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Bollettino U. M. 1.
(8) 1-B (1998), 651-675

Interior Regularity for Weak Solutions
of Ultraparabolic Equations in Divergence Form
with Discontinuous Coefficients.

MARIA MANFREDINI - SERGIO POLIDORO

Sunto. — Abbiamo considerato il problema della regolarita interna delle soluzioni de-
boli della sequente equazione differenziale

mop N mo
P> 1 3y (@ j(x, 1) Spyu) + X 1 by, j; 9y u — Syu = ‘21 3, Fj(, 1),
L)= ’ i, J= : j=

dove (¢, t) e RN 1,0 <my<Ned Fje L (RN ") perj =1, ..., my. I nostri princi-
pali risultatt sono una stima a priori interna del tipo

Mo mo
3 18gul, <c( 3 171, +lull,),

e la regolarita holderiana di u. La stima a priori delle derivate viene ottenuta uti-
lizzando una tecnica analoga a quella introdotta da Chiarenza, Frasca e Longo
m [3], per gli operatori ellittici in forma di non divergenza, supponendo che i coef-
ficienti a; ; verifichino una condizione di «debole» continuita. Il risultato di hélde-
rianita ¢ consequenza delle suddette stime e di una formula di rappresentazione
basata sulla espressione esplicita della soluzione fondamentale dell’operatore
«congelato».

1. — Introduction.

In this note we are concerned with the interior regularity of the weak sol-
utions of the second order differential equation

my N my

(1.1) Lu:= 2 3@(%‘,]'(2') a.r,u)"' > bi,jxiaxju_atu: 2 a.erj(z)’
i, j=1 i,j=1 J

1, j= =1

where z = (v, t) e R "', 0 <my <N and F;e L. (R¥*!) for j=1, ..., my. In
our treatment we shall always assume the following hypothesis

HyporHesis H. — The matric Ay(z) = (a; j(2)); -1, . m, S Symmetric
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and such that, for a suitable u >0,

uHEPS(AgR) &, By S ulE

for every ze RN and for every EeR™.
The matric B = (b; ;)i j-1, .., N con be written as

ey

(0 B, 0 - 0)
0 0 By - 0
B= )
B,
o o o0 - 0]
where each B; is a m;_, X m; block matrix of rank m;, j=1,2, ..., r, with

me=m =...zm,.=1 and my+m;+ ... +m,=N.

In the sequel we shall write equation (1.1) in the following way:
div (A(z) Du) + Yu = div (F),

where F' = (Fy, ..., F,,, 0, ..., 0), Yu= (¥, BDu) — 3, u and the N X N matrix
A(z) is defined as

A 0
(12) AQz) = ( (%) )
0 0
We shall say that « is a weak solution of (1.1) in an open set Qc RN "1 if
Uy Oy Uy ooy Oy U, YueLZ.(2) and
f{A(z) Du(z), Dy(z))dz — qu(z) Y(z) dz = f(F(z), Dy(z)) dz
o Q Q

for every v e Cy* ().
We next state the main results of this paper, while we refer to Section 2 for
the precise meaning of the hypothesis

(li’jEVMOL, i,j=1,...,m0.

THEOREM 1.1. — Suppose that L satisfies Hypothesis H and that a; ;e
VMO, for i, j=1, ..., my. Let Q be an open subset of RN *! and let u be a
weak solution in Q of

div (A(x, t) Du) + (x, BDu) — d,u = div (F)

where u, F;e L' (Q) for j=1, ..., my, 1 <p < «. Then, for any compact set
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KcQ the derivatives 81}.u,j= 1, ..., my belong to L?(K). Moreover
my
a®  louw Ll <a( 3 IR L@l + s Lr@ll),

where c; is a positive constant depending only on p, K, 2 and on the opera-
tor L.

THEOREM 1.2. — Suppose that L satisfies Hypothesis H and that a; ;e
VMO, for i, j=1, ..., my. Let Q be an open subset of RN *! and let u be a
weak solution in Q of

div (A(x, t) Du) + (x, BDu) — d,u = div (F)
where w, F;e L?(Q) for j=1, ..., my, p>Q + 2. Then

|u(z) —u(E) | ('”0 o - )
||C_1OZ||1_<Q+2)/p SCZ kgl ||F/c’L (‘Q)||+||u’L (Q)|| ’ VZ,@EK, Z¢Cv

(1.4)

where ¢y is a positive constant depending only on p, K, 2 and on the opera-
tor L.

When the coefficients of the matrix A belong to suitable classes of Holder
continuous functions, many existence and regularity results for equations like
(1.1) have been recently proved.

More precisely: existence and estimates of the fundamental solution for
the operator L, Harnack inequality for non-negative solutions, existence and
uniqueness results for the Cauchy problem, have been proved in [11], [12]
and [13]. In addition, Schauder estimates and existence results for boundary
value problems have been established in [8].

In this work we provide a first Holder continuity result of the weak sol-
utions of equation (1.1), when the coefficients of the matrix A are not regular.
Unlike to the classical elliptic and parabolic case, we do not use Nash or Moser
techniques [10], [9]. That methods, in fact, seem to us not easily adaptable to
our setting. We use an approach based on a representation formula requiring
a weak regularity assumption on the a; ;s (the VMO, hypothesis).

