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Interior Regularity for Weak Solutions
of Ultraparabolic Equations in Divergence Form

with Discontinuous Coefficients.

MARIA MANFREDINI - SERGIO POLIDORO

Sunto. – Abbiamo considerato il problema della regolarità interna delle soluzioni de-
boli della seguente equazione differenziale

!
i , j41

m0

¯xi (ai , j (x , t) ¯xj u)1 !
i , j41

N

bi , j xi ¯xj u2¯t u4 !
j41

m0

¯xj Fj (x , t) ,

dove (x , t) �RN11 , 0 Em0GN ed Fj�L p
loc (RN11 ) per j41, R , m0 . I nostri princi-

pali risultati sono una stima a priori interna del tipo

!
j41

m0

V¯xj u V pGcg!
j41

m0

VFj V p1Vu V ph ,

e la regolarità hölderiana di u. La stima a priori delle derivate viene ottenuta uti-
lizzando una tecnica analoga a quella introdotta da Chiarenza, Frasca e Longo
in [3], per gli operatori ellittici in forma di non divergenza, supponendo che i coef-
ficienti ai , j verifichino una condizione di «debole» continuità. Il risultato di hölde-
rianità è conseguenza delle suddette stime e di una formula di rappresentazione
basata sulla espressione esplicita della soluzione fondamentale dell’operatore
«congelato».

1. – Introduction.

In this note we are concerned with the interior regularity of the weak sol-
utions of the second order differential equation

Lu»4 !
i , j41

m0

¯xi
(ai , j (z) ¯xj

u)1 !
i , j41

N

bi , j xi ¯xj
u2¯t u4 !

j41

m0

¯xj
Fj (z) ,(1.1)

where z4 (x , t) �RN11 , 0 Em0 GN and Fj �L p
loc (RN11 ) for j41, R , m0 . In

our treatment we shall always assume the following hypothesis

HYPOTHESIS H. – The matrix A0 (z) 4 (ai , j (z) )i , j41, R , m0
is symmetric
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and such that, for a suitable mD0,

m21 NjN2 G aA0 (z) j , jb GmNjN2

for every z�RN11 and for every j�Rm0 .
The matrix B4 (bi , j )i , j41, R , N can be written as

B4

.
`
`
`
´

0

0

QQ
Q

0

0

B1

0

QQ
Q

0

0

0

B2

QQ
Q

0

0

Q Q Q

Q Q Q

Q Q
Q

Q Q Q

Q Q Q

0

0

QQ
Q

Br

0

ˆ
`
`
`
˜

,

where each Bj is a mj21 3mj block matrix of rank mj , j41, 2 , R , r , with
m0 Fm1 FRFmr F1 and m0 1m1 1R1mr 4N .

In the sequel we shall write equation (1.1) in the following way:

div (A(z) Du)1Yu4div (F) ,

where F4 (F1 , R , Fm0
, 0 , R , 0 ), Yu4 ax , BDub2¯t u and the N3N matrix

A(z) is defined as

A(z) 4gA0 (z)

0

0

0
h .(1.2)

We shall say that u is a weak solution of (1.1) in an open set V%RN11 if
u , ¯x1

u , R , ¯xm0
u , Yu�L 2

loc (V) and

s
V

aA(z) Du(z), Dc(z)bdz2s
V

Yu(z) c(z) dz4s
V

aF(z), Dc(z)b dz

for every c�C Q
0 (V).

We next state the main results of this paper, while we refer to Section 2 for
the precise meaning of the hypothesis

ai , j �VMOL , i , j41, R , m0 .

THEOREM 1.1. – Suppose that L satisfies Hypothesis H and that ai , j �
VMOL for i , j41, R , m0 . Let V be an open subset of RN11 and let u be a
weak solution in V of

div (A(x , t) Du)1 ax , BDub2¯t u4div (F)

where u , Fj �L p (V) for j41, R , m0 , 1 EpEQ . Then, for any compact set
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K’V the derivatives ¯xj
u , j41, R , m0 belong to L p (K). Moreover

V¯xj
u ; L p (K) VGc1g !

k41

m0

VFk ; L p (V) V1Vu ; L p (V) Vh ,(1.3)

where c1 is a positive constant depending only on p , K , V and on the opera-
tor L.

