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Finite Groups Whose Poset
of Conjugacy Classes of Subgroups

is Isomorphic to the One of an Abelian Group.

MARIO MAINARDIS

Sunto. – Si determinano i gruppi finiti il cui insieme parzialmente ordinato delle
classi di coniugio dei sottogruppi è isomorfo a quello di un gruppo abeliano.

Let G be a finite group and C (G) be the set of all conjugacy classes of sub-
groups of G endowed with the following relation:

]H g Ng�G( G ]K g Ng�G(

if and only if there exists x�G such that H x GK. Since G is finite, G is a par-
tial ordering on C (G). We shall call this poset the frame of G. A natural ques-
tion when dealing with weaker structures related to a group G, such as the
subgroup lattice or, in this case, the frame, is to determine how strongly these
influence the structure of G itself (see Preface of [5]). In particular we are in-
terested in the following question: given a class x of groups determine the
class x of all finite groups whose frame is isomorphic to the one of a group of
the class x. We shall call x the closure of x and we shall say that x is closed if
x4 x. In [1] Brandl showed that the classes of finite p-groups, finite abelian p-
groups, metacyclic p-groups are closed. The same result holds for the class of
finite modular p-groups and for the class of p-groups of maximal class ([3]).
The last result depends on the fact that in a finite p-group the (conjugacy
classes containing) normal subgroups can be characterized within the frame.
This is clearly no more possible for groups of composite order for e.g. the
groups S3 and C6 have isomorphic frames but nonisomorphic normal subgroup
lattices. More generally Brandl, Cutolo and Rinauro proved that the closure of
the class of finite cyclic groups is the class of finite groups with cyclic Sylow
subgroups ([2] Theorem A). In this paper we continue their investigation and
determine the closure of the class of finite abelian groups. The result we shall
prove is the following.

THEOREM 1. – Let G be a finite group. Then there exists an abelian group
A and a poset isomorphism W : C (G) K C (A) if and only if G is a supersolv-
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able T-group with abelian Sylow subgroups. In this case for every noncyclic
Sylow p-subgroup P of G, the (unique) element, say R, of [P]W is a Sylow r-
subgroup of A whose lattice is isomorphic to the one of P .

Note that, by [5] Theorem 2.2.6 and Theorem 2.6.8., this implies that if P is
not cyclic, then R`P and if P is cyclic, then R is cyclic and logp (NPN)4

logr (NRN) .

Most notations are standard (see e.g. [4]). In addition to that for every sub-
set S of a poset (L , G) we denote with SE the set ]xNx� L , xFs , (s� S( and
with SD the set ]xNx� L , xGs , (s� S(. We shall denote with S1 and S2 re-
spectively the set of minimal elements of SE and the set of maximal elements
of SD. If a , b� L with aFb, we denote with [a : b] the set ]cNc� L , aFcFb(.
If G is a group we denote with L (G) its subgroup lattice. If H and P are sub-
groups of G with HGP we denote with [H]P the set of all conjugates of H un-
der P; in particular if P4G and there is no ambiguity, we write simply [H] in-
stead of [H]G .

LEMMA 2. – Let G be a finite group.

1) Let p G : L (G) K C (G) be the map that sends every subgroup of G in
its conjugacy class. Then p G is a poset epimorphism and it is an isomor-
phism if and only if G is abelian or hamiltonian.

2) Let PGG and HGP such that G4NG (H) P . Then [H]P 4 [H]G .

3) If P L G then C (G/P) is isomorphic to the interval [[G]G : [P]G ] of
C (G).

PROOF. – The first two assertions follow immediately from the definition of
the order relation in C (G). For the last one note that if [H]G � [[G]G : [P]G ]
then PGH and it is easy to see that the position [H]G O [H/P]G/P for every
[H]G � [[G]G : [P]G ] defines a poset isomorphism between [[G]G : [P]G ] and
C (G/P). r

LEMMA 3. – Let H1 and H2 be subgroups of a finite group G. For every ele-
ment c� ][H1 ], [H2 ](1 (resp. ][H1 ], [H2 ](2 ) there exist g�G such that c4

[aH1 , H g
2 b] (resp. c4 [H1 OH g

2 ] ) .