This note is organized as follows. In Section 2 we give some notations and
we recall some known results. Section 3 contains the proofs of some represen-
tation formulas for the weak solutions of (1.1) and for their derivatives.

In Section 4 we prove Theorem 1.1, by using a technique introduced by
Chiarenza, Frasca and Longo in[3] for elliptic operators in non-divergence
form. This technique has been subsequently extended to the classical parabol-
ic operators in[1] and to the operators of type (1.1) in non-divergence form
in [2]. The same technique was also used by Di Fazio for elliptic operators in
divergence form in [4].
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The main difficulty in adapting the previous method to our setting is the
lack of a uniqueness result which does not allows, as in the elliptic case, to ap-
proximate any weak solution by a sequence of solutions of suitably regular
equations.

Section 5 contains the proof of Theorem 1.2 which relies on the following
remark: if we denote by 7,,, the identity matrix m, X m,, and define the N x N
constant matrix

o
(1.5) J= ;
0 0

then we can write equation (1.1) in the following form

(1.6) Lou:= div(JDu) + (x, BDu) — 3,u = div (F),
~ Mo ~
where F;=F; + 0, u — > a;, Oy u for j=1, ..., my, and F; =0 for j =m, +
k=1 ~
1, ..., N. As a consequence of Theorem 1.1, F; e LE, (R¥N 1), then Holder con-

tinuity result follows by using the representation formula for the solutions of
(1.6) and the inequality in Proposition 5.2 for the kernels appearing in such a
formula.

We conclude this introduction by observing that our results are new also in
the parabolic case. Indeed, if my= N, Hypothesis H simply means that L is
uniformly parabolic and B = 0.

Acknowledgments. — We thank Professor E. Lanconelli for suggesting the
problem and several valuable remarks, Professor A. Cavallueci for some useful
discussions.

2. — Some known results.

We first recall some known results about operators (1.1) when the matrix A
is constant. Note that, as a consequence of Hypothesis H, the «frozen»
operator

2.1) L; :=div(A(Q) Du) + Yu

is hypoelliptic for every e R¥*! (see[6]) and it is invariant with respect to
the translations and the dilations of the following groups.
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DEFINITION 2.1. — For every (x,t), (&, 1) e RV and A >0 we define
(€, 1) 0§, ) =E+E@a, t+1), E®) =exp(—tBT),

D) = diag (AL, A*1,

R

o /’{27%1[7"/}‘)’

where L, denotes the m; x m; identity matrix.
We will say that (RN *1) o) and (D(A), A2); - are, respectively, the «trans-
lation group» and the «dilation group» associated to L.

We next introduce a norm which is homogeneous of degree 1 with respect
to the dilations (D(1), %), -, and a corresponding quasi-distance which is in-
variant with respect to translation group.

DEFINITION 2.2. — Let ay, ..., ay be the positive integers such that
diag (191, ..., A*¥) =D(A).

If |||l = 0 we set z =0 while, if ze RN *1\{0} we define ||z|| = 0 where o is the
unique positive solution to the equation

wf xF s t*
- 4+ —=1().
o™ o™ o™ o
We will define the quasi-distance d by
dz,w) =]z tow|, =z, weRN'!

and we denote by B,(z) the d-ball of center z and radius .

Next proposition contains some properties of ||-| and d, proved in[2],
Proposition 1.3.

PROPOSITION 2.3. — The function z— | z| has the following properties:

Q) |IDQA) z|| = A|z|| for every ze RYN " and for every A>0;

(i) The set {z: ||z|| =1} is the euclidean sphere =y, = {(x, t): |x|*+
t* =1}

(!) We choose this definition, given by Fabes and Riviére [5], since it is convenient
for applying the Fourier expansions in spherical harmonics of some singular integral
kernels.
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(iii) There exists a constant cy= cy(B) >0 (depending only on matrix
B) such that
Iz o &ll < eoCllll + €D

for every z, Le RN *1;

(iv) There exists a constant ¢y = ¢y (B) >0 such that

1
—lzl=lz" I=alzl for every zeRY*1;
€1

(v) For every compact set Kc RY*! there exists cy = cy(B, K) >0 such
that

|2 —&| <& ezll, for every z, LeK with || oz||<1,
where |-| denotes the euclidean norm in RN ',

REMARK 2.4. — The Lebesgue measure is invariant with respect to the
translation group associated to L, since det E(t) = e'"**¥ =1, where E(t) is
the exponential matrix of Definition 2.1. Moreover, since detD(1) =
where

Q=my+3my+...+2r+1)m,,
we also have
meas (B,(0)) = r¢ "2 meas (B,(0)) .

We shall call <homogeneous dimension» of R¥*! the integer @ + 2.