THEOREM 1.2. – Suppose that L satisfies Hypothesis H and that ai , j �
VMOL for i , j41, R , m0 . Let V be an open subset of RN11 and let u be a
weak solution in V of

div (A(x , t) Du)1 ax , BDub2¯t u4div (F)

where u , Fj �L p (V) for j41, R , m0 , pDQ12. Then

(1.4)
Nu(z)2u(z)N

Vz21
i zV

12(Q12)Op
Gc2g !

k41

m0

VFk ; L p (V) V1Vu ; L p (V) V
h , (z , z�K , zcz ,

where c2 is a positive constant depending only on p , K , V and on the opera-
tor L.

When the coefficients of the matrix A belong to suitable classes of Hölder
continuous functions, many existence and regularity results for equations like
(1.1) have been recently proved.

More precisely: existence and estimates of the fundamental solution for
the operator L , Harnack inequality for non-negative solutions, existence and
uniqueness results for the Cauchy problem, have been proved in [11], [12]
and [13]. In addition, Schauder estimates and existence results for boundary
value problems have been established in [8].

In this work we provide a first Hölder continuity result of the weak sol-
utions of equation (1.1), when the coefficients of the matrix A are not regular.
Unlike to the classical elliptic and parabolic case, we do not use Nash or Moser
techniques [10], [9]. That methods, in fact, seem to us not easily adaptable to
our setting. We use an approach based on a representation formula requiring
a weak regularity assumption on the ai , j’s (the VMOL hypothesis).

This note is organized as follows. In Section 2 we give some notations and
we recall some known results. Section 3 contains the proofs of some represen-
tation formulas for the weak solutions of (1.1) and for their derivatives.

In Section 4 we prove Theorem 1.1, by using a technique introduced by
Chiarenza, Frasca and Longo in [3] for elliptic operators in non-divergence
form. This technique has been subsequently extended to the classical parabol-
ic operators in [1] and to the operators of type (1.1) in non-divergence form
in [2]. The same technique was also used by Di Fazio for elliptic operators in
divergence form in [4].
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The main difficulty in adapting the previous method to our setting is the
lack of a uniqueness result which does not allows, as in the elliptic case, to ap-
proximate any weak solution by a sequence of solutions of suitably regular
equations.

Section 5 contains the proof of Theorem 1.2 which relies on the following
remark: if we denote by Im0

the identity matrix m0 3m0 , and define the N3N
constant matrix

J4uIm0

0

0

0
v ,(1.5)

then we can write equation (1.1) in the following form

L0 u»4div (JDu)1 ax , BDub2¯t u4div (FA),(1.6)

where FAj 4Fj 1¯xj
u2 !

k41

m0

aj , k ¯xk
u for j41, R , m0 , and FAj 40 for j4m0 1

1, R , N . As a consequence of Theorem 1.1, FAj �L p
loc (RN11 ), then Hölder con-

tinuity result follows by using the representation formula for the solutions of
(1.6) and the inequality in Proposition 5.2 for the kernels appearing in such a
formula.

We conclude this introduction by observing that our results are new also in
the parabolic case. Indeed, if m0 4N , Hypothesis H simply means that L is
uniformly parabolic and B40.

Acknowledgments. – We thank Professor E. Lanconelli for suggesting the
problem and several valuable remarks, Professor A. Cavallucci for some useful
discussions.

2. – Some known results.

We first recall some known results about operators (1.1) when the matrix A
is constant. Note that, as a consequence of Hypothesis H, the «frozen»
operator

Lz »4div (A(z) Du)1Yu(2.1)

is hypoelliptic for every z�RN11 (see [6]) and it is invariant with respect to
the translations and the dilations of the following groups.
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DEFINITION 2.1. – For every (x , t), (j , t) �RN11 and lD0 we define

(x , t) i(j , t) 4 (j1E(t) x , t1t) , E(t) 4exp (2tB T ) ,

D(l) 4diag (lIm0
, l 3 Im1

, R , l 2r11 Imr
) ,

where Imj
denotes the mj 3mj identity matrix.

We will say that (RN11 , i) and (D(l), l 2 )lD0 are, respectively, the «trans-
lation group» and the «dilation group» associated to L.

We next introduce a norm which is homogeneous of degree 1 with respect
to the dilations (D(l), l 2 )lD0 and a corresponding quasi-distance which is in-
variant with respect to translation group.

DEFINITION 2.2. – Let a 1 , R , a N be the positive integers such that

diag (la 1 , R , la N ) 4D(l) .

If VzV40 we set z40 while, if z�RN11 0]0( we define VzV4r where r is the
unique positive solution to the equation

x 2
1

r 2a 1
1

x 2
2

r 2a 2
1R1

x 2
N

r 2a N
1

t 2

r 4
41 (1) .