PROOF. – We prove the lemma only for c� ][H1 ], [H2 ](1, a dual argument
proves the other case. Let L�c, then L is a subgroup of G that contain a conju-
gate H1

g1 of H1 and a conjugate H2
g2 of H2 for suitable elements g1 and g2 in G.

Set g4g2 g1
21, then c4 [L] 4 [L g1

21
] F [aH1 , H2

g b] on the other hand
[aH1 , H2

g b] F [Hi ] for i� ]1, 2( hence [aH1 , H2
g b] � ][H1 ], [H2 ](E and mini-

mality of c forces c4 [aH1 , H2
g b]. r
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LEMMA 4. – Let P be a Sylow p-subgroup of a group G. Suppose that every
subgroup of P is normal in G. Then there is a poset isomorphism

g : C (G) K C (P)3 C (G/P)

such that

1) ( [H]G )g� C (P)3 ][]1G/P (]G/P ( if H is a p-subgroup of G and

2) ( [H]G )g� ][]1P (]P (3 C (G/P) if H is a p 8-subgroup of G.

PROOF. – For any conjugacy class [H]G consider the pair ([HOP]P ,
[HP/P]G/P ). Assume [H]G 4 [K]G . Then K4H g for a g�G and, since every
subgroup of P is normal in G, we have

[KOP]P 4 [H g OP]P 4 [ (HOP)g ]P 4 [HOP]P

and

[KP/P]G/P 4 [H g P/P]G/P 4 [ (HP/P)gP ]G/P 4 [HP/P]G/P .

Thus we may define a map g : C (G) K C (P)3 C (G/P) sending [H]G to the pair
( [HOP]P , [HP/P]G/P ). It is immediate to see that g satisfies 1) and 2).

We prove that

1) g is injective.

Suppose ([H]G )g4 ( [L]G )g, that is

( [HOP]P , [HP/P]G/P ) 4 ( [LOP]P , [LP/P]G/P ) .

Then we have that [HOP]P 4 [LOP]P and, since every subgroup of P is nor-
mal, this means that

HOP4LOP .

By the Theorem of Schur-Zassenhaus there is a p 8-complement Q of P in HP
that is contained in H and H4 (HOP)Q. Since [HP/P]G/P 4 [LP/P]G/P , there
exists g�G such that (HP)g 4LP hence Q g GLP and Q g is a p 8-complement of
P in LP. Again by the theorem of Schur-Zassenhaus there is a conjugate Q gh

of Q g that is contained in L and

L4 (LOP) Q gh 4 (HOP) Q gh 4 (HOP)gh Q gh 4H gh ,

that is [H]G 4 [L]G .

2) g is surjective.

Consider a pair ([M]P , [N/P]G/P ) in C (P)3 C (G/P). Then MGPGN. Let R
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be a p 8-complement of P in N and consider the subgroup MR. Then

M4MROP and N/P4RP/P4MRP/P ,

that is ([M]P , [N/P]G/P ) 4 ( [MR]G )g .

3) g is a poset homomorphism.

Let [H]G G [L]G , then there exists g�G such that HGL g . Thus

HP/PGL g P/P4 (LP/P)gP ,

which implies that

[HP/P]G/P G [LP/P]G/P .

Moreover

HOPGL g OP4 (LOP)g 4 (LOP) ,

which implies that [HOP]P G [LOP]P and it follows that ([H]G )gG

( [L]G )g .

4) g is a poset isomorphism.

Suppose ([H]G )gG ( [L]G )g, then

[HOP]P G [LOP]P and [HP/P]G/P G [LP/P]G/P .