We next introduce the BMO; and VMO;, spaces, naturally related to the
groups introduced in Definition 2.1. In the following definition we shall denote
by B any ball of R¥*! by B, any ball of radius » and, for every uwe
Ly (RV*1),

— |
=———— Ju
meas (B) g

DEFINITION 2.5. — For every function ue L1 (R¥N 1) let

Jull = sup W [ 1) = g,

7,(r) = su (BQ) flu(z) up, |dz .
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Then we define
BMO,(RY*") = {we Ly (RN 1): [lulls < + =},
VMO, (RY*1) = {u e BMO,(RY *1): lim 77,,(r) = 0}.
We recall some results of [6] and [10]:

PROPOSITION 2.6. — For every zye RN "1 let

t
C(t, zy) = fE(s)A(zO) ET(s)ds.
0

Then the matrixz C(t, z,) is positive for every t >0 and the fundamental sol-
ution of L, defined in (2.1), with pole at zero, is

1
ex
(472 (det C(t, z)) 2 ¥

1
22) Iz x, 1) = (—Z<C‘1(t,zo)w,9c>)
ift>0, [(zg;¢,t) =01 t<0.
The fundamental solution of L., with pole at (&, ) is the «left translated~
of I'(zy; -) with respect to the group (RVF1 o)

(2~8) F(zO;(g’ T)ilo(x’t))'

(2.3), as a function of the variables (&, 1), is the fundamental solution, with
pole at (x, t), of the adjoint operator L, = div (A(z,) D) — Y * (since trace B =
0 it results Y = =Y).

There exists an operator L * with the same structure as (1.1) and with
constant coefficients a; ;, such that, if I'" denotes the fundamental solution
of L™, then

([(z9; C tor)<c Tt (£ 1ow),

F+( 1oz
|8x_1“(zo;§‘loz)|$c+§—),
2.4) ;7 Vt—t
F+ _loz
|8x_x.F(z0;§*loz)|<c+L,
L t—1
for some positive constant ¢ and for every i,j=1, ..., my, zge RN "1, 2z =

(x, 1), ¢=(&, 1), with t <7, (see [10], Proposition 2.4 and Corollary 2.1).

In the following we will denote I';(2o; ) =09, I(zy;) and I';(2; ") =
oy [ (205 ), for v,5=1, ..., my. We explicitly note that I(z,; -) is homoge-
neous of degree — @ with respect to the group (D(1), 12), -, and that I';(2,; )
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and I";;(zp; ) are homogeneous of degree —(Q +1) and —(Q + 2), respect-
ively, for 7,5 =1, ..., m,.

We recall that the restriction to Xy, ; of any homogeneous polynomial
which is harmonic is said spherical harmonic. We denote by (K,,),, < an or-
thonormal complete system of spherical harmonies in L2(X y ;). We shall ex-
tend every function K,, to RY*1\{0} by setting

K, (z,t) =K, (D, )|, [z, )]76) .

The following results concerning the Fourier expansion of homogeneous
functions with respect to spherical harmonics have been proved in [2].

PROPOSITION 2.7. — Let Fe C*(RY*1\{0}) be a homogeneous function of
degree a. Then there exists a sequence (b,,),, <~ Such that

Fe) = 3 bullzl*Kn);

moreover, for every re N there exists c(r) >0, such that

|by | sup |K,(2)|<c(r)m™".

2eXN+1

Furthermore, if we consider the Fourier expansion of the function I(zy;-),
F(ZO; z) = 21 bm(zo) ||Z||_QKM(Z),

we also have that, for any re N, there exists c(r) >0 such that

sup |b,,(29)| sup |K,(2)| <c(r)m™".
zoelRN+1 2eXN+1

An analogous result holds for the derivatives I'j(zg;-), I'; j(2;°) and
YI(zp; ).

We end this Section recalling two results about singular integrals. The
first one is proved in[2], Theorem 3.1; for the second one see[13], Chap. I,
Remark 821 (in that setting the volume function is V(x,y)=
meas (B (0))[ly ' oxl|?272).

THEOREM 2.8. — For every a € BMO,(R¥ 1), ge LP(RN*1), 1 <p < o and
for any i,j=1, ..., my, we define

Tjg9(z) = lim f I';(z; & tor)g(0) dg,

e—
e~ ozl=e
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Cjla, gl(z) = lim f Ti(z; ¢ oaa(z) — a(§)] g(8) di .

E—>
e-tozlze

Then Tyg, Cjla, gleL” (R¥*YY and there exists a positive constant ¢ = c(p)
such that

17591, <cllgll, s NCsla, 911, <cllallllgll, -

THEOREM 2.9. — Let a €10, Q +2[ and let Ke C(RN**\{0}) be a homoge-
neous function of degree —a with respect to the group (D(A), A%),~,. If g€
LY(RN*1Y) then the function

Ty(z) = fK(C_loz)g(C)dC,

RN+1
18 defined almost everywhere, and there exists ¢ =c(q) >0 such that

791, < ¢ pua | KC) |-l

where p is given by the following relation: 1/q+a/(Q +2)=1/p+1.

REMARK 2.10. — In what follows we shall also explicitly use the following re-
sult, which is contained in the proof of Theorem 3.1 of [2]. Consider the expan-
sion of the function I'; ;(z, -):

K;,(O)

Fi,j(zm C) E bm(zo) ”C||Q+2 >

by letting b, = sup |b,,(29) | and

K. -1,
[ AP

*.g(z) = lim Z bt
l] lc=toz|=zo ||§ loz”QJr2

020 m=1

we have T ge L?(RV*') and
1737 gll, <c*lgll,

for some positive constant ¢ =c¢ " (p).