We will define the quasi-distance d by

d(z , w) 4Vz 21
i wV , z , w�RN11

and we denote by Br (z) the d-ball of center z and radius r.

Next proposition contains some properties of V Q V and d , proved in [2],
Proposition 1.3.

PROPOSITION 2.3. – The function z O VzV has the following properties:

(i) VD(l) zV4lVzV for every z�RN11 and for every lD0;

(ii) The set ]z : VzV41( is the euclidean sphere S N11 4 ](x , t): NxN2 1

t 2 41(;

(1) We choose this definition, given by Fabes and Rivière [5], since it is convenient
for applying the Fourier expansions in spherical harmonics of some singular integral
kernels.
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(iii) There exists a constant c0 4c0 (B) D0 (depending only on matrix
B) such that

Vz i zVGc0 (VzV1VzV)

for every z, z�RN11 ;

(iv) There exists a constant c1 4c1 (B) D0 such that

1

c1

VzVGVz 21
VGc1 VzV for every z�RN11 ;

(v) For every compact set K%RN11 there exists c2 4c2 (B , K) D0 such
that

Nz2zNGc2 Vz21
i zV , for every z , z�K with Vz21

i zVG1 ,

where N QN denotes the euclidean norm in RN11 .

REMARK 2.4. – The Lebesgue measure is invariant with respect to the
translation group associated to L , since det E(t) 4e t trace B 41, where E(t) is
the exponential matrix of Definition 2.1. Moreover, since det D(l) 4l Q ,
where

Q4m0 13m1 1R1 (2r11) mr ,

we also have

meas (Br (0) )4r Q12 meas (B1 (0) ) .

We shall call «homogeneous dimension» of RN11 the integer Q12.

We next introduce the BMOL and VMOL spaces, naturally related to the
groups introduced in Definition 2.1. In the following definition we shall denote
by B any ball of RN11 , by Br any ball of radius r and, for every u�
L 1

loc (RN11 ),

uB 4
1

meas (B)
s

B

u .

DEFINITION 2.5. – For every function u�L 1
loc (RN11 ) let

VuV*4 sup
B

1

meas (B)
s

B

Nu(z)2uB Ndz ,

h u (r) 4 sup
rGr

1

meas (Br )
s

Br

Nu(z)2uBr
Ndz .
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Then we define

BMOL (RN11 ) 4 ]u�L 1
loc (RN11 ): VuV*E1Q( ,

VMOL (RN11 ) 4]u�BMOL (RN11 ): lim
rK0

h u (r) 40( .

We recall some results of [6] and [10]:

PROPOSITION 2.6. – For every z0 �RN11 let

C(t , z0 ) 4s
0

t

E(s) A(z0 ) E T (s) ds .

Then the matrix C(t , z0 ) is positive for every tD0 and the fundamental sol-
ution of Lz0

defined in (2.1), with pole at zero, is

G(z0 ; x , t) 4
1

(4p)N/2 (det C(t , z0 ) )1/2
expg2

1

4
aC 21 (t , z0 ) x , xbh(2.2)

if tD0, G(z0 ; x , t) 40 if tG0.
The fundamental solution of Lz0

with pole at (j , t) is the «left translated»
of G(z0 ; Q) with respect to the group (RN11 , i):

G(z0 ; (j , t)21
i(x , t) ) .(2.3)

(2.3), as a function of the variables (j , t), is the fundamental solution, with
pole at (x , t), of the adjoint operator L *

z0
4div (A(z0 ) D)2Y * (since trace B4

0 it results Y * 42Y).
There exists an operator L 1 with the same structure as (1.1) and with

constant coefficients ai , j , such that, if G1 denotes the fundamental solution
of L 1 , then

.
`
/
`
´

G(z0 ; z21
i z) Gc 1 G1 (z21

i z) ,

N¯xj
G(z0 ; z21

i z)NGc 1
G1 (z21

i z)

kt2t
,

N¯xi xj
G(z0 ; z21

i z)NGc 1
G1 (z21

i z)

t2t
,

(2.4)

for some positive constant c 1 and for every i , j41, R , m0 , z0 �RN11 , z4

(x , t), z4 (j , t), with tEt , (see [10], Proposition 2.4 and Corollary 2.1).