Since the subgroups of P are normal in G the first inequality implies that
HOPGLOP , and the second implies that there exists g�G such that
HP/PGL g P/P. By Schur-Zassenhaus there are p 8-complements Q1 and Q2 of
P in HP and L g P respectively with Q1 GQ2 and

H4 (HOP) Q1 G (LOP)Q2 4L g ,

that is [H]G G [L]G . r

We prove now Theorem 1.
Let

W : C (G) K C (A)

be a poset isomorphism where A is an abelian group and G is a finite group.
We show that G is a supersolvable T-group with abelian Sylow subgroups.
Suppose not and let G be a counterexample of least possible order. Through-
out this proof, if H L G, we shall denote with H the unique element of [H]W.
Let N be a nontrivial normal subgroup of G, then we have

C (G/N) ` [[G]: [N]] ` [[G]W : [N]W ] ` [[A]: [N]] ` C (A/N) .
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Since A/N is abelian and N is nontrivial, minimality of G implies that

5) For every nontrivial normal subgroup N of G, G/N is a supersolvable T-
group with abelian Sylow subgroups.

Since C (G) ` C (A) ` L (A) and C (G) is finite, we have that L (A) (hence
C (G) ) is a finite modular lattice. By [1], Proposition 1, it follows that

6) G is supersolvable and C (G) is a finite modular lattice.

This means that every pair [H], [K] of elements of C (G) there is a unique
element of ][H], [K](1 and a unique element of ][H], [K](2 which we denote,
as usual, respectively with [H]S [K] and with [H]R [K]. Let p the greatest of
the primes dividing NGN and P�Sylp (G). Then P L G by a theorem of Zappa
(see [4], 5.4.8 pag. 145). We prove that

7) if H is a normal subgroup of P, then H is normal in G.

Suppose the assertion were false. Let q be the greatest prime such that
there are a q-element g of G and a normal subgroup H of P which is not nor-
malized by g. Clearly pDq, since H L P . Let r be the set of primes which are
greater than q and set N4Or (G). By [4] (5.4.8) N is a r-Hall subgroup of G.
Let K be a r 8-complement of N containing g. By the choice of q

8) every element of N normalizes H.

and since K`G/N, which is a proper factor of G, 5) implies that,

9) every element of K normalizes agb.

Let t�G, since G4NK, there exist n�N and k�K such that t4nk. By 8)
and 9) it follows that

ag , H t b 4 ag , H nk b 4 ag , H k b 4 ag k , H k b 4 ag , Hbk .

By Lemma 3 this implies that

10) [H]S [agb] 4 [aH , gb].

Now we have that

HE aH , H g b GP .

Hence, as NagbN and NPN are coprime and P L G , it follows that

[H] E [aH , H g b] G [P]R [aH , gb] 4 [PO aH , gb] E [aH , gb] 4 [H]S [agb] .

On the other hand

[agb]R [aH , H g b] G [agb]R [P] 4 []1G (]
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which implies that C (G) is not modular since

( [H]S [agb] )R [aH , H g b] 4 [aH , H g b] c [H] 4 [H]S ( [agb]R [aH , H g b] ) ,

a contradiction that proves 7). We prove now that

11) every subgroup of P is normal in G.

By 7) (or by the proof of the theorem of Zappa [4], 5.4.8 pag. 145) there is a
subgroup Z of order p and normal in G. By 5) G/Z is a supersolvable T-group
with abelian Sylow subgroups, in particular, by the Correspondance Theo-
rem,

12) every subgroup of P containing Z is normal in G.

If Z is not contained in the Frattini subgroup of P then, since ZGZ(P), P
is isomorphic to the direct product Z3P/Z. Since P/Z is abelian, P is abelian
and 11) follows from 7). Assume now that

13) Z is contained in the Frattini subgroup of P.

We may assume that P/Z is not cyclic, otherwise, by 13), P is cyclic and we
have nothing more to prove. By 12)

L (P/Z) ` [[P]: [Z]] ` [[P]: [Z]] ` L (P/Z) .