3. — Representation formulas.

In this section we will prove some representation formulas for the weak
solutions of (1.1) in terms of the fundamental solution 7(-; -) defined in (2.2).
We first introduce some notations and prove some preliminary results. For
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fixed r,seR,0<s<r, let ¢ be a function belonging to C*(R) such
that

3.1 @t)=1 forevery 0<t<s, ¢@(t)=0 foreveryt=r.
For every &,e 2 and r> 0 such that B,({,)c Q2 we set

(3.2) () = ¢(|5g ] .
Then if u is solution of (1.1) we have
L(yu) =div(G) +g,
where
3.3) G=nF+uADy, g={(ADu,Dn)—(F,Dn)+uY*n,

and Y* denotes the adjoint of the operator Y.

We remark that, if Fy, ..., F,,, ue L (2) and 3, u, ..., 3, ue Li.(2),
with ¢ <p, then Gy, ..., G, € L?(B.(§,)), ge L*(B,(,)) and there exists a
positive constant ¢, which depends only on 7, s, p and g, such that

my m
Sl <e(lul,+ 3 151,),

(3.4) .
lolly < (ld, + 3 AIF 1+ l,,)).

where |||, indicates the norm |- |[1r(cy))-
For the sake of brevity, in the sequel we shall write B, instead of

BT(€0)~

THEOREM 3.1. — If u is a weak solution of (1.1) and n, Gy, ..., G,,, g are the
Sfunctions defined in (3.3), then

3.5) (nu)(Z)=h > ffh(z; ¢t o)y, 1(®) —ap, 1(8)) 8, (qu(©) + G (§) 1dE —

'ZIRN+1

f I(z; &' oz) g(§) dE,

RN+1

moreover, for every j=1, ..., my,

3.6) 9,,(nu)(z) = — ff',-(z; & 1o2) 9(o) dé—kgl Gi.(2) fFj(Z; &) v(8) do .+

RN+1 N+t

my

2 lim f Iz &7 o) [, 1(2) — @y, 1(8)) 3, (qu)(8) + G (D) ]dE,

=1¢—0
R T P
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for almost every ze RN (vy, ..., vy.1) is the outer normal at the set =y . 1).

REMARK 3.2. — We will prove representation formulas (3.5) and (3.6) under
the weaker assumptions that: u, d,u, ..., 9, ueL.(£2) for some ¢>1
and

f(A(z)Du(z), Dy(z)) dz + fu(z) Y*y(z)dz = f{F(z), Dy(z)) dz
Q Q Q

for every v e Cy” (£22) (note that we don’t assume the existence of Yu).
To prove Theorem we shall make use of the following result.

LEmMmA 3.3. — There exists a positive constant k, depending only on the
matrie B, such that

3|g " ozl
3&;

for every z, Ce RN*1 2= L.

1
<k forj=1,..,m,, |[Y*[[6 oz | S ———

15" ozl

Here and in the following we agree to let the operator Y* acting on the
variable §: Y* f(§) = —(&, BD; f(§)) + 9, f(§). Lemma 3.3 will be proved at
the end of this Section.

ProoF oF THEOREM 3.1. — We split the proof of (3.5) in three steps. In step
A we prove a representation formula for smooth functions with compact sup-
port. In step B, by using the classical tool of expansion in spherical harmonics,
we get some uniform estimates that allows us to conclude the proof of Theo-
rem in step C, by a density arguments.

Let v be a function belonging to Cy” (). For every z,e Q2 and for every
function v e Cy”(R2), the definition of weak solution and (3.3) immediately

give

CHOREES sz(,v(C) Y(Q) dt = — fg(é?) P() dE + f(G(C), Dy(8)) dE +
Q Q Q
f([A(zO) — A©)]1 D(qu)(&), Dy(L)) dE +
Q

f(A(zo) D = qu)(&), Dy(0)) d& + f(v —nu)(&) Y*y(8) dZ .
Q Q

A. We shall prove that (3.7) also holds (almost everywhere) if we replace
(&) with the function I'(zy; £ ! o 2). First of all we note that the functions in
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(3.7 have compact support so that (3.7) also holds for every ye
C*(RVNTY),

If @ is the function defined in (3.1) with »=1, s=1/2, then we set for
every z, zpe 2 and for every 6 >0

1
3.8) wa(zO;z;§)=[1— (”C(5 H)] 20; € 1oz),

and we remark that being v, L, ve CO*(RN 1) we have

lim f(LzOv)(C) Ps(205 25 §) dC = f(l%v)(é) I(zg; L1 oz) dG = —v(2).
Q Q

We next consider the term f g(&) p(&) d¢ in (3.7). By using the first inequality
of (2.4), we get

525 0) — Ize; £71

-1
C+ffp(”§fsz”)F+(C_loz)Ig(C)IdCERa+(g)(Z).
Q

Note that, for every fixed ze R¥ "1, the function 0—R;" (¢)(z) is non-increas-
ing and

125" @) 11, <llgll,

100

then R (¢)(z) =0 as 0 —0, for every ze R¥N "1 \H (here and in the sequel H
denotes a zero measure set), and so