In the following we will denote G i (z0 ; Q) 4¯xi
G(z0 ; Q) and G ij (z0 ; Q) 4

¯xi xj
G(z0 ; Q), for i , j41, R , m0 . We explicitly note that G(z0 ; Q) is homoge-

neous of degree 2Q with respect to the group (D(l), l 2 )lD0 and that G i (z0 ; Q)
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and G ij (z0 ; Q) are homogeneous of degree 2(Q11) and 2(Q12), respect-
ively, for i , j41, R , m0 .

We recall that the restriction to S N11 of any homogeneous polynomial
which is harmonic is said spherical harmonic. We denote by (Km )m�N an or-
thonormal complete system of spherical harmonics in L 2 (S N11 ). We shall ex-
tend every function Km to RN11 0]0( by setting

Km (x , t) fKm (D(V(x , t) V

21 )x , V(x , t) V

22 t) .

The following results concerning the Fourier expansion of homogeneous
functions with respect to spherical harmonics have been proved in [2].

PROPOSITION 2.7. – Let F�C Q (RN11 0]0( ) be a homogeneous function of
degree a . Then there exists a sequence (bm )m�N such that

F(z) 4 !
m41

Q

bm VzV

a Km (z) ;

moreover, for every r�N there exists c(r) D0, such that

Nbm N sup
z�S N11

NKm (z)NGc(r) m 2r .

Furthermore, if we consider the Fourier expansion of the function G(z0 ; Q),

G(z0 ; z) 4 !
m41

Q

bm (z0 ) VzV

2Q Km (z) ,

we also have that, for any r�N , there exists c(r) D0 such that

sup
z0�RN11

Nbm (z0 )N sup
z�S N11

NKm (z)NGc(r)m 2r .

An analogous result holds for the derivatives G j (z0 ; Q), G i , j (z0 ; Q) and
YG(z0 ; Q).

We end this Section recalling two results about singular integrals. The
first one is proved in [2], Theorem 3.1; for the second one see [13], Chap. I,
Remark 8.21 (in that setting the volume function is V(x , y) 4

meas (B1 (0) )Vy 21
i xV

Q12 ) .

THEOREM 2.8. – For every a�BMOL (RN11 ), g�L p (RN11 ), 1 EpEQ and
for any i , j41, R , m0 , we define

Tij g(z) 4 lim
eK0

s
V z21 i z VFe

G ij (z ; z21
i z) g(z) dz ,
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Cij [a , g](z) 4 lim
eK0

s
V z21 i z VFe

G ij (z ; z21
i z)[a(z)2a(z) ] g(z) dz .

Then Tij g , Cij [a , g] �L p (RN11 ) and there exists a positive constant c4c(p)
such that

VTij gVp GcVgVp ; VCij [a , g] Vp GcVaV* VgVp .

THEOREM 2.9. – Let a�]0 , Q12[ and let K�C(RN11 0]0() be a homoge-
neous function of degree 2a with respect to the group (D(l), l 2 )lD0 . If g�
L q (RN11 ) then the function

Tg(z) 4 s
RN11

K(z21
i z) g(z) dz ,

is defined almost everywhere, and there exists c4c(q) D0 such that

VTgVp Gc max
V z V41

NK(z)N Q VgV q ,

where p is given by the following relation: 1Oq1aO(Q12) 41Op11.

REMARK 2.10. – In what follows we shall also explicitly use the following re-
sult, which is contained in the proof of Theorem 3.1 of [2]. Consider the expan-
sion of the function G i , j (z0 , Q):

G i , j (z0 , z) 4 !
m41

Q

bm (z0 )
Km (z)

VzV

Q12
;

by letting b 1
m 4 sup

z0

Nbm (z0 )N and

T 1
i , j g(z) 4 lim

rK0
!

m41

Q

b 1
m N s

V z21 i z VFr

Kj (z
21

i z)

Vz21
i zV

Q12
g(z) dzN ,

we have T 1
ij g�L p (RN11 ) and

VT 1
ij gVp Gc 1

VgVp

for some positive constant c 14c 1 (p).

3. – Representation formulas.

