4av(a , b)b, then it is easy to see that C is a one-to-one correspondence. Thus
we obtain that the action of S(q) on L is «equivalent» at its action on D. So we
get that if g�S(q), then H(a , b)g4C(av(a , b)bg ) and being C(av(a , b)bg )4

C(av(a , b)g b ) we have that H(a , b)g4H(c , d) when av(a , b)g b 4 av(c , d)b and
H(a , b)g4H(Q) when av(a , b)g b 4U; while H(Q)g4C(U g ) 4H(c , d) if
U g4 av(c , d)b and H(Q)g4H(Q) if g fixes U.
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REMARK 2. – As m(k), v ,d(a , b) �SL(4 , q) for every k�K * and a , b�K, we
obtain (see [Lu1 ]) that S(q) is, up to isomorphism, a subgroup of PSL(4 , q).
But PSL(4 , q) CSL(4 , q) since for q422 t11 the center of SL(4 , q) is trivial.
Thus S(q) is, up to isimorphism, a subgroup of SL(4 , q) and so it acts on the set
of vectors of K 4 too. Precisaly v a* »4v a for every v�K 4 if a* is a generical ele-
ment of S(q).

3. – The constructions.

Essential for this article is the following behaviour of the automorphism
group of the Lüneburg planes.

PROPOSITION 2. – Let L be the set of lines of the Lüneburg plane p(L). If R
is the parallelism relation on L and if R is the translation group of p(L), then
(RS(q), L , R) is an R-permutation group which is 2-R-transitive.

PROOF. – Choose L as a representative system of the R-classes in L. Since R is
transitiven on each R-class and S(q) is transitive on L we get RS(q) is transitive on
L. So, it is enough (see [Sp1]) to show that the stabilizer (RS(q) )H(Q) of the line
H(Q) in RS(q) is transitive on L2 [H(Q) ], being [H(Q) ] the R-class represent-
ed by H(Q). By Remark 1 and ii) of Theorem 1, we have that ZT4S(q)H(Q).
Thus, if R(Q) denotes all translations which fix H(Q), this is R(Q) 4 ]t v�RN

v�H(Q)(, we get that R(Q) ZT’ (RS(q) )H(Q) . But R(Q) is transitive on each
R-class which is different to [H(Q) ] since it is a component of a spread of K 4.
Moreover ZT is transitive on D84D2 ]U( and so also on L2 ]H(Q)(. There-
fore (RS(q) )H(Q) is transitive on L2 ][H(Q) ](, and the proposition is
proved. r

By Proposition 1, we now are able to construct (s , k , l)-divisible designs
from the 22R2permutation group described above. Of course L is a R-
transversal set in L. So, if we choose L as a base block, it is an easy computa-
tion to show that the obtained divisible design D(V , L) is a (q 2 , q 2 11, 1 )-
transversal design with q 2 (q 2 11) points. Here V denotes the R-permutation
group (RS(q), L , R). But D(V , L), as it is known, can be obtained in a stan-
dard way considering the dual structure of the Lüneburg plane.

That there are no other translation planes exept the Lüneburg planes and
the desarguesian planes which allow a construction similar to that of D(V , L)
shows the following

PROPOSITION 3. – Let p be a finite non-desarguesian translation plane and T
its translation group. Suppose D is a divisible design constructed by a repre-
sentative system L of the parallel classes of the lines of p as a base block and by
a group G, with T’G’Aut p, fixing no parallel class and possessing a flag
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(P , h) such that G(P , h) is transitive on the set of lines through P different from
h. Then D contains a substructure consisting of all points and a subset of blocks
of D which is isomorphic to a design D(V , L) of the form constructed above.

PROOF. – Since T’G we have that L G is the set of all lines of p. Now G(P , h), being
transitive on the lines unequal h through P, operates transitively on the points at
infinity different from the parallel class [h] of h. Since G does not fix a parallel class
it operates 2-transitively on the line of infinity of p. By a theorem of Schulz and Cz-
erwinski (see Kallaher [Ka] 4.3 (16) or Lüneburg [Lu1]), p is either desarguesian or
a Lüneburg plane, the first case of which is excluded by our assumptions. By Theo-
rem 39.2 of Lüneburg [Lu1] and the proof of 39.3, GP contains a subgroup isomor-
phic to S(q). All groups S(q) contained in PGL(4, q) are conjugate (see 27.3 of
[Lu1]), each possesses an ovoid as an orbit and acts in its natural representation on
the set of lines through P (Dembowski, see [Lu1] 28.4). Hence, up to isomorphism,
the design constructed by the group TS(q) consists of the set of all points and a sub-
set of the blocks of D. r

To get more interesting divisible designs, we choose a proper subset of L.
In the following we shall consider the base block

B4 ]H(0 , b)Nb�K( .(1)

THEOREM 2. – Let q422 t11 where t is a positive integer. Then there exists
an (q 2 , q , q21)-divisible design D with q 2 (q 2 11) points and q 5 (q 2 11)
blocks. Moreover D admits the Suzuki group S(q) as an automorphism group
which is 2-transitive on the set of point classes.