Therefore P/Z is an abelian group which is lattice isomorphic to the noncyclic
abelian p-group P/Z. By a theorem of Suzuki (see [5] Theorem 2.2.6, pag. 52),
NP/ZN4NP/ZN hence, by a theorem of Baer (see [5], Theorem 2.6.8, pag. 104)
we have that

14) P/Z`P/Z, in particular P/Z is a p-group.

Since Z is contained in every maximal subgroup of P, Z is contained in the
Frattini subgroup of P and it follows, by 14), that

15) P is an abelian p-group.

Let X be a cyclic subgroup of P. Then [[X]: []1(]] is a chain hence L (X) is a
chain and X is cyclic. We prove that

16) X L G .

If ZGX then X L P by 12). Thus assume ZG/ X and Xc ]1(. Then, since
Z L G, by Lemma 3, we have [Z]S [X] 4 [ZX] and [Z]R [X] 4 ]1(,
hence
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17) ZX is a normal abelian subgroup of G of type (p , p a ), where p a4NXN .

On the other hand we have

L (X) ` [[X]: []1(]] ` [[X]: []1(]] ,

L (Z) ` [[Z]: []1(]] ` [[Z]: []1(]]

and

[XOZ] 4 [X]R [Z] 4 ([X]R [Z] )W4 [XOZ]W4 []1(]W4 []1(] .

Hence

18) X and Z are cyclic and ZX `ZX .

Let Y be a G-conjugate of X, then [X] 4 [Y] and, since ZX is normal in G, Y
is a maximal subgroup of ZX. By 18), [[ZX]: []1(]] ` L (ZX). Hence, by 17),
there are exactly p11 maximal elements [X1 ] 4 [X], R , [Xp11 ] of
[[ZX]: []1(]]. Since each one of these contain a maximal subgroup of ZX and
ZX has exactly p11 maximal subgroups, for every i� ]1, R , p11( there is
only one maximal subgroup of ZX which is contained in [Xi ]. In particular it
follows that Y4X and X is normal in G. We have proven that every cyclic sub-
group of P is normal in G and this clearly implies 11).

By 5) and [4], 13.4.5. G is a supersolvable T-group and its Sylow subgroups
are abelian since they are either isomorphic with P, which is abelian by 11) or
isomorphic with a Sylow subgroup of G/P and these are abelian by 5), the final
contradiction.

Conversely, suppose G is a finite supersolvable T-group with abelian Sylow
subgroups. Let t be the lenght of a Sylow tower of G and P1 , R , Pt be a set of
representatives of the conjugacy classes of the Sylow subgroups of G. For
every i� ]1, R , t( let Qi be a group isomorphic to Pi and let A be the direct
product of the Qi’s. Then A is abelian since every Pi is abelian. By Lemma 4
and induction on t, we have that there is a poset isomorphism

g : C (G) K C (P1 )3 C (P2 )3R3 C (Pt ) .

such that

[Pi ]g� ][]1P1
(]P1

(3 ][]1P2
(]P2

(3R3 C (Pi )3R3 ][]1Pt
(]Pt

( .

By [6], Theorem 4, pag. 5 (or by [5], Lemma 1.6.4) and Lemma 2, it is easy
to see that we may construct a poset isomorphism

d : C (G) K C (A) .
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Finally, let B be another abelian group and

m : C (G) K C (B)

be a poset isomorphism. Let p A and p B be defined as in Lemma 2 and set Ri 4

[Pi ]m p21
B then Ri is a direct factor of L (B), hence, by [6], Theorem 4, pag. 5,

19) Ri is a Hall subgroup of B.

Since p B m21 dp21
A is a poset isomorphism, we have that

L (Ri ) 4 [Ri : ]1B (] ` [Ri : ]1B (]p B m21 dp21
A 4 [Qi : ]1A (] L (Qi ) ` L (Pi ) .

Thus Ri and Pi are lattice-isomorphic abelian groups.

Aknowledgements. – I wish to thank the referee for pointing out one mis-
take in the proof of Theorem 1.
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