3.9) lim f’/)a(zo; 2; 80 g(0) dl = fl"(zo; §71or) g(8) dg,
Q Q

for every ze R¥N"1\H and for every z,e RV 1. In the same manner, we shall
estimate the next three integrals appearing in (3.7). In that order, sett-
ing

1) =max{|p'(s)|, s=t},
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we obtain from Lemma 3.3 that

N A A S MY
Sty | It )

g ezl | _ K ( 15 o 2] )
— | s |l —— ||
9&; o) 0
for every j=1, ..., my. Then, by using the second inequality in (2.4), we
get
r(gll)no f<G(€), D’(/}a(Z(), <5 C)) dC = f<G(C)y Dr(zo, C71 oz)> dC )
Q Q
Jim f<A(2'o) D(v —nqu)(©), Dy 5(2¢5 25 £)) d€ =
Q
3.10) ! f (A(z0) D(v = nqu), DI(z9; ' 02)) dG,
Q

lim @A) — A©1 Don©), Dy y(; 23 ©) d =
Q

\

f([A(z@) —A(D)1D(qu), DI(zg; o)) dg,
Q

for every ze RV *1\H and for every z,e RV '1,
About last integral in (3.7), it directly follows from (3.9) and (3.10) that
there exists a function T(v — nu)(z,, 2) belonging to L?(B,) such that

f(v —nu)(&) Y* 1 s(205 £ 1 02) dg = T(v = qu)(z, 2),
Q
for every ze RV *1\H and for every z,e RN 1. Then, setting

B.11)  wlzg, 2) = — ff(zo; £ oz) g(Q) dg + f(G(C), DI(zy; &' o2)) dg +
Q Q

+ f([A(zo) — A(5)1 D(qu)(Z), DIzg; &' 02)) d
Q
and

S —nu)(z, 2) = f(A(zO) D(v — qu)(Q), DIzy; &~ 02)) d,
Q
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we have
(3.12) (qu)(z) — w(zg, 2) = (qu)(z) — v(z) — S(v — yu)(zy, 2) — T(v — nu)(2y, 2)

for every ze R¥*1\H and for every zpe RV "1,

B. In order to let v—nu, we shall find two operators S and T'* such
that

|S(v —qu)(zg, 2) | <S* (v —nu)z), forevery z, zoe RV "1,

(3.13) my
IS+ (v —nu)l, < e(B,) El 16,,(v = )], -
=

and

61 |T(v — qu)(zy, 2) | ST " (v—nu)(z), forany zeRV*'\H, zpe RV *!,
1T+ (v —qwll, <kllv—null,,

for some positive constants c¢(B,) and k.
In view of the second inequality of (2.4) and Theorem 2.9 it is clear that the
operator

I—v+ (C -1 o Z) my
S+(y— =pct | ——2 "~ 8, (v— d
(v = qu)(z) = uc Qf N ]; |9, (v = qu)(8) | dT

satisfies condition (3.13).

In order to prove (3.14) we first show that the function 7(v — nu) satisfies
the following statement, (which allows us to use some results of singular inte-
gral theory in homogeneous space):

(3.15) T(v — nu)(zp, z) = lim f (w—nu)(&) Y* (205 £ toz)dE,
7 o0
’ ¢t ozlz0;
for some sequence (9;);. such that 6,—0 as j— «, for every ze RN +I\H

and for every zoe RV *!. To this end we note that

f w(Q) Y*4,5(205 {7 o) dG = f w(8) Y* [(zy5 {1 oz) dG -

RN+1 [etozll=0/2
-1 oz
f w(g) Y*(fp(Hésf”)F(zo; C‘loz)) dg
o/2<|e¢ toz|<0o

for every we LP(RY"1). By using the third estimate in (2.4) and Lemma 3.3
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we find that there exists a bounded function ¢ such that ¢(f) =0 for t>1

and
of (e oz . 1 g1 oz
oo (B0 g ) < 2 o (1)

for every zy, z, Le RV *! with 6/2 <[ ! oz| < 0. Moreover

1,
f y* ( (”C ||)F(ZO;C102))dC:0,

o/2<|ctozll<o

then, setting

-1
Tsuw(z, 2) = f w(&) Y*(¢(Ls'z”)F(zo;Cloz))dC
o/2<|lc oz <0
we get
|Tsw(z, 20)| =

-1
f Y*(fﬂ(ncé—z”)ﬂ%;6_102))[@0(@)—

o/2<||goz] <0

o ol

*opeletozl<o

) [w(&) —w(z) | d=Ts" w(z).

Hence, from Minkowskii’s inequality, we obtain

1/p
||T6+,w||ps f ('E(rl)( f |7/U(Z oD(é)yll)_?/U(Z)V)dZ) dn(:]()y

I/ZSHUHSI RN +1

from which it follows the statement (3.15).
We next consider the expansion in spherical harmonics of the function
Y*I(zg; -):

Km 1o
Y*F(Z(); C_IOZ) 2} bm( O)M .