PROOF. – Let B be defined as in (1). Our first goal is to determine GB where
G denotes the group RS(q). Let f�GB and suppose that f4t v g where t v is the
translation given by the vector v and g�S(q). Then, for every b�K,
H(0 , b)t v g4H(0 , b 8 ) for some b 8�K. But H(0 , b)t v g4H(0 , b)g1v g. So f�
GB if and only if H(0 , b)g1v g4H(0 , b 8 ). It follows that H(0 , b)g4H(0 , b 8 )
and v g�H(0 , b)g for every b�K. Hence g�S(q)B and v�H(0 , b) for every b�
K. From this we get v40 since L is a spread of K 4. Therefore f�GB if and only
if f4g�S(q)B.

Case 1: g4m*(k)d*(c , d) for some k�K * and c , d�K.
For every b�K (see the Remark 1 above), H(0 , b)g4C(av(0 , b)bg )4

C(a(1 , 0 , 0 , 0 )bd*(0 , b) m*(k) d*(c , d) ) and, (see 21.5 and 21.4 in [Lu1 ]) since
d*(0, b) m*(k) d*(c , d) = m*(k) d*(0, k s11 b) d*(c , d) = m*(k) d*(c , k s11 b1d),
we obtain that

H(0 , b)g4C(a(1 , 0 , 0 , 0 )bm*(k) d*(c , k s11 b1d) )4

C(a(1 , 0 , 0 , 0 )d(c , k s11 b1d) b)4C(av(c , k s11 b1d)b)4H(c , k s11 b1d) .
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Therefore, in the case 1, g�S(q)B if and only if c40 and so, if and only if g4

m*(k)d*(0 , d) �ZC(T) where C(T) 4 ]d*(0 , d)Nd�K( is the center of T.

Case 2: g4m*(k)d*(c , d)v* d*(e , h) where k�K *, and c , d , e , h�K.

Since ZT fixes U we have H(Q)g4C(U g ) 4C(U m*(k)d*(c , d)v* d*(e , h) ) 4

C(U v* d*(e , h) ) 4C(a(1 , 0 , 0 , 0 )d(e , h) b)4C(av(e , h)b)4H(e , h). So if e40 we
get H(Q)g�B against the assumption g�S(q)B and H(Q) �B. It follows that
ec0. In the same way, considering H(Q)g21

, we also obtain that cc0
since

g21 4d*(e , h)21 v* d*(c , d)21 m*(k 21 ) 4

d*(e , h1ee s ) v* d*(c , d1cc s ) m*(k 21 ) .

Now, since g�S(q)B , we have that H(0, b)g4C(av(0, b)bg )�B for every b�K .
So, also for b4dk 2s21, we have that C(av(0 , dk 2s21 )bg ) �B. But

av(0 , dk 2s21 )bg4 a(1 , 0 , 0 , 0 )bd*(0 , dk 2s21 ) m*(k) d* !(c , d) v* d*(e , h) 4

a(1 , 0 , 0 , 0 )bm*(k) d*(c , 0 ) v* d*(e , h) 4 a(1 , 0 , 0 , 0 )d(c , 0 ) vd(e , h) b 4

a(1 , c s12 , c , 0 )vd(e , h) b 4 a(c s12 , 1 , 0 , c)d(e , h) b 4

a(c s12 , [eh1e s12 1h s ] c s12 111ec , ec s12 , hc s12 1c)b .

Thus necessarily ec s12 40, a contradiction.
Therefore we have proved that GB4ZC(T) and so NGB N4 (q21)q. Now we

are able to determine the parameters (see Proposition 1) of the regular (s , k , l)-
divisible design D(V , B) whose set of points is L and the one of bloks is B G. Of
course it has q 2 (q 211) points and each point class holds s4q 2 points. Moreover
k4NBN4q and if b denotes the number of blocks, we have b4NGNONGB N4

NT S(q)NONZC(T)N4[q 4 (q 211)q 2 (q21) ] /[ (q21)q] 4q 5 (q 211) where as l4

[NGNk(k21) ] /[NGB Nv(v2s) ] 4q 5 (q 211)q(q21)/[q 2 (q 211)q 4 ] 4q21.
Clearly G is an automorphism group of D(V , B), so also S(q) is an automorphism
group of D(V , B) being S(q) a subgroup of G. Moreover, since S(q) is 2-transitive
on L (being 2-transitive on D) and L is a representative system for point classes, we
get that S(q) is 2-transitive on the set of point classes because of the G-admissibility
of the relation R. This completes the proof. r

COROLLARY. – Let q and S(q) be as in Theorem 2. Then there exists a
(s 8 , k 8 , l8)-divisible design admitting S(q) as an automorphism group and hav-
ing the following parameters: v 84q 2 (q 211), b 84q 5 (q 211), s 84q 2, k 84

q 2112q and l84 (q 2112q)(q21).

PROOF. – Let G4RS(q), B be as in (1) and put B 8 »4L2B. Since, as seen in the
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proof of Theorem 2, GB4ZC(T) and ZC(T) fixes L, we obtain that GB’GB 8.
Set

I4 ](a , b)Na , b�K and ac0(N ]Q( .

Of course we get B 84 ]H(x) /x�I(. If f�GB 8 , we have that f4t n g where t n�R
and g�S(q). For every x�I such that H(x)f4H(x)g1v g4H(y). It follows that
H(x)g4H(y) and v g�H(x)g for every x�I . So v40 and f�S(q)B 8 . Therefore
GB 84S(q)B 8 and, since S(q) fixes L , we obtain that GB 84S(q)B 84S(q)B4ZC(T).
Thus b 84NGNONGB 8 N4 [q 4 (q 211) q 2 (q21) ] /[ (q21) q] 4q 5 (q 211). More-
over k 84NB 8 N4NL2BN4 (q 211)2q and, being v 84q 2 (q 211) and s 84q 2,
we get that l84 [NGNk 8(k 821) ] /[NGB 8 Nv 8(v 82s 8) ] 4 [q 4 (q 211)q 2 (q2

1)(q 2112q)(q 22q) ] /[ (q21) qq 2 (q 211) q 4 ] 4 (q 2112q)(q21). Thus the
corollary is shown. r

In the following proposition we give the orbits of the divisible designs con-
structed in Theorem 2. (Clearly an analogous proposition can be shown for the
ones of corollary).

PROPOSITION 4. – Let S(q) be the Suzuki group, where q422t11 with tD0, and
D the (q 2 , q , q21)-divisible designs constructed in the above Theorem 2,
then:

i) The set of points of D is split by S(q) into one orbit of size q 211, one orbit
of size (q21)(q 211) and one orbit having size (q21)q(q 211). Each of this or-
bit meets every point class in the same number of points.

ii) S(q) splits the set of blocks of D into q 4 orbits of size q(q 211) each.

PROOF. – Let H(x)1v be a point of D where x� ](a , b)Na , b�K(N ]Q( and
v�K 4. For every H(x 8) �L’L there exists some g�S(q) such that H(x)g4

H(x 8). So (H(x)1v)g4H(x)g1v g4H(x 8)1v g� [H(x 8) ]. Thus (H(x)1

v)S(q)O [H(x 8) ] c¯, and since L is a representative system of the point classes, we
get that any orbit meets any point class. Hence it follows that every orbit has some
representatives on [H(Q) ]. Moreover, (H(x)1v)S(q) meets every point class in the
same number of points since S(q) is a R-permutation group on L (see Prop. 2). Of
course the orbit H(Q)S(q) is L because of the transitivity of S(q) on L; so we have
NH(Q)S(q) N4q 211.