Set b,, = sup|b,(z)| and
20

K -1,
[ A oD el

T*(v—nu)z) = lim E b, —
Jeroalza, 1677 o2[*72

—>oo m=
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since

mg

Y*(z0; § tor) = 2 RUNIED 3%, ;{205 £ 71 o2)
,]=

for all 2, z, e R¥ 1 with z # C, we obtain from Remark 2.10 that 7 * is well
defined and satisfies (3.14). Hence, if we set

(3.16) T(v—nu) =|(qu)(z) =) |+ S+ (0 —nu)) + T+ (v — nu)(z),

from (3.13) and (3.14), it follows that there exists a positive constant ¢ such
that

|w(zo; 2) — (qu)(2) | < T(v — qu)(z), for every ze RV *1\H, z,e RV *1,

311 1 ) g
7=l <& (lo =, + 3, oy 0=l )

C. Let (v),en be a sequence of functions belonging to Cy* (R¥*1) such
that

L p—y
18, (pu) — afv.ka”Pk_) 0 forall j=1,...,m,.
Setting

(z) = inf {T(v, — qu)(2): ke N}

and using the results proved in step B, we find a zero measure set Hc RN *!
such that

|w(zg, 2) — (qu)(2) | < W(z), |lw]], < inf {||T(v, —npu)|,: ke N},
for every ze RV *1\H and for every z,e RV'1,
Thus, by using inequalities (3.17) for every function v,, we conclude
that

(qu)(z) = w(zy, ?)

for every zoe R¥ "1 and for every ze R¥*1\H. By choosing 2, =z, we finally
find identity (3.5).
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We are left with the proof of (3.6). We first remark that if g e C;> (RN *1), it
is quite standard (see for example Theorem 2.4 in [2]) to prove that

6, | eyt ong@dc= [ Iyt o g dz,

RN+1 RN+1

for all j=1, ..., m, and for every z, zoe R¥ 1. By a density argument and
Theorem 2.9 we extend the last identity to every function g e L?(RY*1). Pro-
ceeding in much the same way for the other integrals which define the func-
tion w(zy, z) and by using Theorem 2.8 we get

(3.18) %w(zo, 2) =

mg

- f Ii(z9; L' o2) 9(0) dC‘f'kgl Gi(2) f Ij(z9; &) v1(8) do +

RN +1 llell=1

my

> lim f F(zo; &7 o) (g, 1 (20) — g, 1(8)) 3y, (qu)(8) + Gy (5)]dE

=1¢—0
BEE T e oz

for every zpe R¥*1 and for almost every ze RV *1,

The proof of Theorem 3.1 will be concluded if identity (3.18) holds with
20 =%.

For every fixed z, we consider the expansion in spherical harmonics of the
terms in (3.18). In order to simplify the notations we write

O, (nu)(2) = 3, w(zy, 2) = il b, (29) T,,(9,,)(2),

m =

where g,, denotes one of the following functions: g, Gj, 9,,(nu) or a; 4 0,, (u),
(J, h=1, ..., my), and T,, indicates the convolution with a suitable homoge-
neous function. By Proposition 2.7, the convergence is uniform with respect to
2y then

9, (nu)(z) = 21 b, () T,,(9,,)(2),

m=

for almost every ze RV *!1. This concludes the proof of Theorem 3.1, since the
last expression is the expansion in spherical harmonics of the second member
of (3.6).

We are left with the

Proor or LEMMA 3.3. — Accordingly with Definition 2.2 the norm of w =
(y, s) e R¥*1\{0} is the unique positive solution ¢ of the equation

2 2
Yo, o+
o o

2
]

+—=1;
e

M(w, o) =

2(11 26{N
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then
3|l _ -1 OM(w, [w])
dy;, (M /30)(w, ||lw|) 3y, ’
3lwll _ -1 SM(w, [lwl)
3s (8M /30)(w, |lw]) 3s ’

and since |y; | <|w|*, |s|<|lw|F, we have

3wl
Y

151 o1

(3.19)

|y | L, 3|0
\W$Ilwll b o <

ool
That being stated, by writing { 'oz=( - E({t—1) &, t— 1), we get
ale 1oz N oglle oz
g7 oz] _ $ g1 oz
9&; k=1 i,

where E(s) =exp(—sB”) and B is the matrix in Hypothesis H. Then,
since

em(t - T) y

3 710 3 710 moy + my ) 710
letenl _ alleenl _ g, gy Aetenl
35]- ay] k=my+1 3%
(-@t-0) y g toz
— > eki(l)M-
7! k=mo+my+...+m,_1+1 ayk
and a1=...=au =1, 01 = = Ui, =3, ooy Ut 4y 41—+ = AN=

2%+ 1, the first assertion of Lemma 3.3 follows straightforwardly from (3.19).
The proof of the second assertion is again a consequence of (3.19), since a
direct calculation gives

s

a.
velgtoz) = - Al

Os

Ciloz Ciloz).

4. — L? estimates.

To simplify the notations, in this Section, we shall denote

Dyuw = (8,4, ..., 9, u)

Lng

my my
and we shall write ||F|,, [|[Dyul|, instead of X [Fil,, > [18,,ull,, respect-
ively. k=t =t
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For every {,e 2 and for », s >0 such that B,.(Z,) c 2 and s < r consider
the function # defined in (3.2).

For the sake of brevity, in the sequel we shall write B, instead of B, (z,),
and

v(z) = n(2) u(z);
note that, using the notations introduced in (3.3), we have
Lv=div(G)+g.

In order to prove Theorem 1.1 we give some preliminary results.

LEMMA 4.1. — Let u, F e L?(B,) and Dyu e L(B,), with 1/q=1/p+1/(Q +2).
There exists a positive constant r,, depending only on the operator L, such
that, if r<w,, then Dyue Lk.(B,) and

IDow; LP(B) | < k(|F; LP(B) || + llus LP(B,) ||+ [|Dyws LU(B)])

for every se€l0, r[, where k =k(r, s) >0.

Proor orF LEMMA 4.1. — We first prove the claim assuming that Dyu e
L?(B,). Using the same notations of Theorems 2.8 and 2.9 and letting

¢, k(2) = f Ii(z; &) vy () do,

N1

accordingly to Theorem 3.1, we may write the derivatives of v as

mo my my

ij(z) = / kz ) G rlay, iy v, 1(2) = hgl Tj,h(Gh)(Z') —Tg(z) — };lcj, 1 (2) Gy (2).

h, k=

Then, Theorems 2.8 and 2.9 (since ¢; ; are bounded functions) give

my

0
2 e, il 19,011, + 116G, + Hqu),

0l <, 3

where the norm ||- ||, is in fact taken in the set B,. As a consequence of the
VMO, hypothesis on the coefficients a,, ;, there exists 7, >0 such that
1Doll, < ¢ G, +lgll,)

for every re]0, 7,]. Since p > q and # is a bounded function with support con-
tained in the ball B,(zy) the proof of the Lemma immediately follows from this
inequality and from (3.4).
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We next remove the assumption that Dyu e L?(B,). First of all, we note
that the map

4.1) T: (L9(B,))™—(LYB,))",
defined for every Ue (LY(B,))™ as

my mo

~ o
@U@= 3 Coula, UdR + 3 T,(G)E) =T = 3 6,(:) Gi2),
(j=1, ..., my) is a contraction and so Dyv is its unique fixed point. On the

other hand, (if 7, is small enough), T is also a contraction in L?(B,) then has a

unique fixed point U, e L”(B,). Since L”(B,)>L%(B,) the function Dyv must

coincide with U, e L?(B,).

REMARK 4.2. — The idea of using the Banach fixed point theorem to show
that Dyu e L.(B,) is contained in [3]. By iterating the method we find that, if
u is a weak solution of (1.1) and u, F e L}.(£2), then also Dyu € L{.(2). In the
sequel we shall implicitly use this result.

LEMMA 4.3. — Let 0, 0e R, with 0 < 0 < ¢ <1y, where 7, is as in the Lem-
ma4.l, and let p>2. If u, FeL?(B,) then there exists a constant c,=
co(o, 0, p) >0 such that

IDow; LP(Bo) || < co (|73 LP(By) || + |lws L (By) | + [IDow; L*(B,) [ -

Proor oF LEMMA 4.3. — If 1/p+1/(Q +2) =1/2 the result immediately
follows from Lemma 4.1, applied with ¢ = and o = s, being 5(z) = 1 for every
zeB,(z).

Otherwise we must iterate the method: set

1/m
m=min{keN: k Bl—l}, 5:(§)
Q+2 2 P o

and, for =1, ..., m+1,

p(Q +2)

s,=0""log, wr,=0"0, = i
' " - Dpr@Q+2)

By Lemma 4.1 we obtain
IDyu; LB, || < ¢, (|1F5 LB, || + llu; L¥(B,,) |+ IDow; L¥+1(B,,) )

for every h =1, ..., m. Since s;, =0, r,=0 and ¢, 1 <2<¢q, <...<q;=p,
from these inequalities we get the proof of the Lemma.
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LEMMA 4.4. — If u, F € L*(B,) then for every s, with 0 < s <r, there exists a
constant ¢y = ci(r, s) >0 such that

IDyw; LEBY) | < e (IF; LB, [+ [lu; LEB) D -

Proor oF LEMMA 4.4. — Let 5 be the function defined in (3.2), and let
(¥ 1 )ken be a sequence of Cy° () functions converging to un? in the L2(Q)
norm. Using v, as a test function in the definition of weak solution and letting
k— o we easily find

1
f(nZ(ADu, Du) + 2un{ADu, Dy)) + > fY(n2u2) - fnqun =
Q Q Q

f(nz(F, Du) + 2un(F, Dn)),

and then
@2)  u M nDoull < e(|ull + llulellnDoul + | Flk 9Dyl + el [ Fll2) <
¢’ (@) ([ulg + |FIB) + ellnDoul,

where the norms are taken in B,, u is the constant of Hypothesis H and ¢ is ar-
bitrary. Since #(z) = 1 for every z € B,, the proof of the Lemma is a direct con-
sequence of (4.2).

ProoF oF THEOREM 1.1. — First of all we note that it is sufficient to prove
the Theorem when the open set Q is a B, and the compact set K is B, with s e
10, 7[. Recall that in Remark 4.2 we showed that Dyu e L, (£2). Moreover, it is
enough to consider the case p > 2, since the case p =2 is contained in Lemma
4.4 and the case 1 <p <2 can be recovered by an elementary duality argu-
ment. After that, the proof of Theorem 1.1 is a simple consequence of Lemmas
4.3 and 4.4.