Let e4 (0, 0, 1, 0) and consider the orbit (H(Q)1e)S(q). It has size NS(q)NO

NS(q)(H(Q)1e) N. But S(q)(H(Q)1e)4T. In fact if d(a , b) �T, then (H(Q)1e)d(a , b)4

H(Q)d(a , b)1e d(a , b)4H(Q)1(0, a s111b , 1, a s)4H(Q)1e since (0, a s111

b , 1, a s)2e�H(Q). Thus T’S(q)(H(Q)1e) . Vice versa, if g�S(q)(H(Q)1e) then
(H(Q)1e)g4H(Q)1e iff H(Q)g4H(Q) and e g2e�H(Q) iff g�ZT and
e g2e�H(Q). But g�ZT implies that g4m(k) d(a , b) for some k�K * and
a , b�K. Thus e g2e4e m(k) d(a , b)2e4 (0, k 22t

(a s111b), k 22t
21, k 22t

a s).
Hence we deduce that k 41 is necessary for e g2e � H(Q) and so g � T . There-
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fore we have that N(H(Q)1e)S(q) N4NS(q)NONTN4(q 211) q 2 (q21)Oq 24

(q 211)(q21) and so we get an orbit with (q 211)(q21) elements. Now, consid-
er the orbit (H(Q)1e 8 )S(q), where e 84 (1, 0, 0, 0). By the same method as
above we get that S(q)H(Q)1e 84C(T) and so N(H(Q)1e8)S(q)N4NS(q)NONC(T)N4

(q 211) q 2 (q21)/q4 (q 211) q(q21). There are no other orbits. In fact the con-
sidered orbits are distict, being of different size, and the total number of elements
of their union is equal to NLN. Thus i) is proved. (Note that the existence of the three
orbits and their sizes can be deduced from [Lu2] or [Lu1] page 139).

Now, we consider the block orbit B S(q). In the proof of Theorem 2 was shown
that S(q)B4ZC(T). Thus NB S(q)N4NS(q)NONS(q)BN4 (q 211) q 2 (q21)O[ (q2

1)q]4 (q 211)q. Of course B t v�B G does not belong to B S(q) for every v�K 42

]0( and, being S(q)B tv4t v
21 S(q)B t v , we also have that N(B t v )S(q) N4 (q 211) q.

Therefore necessarily there are exactly q 4 orbits and so ii) is shown too. r

Note that the divisible designs of Theorem 2 and the ones of its corollary are not
m-near-symmetric although b/(sv) is an integer in both cases (but does not divides
l). However we can state the following

PROPOSITION 5. – The (q 2 , q , q21)-divisible designs constructed in Theorem
2 and the (q 2 , q 2112q , (q 2112q)(q21))-divisible designs given in the
corollary are both hypersimple.

PROOF. – Let B4 ]H(0, b)Nb�K( be the base block of a (q 2 , q , q21)-divisi-
ble design D constructed in Teorem 2. Clearly RZC(T) ’G[B] where G, as before,
denotes RS(q). If f4t v g�G[B], since we have (H(0, b)1w)t v g4H(0, b)g1

(w1v)g for every b�K and w�K 4, we obtain that H(0, b)g1 (w1v)g� [B]. This
implies that H(0, b)g�B and so g�ZC(T). Therefore RZC(T) 4G[B]. Of course
(G[B] )B 4 GB because GB ’ G[B] . Now it is an easy exercise to see that GB is
2-transitive on B and that therefore G[B] is 2-R-transitive in its action on [B]. So, be-
ing B a transversal subset of [B] of maximal size, we obtain that ([B], B G[B] )
is a transversal (s , k , l)-divisible design where s4q 2, k4q, v4sk4q 3,
b4NG[B] NONGB N4 [q 4 q(q21) ] O[q(q21) ] 4 q 4 and l4 [NG[B] Nk(k21) ] O

[NGB Nv(v2s) ] 4 [q 4 q(q21) ]O[q 3 (q 32q 2 ) ] 41. Thus, being G transitive on
block set of D, we infer that D is hypersimple. Let now D 8 be a divisible design con-
structed in the corollary by the base block B 8 and suppose that x , y� [B 8] with
[x] c [y]. As noticed at the beginning of this section, D(V , L) is a transversal
(q 2 , q 211, 1)-divisible design. So there exists exactly one block L t v g containing x
and y, where t v g�RS(q). Let z , u�L t v g with zcu and z , u� [B]. Since, as see
above, D is hypersimple there is exactly one block B j containing z and u where j�
RZC(T). But L j4L t v g since they are both blocks of D(V , L) through the same
points z and u. Therefore B 8j is a block of D 8 with [B 8j ] 4 [B 8]. If B 8z

is an other block of D 8 through x and y with [B 8z ] 4 [B 8], then we have that
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B 8j4B 8z since L j4L z being D(V , L) a (q 2 , q 211, 1)-divisible design. There-
fore D 8 also is hypersimple because of the transitivity of G on the block set
of D 8. r
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