5. — Holder continuity.

In this Section we shall prove the Holder continuity result stated in Theo-
rem 1.2. We first prove a mean value result that is essentially contained in [14],
Proposition 1.15.

LEMMA 5.1. — Let Ke CY(RN*1\{0}) be a homogeneous function of degree
a, with respect to the group (D(A), A2); . Then there exist two constants ¢ >
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0 and M >1 such that
|K(©) - K(2) | < cle "o gl [lz]*
for every z, € such that ||z||= M|z "'-¢|.
An immediate consequence of Lemma 5.1 is the following result:

ProrosITION 5.2. — There exist two constants ¢>0 and M >1 such
that

IE~" oz

. -1 _ . -1
|F(ZO,?/U OC) F(Zg,w OZ)|$CW,

- R 1E 7" oz
[Lj(zo5 w " 0 8) = I'j(20; w OZ)|<CW’

R o &1z
|F17(20,/M) OC)_[‘zj(ZO7w OZ)|$C—||Z710w||Q+S y

for every z, &, w, 2o RNt such that ||z ' ow| = M|z 7 o || and for any i,
j: 1, ey My

PRrROOF OF LEMMA 5.1. — We first prove the result assuming that |z[ = 1.

Denote w =2z "1o&, and note that, since M >1, we obtain from Proposition
2.3

&l =z cwl] < (1 +1/M) <2¢,
and then, again by Proposition 2.3,
|C—2|<ellE7 ozl = el
Moreover
1=lzll=]g o D <cdlg]+]w D < edlel+elwl) < eodlel + e /a),
from which we get, by choosing M > ¢,¢y,

c
=Zm=— — — >0.
lel=m=~ - &

Then, being Ke C'(R¥*1\{0}), we obtain
|K(z) - K@) |< sup |DK()||¢—z|<c|n],

m< ||yl <2¢

where c=c, sup |DK(n)]|.

m <]yl <2¢
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If now z is any point of RY*1\{0}, then

|K(2) = K(©) | = [|z]* | K(D(|z] ) 2) = KD([l2[|"") ©) | <
cllzl* |zl 27" o (D7) &)l = ellzll* g o 2],
since, for every 1 >0 we have
(D) 2) 1o (D) ©) = (D) ™1)) o (D(2) &) = DAz 1 - T).

This completes the proof of Lemma 5.1.

Proor oF THEOREM 1.2. — As in Section 4, we shall prove the Theorem for
the compact set K = B,(zy) c 2. It is convenient to write equation (1.1) in the
following form

Lou = div(JDu) + (2, BDu) — 8,u = div (F),

my

where Fv'szj+<9x7u— > ;1 Oy, u for j=1,...,m0,F’j=O for j=my+
: k=1
1, ..., N and J is defined in (1.5).

Let » > 0 be such that B,.(z;) c 2 and let 5 be the function defined in (3.2).
If we set

v(z) = n(z) u(z),
we find
Lov = div(yF) — (F, Dy) + uLn + 2(JDu, D).
Note that, by Theorem 1.1, we have
(5.1 IF; Lr Byl < c(1F5 LY@ || + s L2 ) )

and, since the functions % and v coincide in the set B,, it is sufficient to prove
(1.4) for the function v.

Denote by I'’(z; w) = I'’(w ! o 2) the fundamental solution of the opera-
tor Ly, with pole at w; then the following representation formula for the func-
tion v holds:

5.2) ()= fl“o(z; w)((F’(w), Dn(w)) —u(w) Ly(w) —2(JDu(w), Dy(w))) dw —

2 ff_?(Z; w) n(w) F(w) dw =vy(2) = 2 v;(2).
j=1 j=1
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Consider one of the integrals v; in the last sum. It results
|vj(2) —v;(0) | = ‘ f(F}?(Z; w) — (& w) p(w) Fi(w) dw | <

[ (1705 w) | + | T2(E; w) ] n(w) Fiw) | dw +

==t owl<Mle "ot

[ |75 w) = & w) | |n(w) Fi(w) | dw <

o=t owlzMle " o

(from Propositions 2.3 and 5.2)

e[ el @ ) Fiaw) | dw +
[z~ owl<Ml"tog|
¢ i le =t o]~ @D (o) Faw) | o +
[z tow||<co@ +ep)llz ot
et oz )
¢ f ——— |p(w) F;(w) | dw .
FRETA

==t owl=Mle =" o]

Applying the Holder inequality it then follows that

(5.3) 0;(2) =0, (©) | < & |F; LPB) |- [[g 7 o]t~ @r2rr
for j=1, ..., my, where ¢ is a positive constant depending only on the oper-
ator L.

With a similar argument, using the Hoélder inequality with ¢ instead of p,
where 1/q¢=1/p +1/(Q + 2), we obtain

|09(2) = 09(8) | S G5 LIB |- ol @2,

Being ¢ < p, the proof of Theorem 1.2 follows from this inequality, from (5.3)
and (5.1).
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