In this section we will prove some representation formulas for the weak
solutions of (1.1) in terms of the fundamental solution G(Q ; Q) defined in (2.2).
We first introduce some notations and prove some preliminary results. For
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fixed r , s�R , 0 EsEr , let W be a function belonging to C Q (R) such
that

W(t) 41 for every 0 G tGs , W(t) 40 for every tFr .(3.1)

For every z 0 �V and rD0 such that Br (z 0 ) %V we set

h(z) 4W(Vz21
0 i zV) .(3.2)

Then if u is solution of (1.1) we have

L(hu) 4div (G)1g ,

where

G4hF1uADh , g4 aADu , Dhb2 aF , Dhb1uY * h ,(3.3)

and Y * denotes the adjoint of the operator Y .
We remark that, if F1 , R , Fm0

, u�L p
loc (V) and ¯x1

u , R , ¯xm0
u�L q

loc (V),
with qEp , then G1 , R , Gm0

�L p (Br (z 0 ) ) , g�L q (Br (z 0 ) ) and there exists a
positive constant c , which depends only on r , s , p and q , such that

.
/
´

!
j41

m0

VGj Vp GcgVuVp 1 !
j41

m0

VFj Vph ,

VgV q GcgVuVp 1 !
j41

m0

(VFj Vp 1V¯xj
uV q )h ,

(3.4)

where V Q Vp indicates the norm V Q VL p (Br (z 0 ) ) .
For the sake of brevity, in the sequel we shall write Br instead of

Br (z 0 ).

THEOREM 3.1. – If u is a weak solution of (1.1) and h , G1 , R , Gm0
, g are the

functions defined in (3.3), then

(3.5) (hu)(z)4 !
h , k41

m0

s
RN11

G h (z ; z21
i z) [(ah , k (z)2ah , k (z) ) ¯xk

(hu)(z)1Gh (z) ]dz2

s
RN11

G(z ; z21
i z) g(z) dz ,

moreover, for every j41, R , m0 ,

(3.6) ¯xj
(hu)(z)42 s

RN11

G j (z ; z21
i z) g(z) dz2 !

k41

m0

Gk (z) s
S N11

G j (z ; z) n k (z) ds z1

!
h , k41

m0

lim
eK0

s
V z21 i z VFe

G jh (z ; z21
i z) [(ah , k (z)2ah , k (z) ) ¯xk

(hu)(z)1Gh (z) ] dz ,
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for almost every z�RN11 ((n 1 , R , n N11 ) is the outer normal at the set S N11 ) .

REMARK 3.2. – We will prove representation formulas (3.5) and (3.6) under
the weaker assumptions that: u , ¯x1

u , R , ¯xm0
u�L q

loc (V) for some qD1
and

s
V

aA(z)Du(z), Dc(z)b dz1s
V

u(z) Y * c(z) dz4s
V

aF(z), Dc(z)b dz

for every c�C Q
0 (V) (note that we don’t assume the existence of Yu).

To prove Theorem we shall make use of the following result.

LEMMA 3.3. – There exists a positive constant k, depending only on the
matrix B, such that

N ¯Vz21
i zV

¯j j
NGk for j41, R , m0 , NY * Vz21

i zVNG
1

Vz21
i zV

for every z, z�RN11 , zcz .

Here and in the following we agree to let the operator Y * acting on the
variable z : Y * f (z) 42aj , BDj f (z)b1¯t f (z). Lemma 3.3 will be proved at
the end of this Section.

PROOF OF THEOREM 3.1. – We split the proof of (3.5) in three steps. In step
A we prove a representation formula for smooth functions with compact sup-
port. In step B, by using the classical tool of expansion in spherical harmonics,
we get some uniform estimates that allows us to conclude the proof of Theo-
rem in step C, by a density arguments.

Let v be a function belonging to C Q
0 (V). For every z0 �V and for every

function c�C Q
0 (V), the definition of weak solution and (3.3) immediately

give

(3.7) 2s
V

Lz0
v(z) c(z) dz42s

V

g(z) c(z) dz1s
V

aG(z), Dc(z)b dz1

s
V

a[A(z0 )2A(z) ] D(hu)(z), Dc(z)b dz1

s
V

aA(z0 ) D(v2hu)(z), Dc(z)b dz1s
V

(v2hu)(z) Y * c(z) dz .

A. We shall prove that (3.7) also holds (almost everywhere) if we replace
c(z) with the function G(z0 ; z21

i z). First of all we note that the functions in
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(3.7) have compact support so that (3.7) also holds for every c�
C Q (RN11 ).

If W is the function defined in (3.1) with r41, s41O2, then we set for
every z , z0 �V and for every dD0

c d (z0 ; z ; z) 4 k12Wg Vz21
i zV

d
hl G(z0 ; z21

i z) ,(3.8)

and we remark that being v , Lz0
v�C Q

0 (RN11 ), we have

lim
dK0

s
V

(Lz0
v)(z) c d (z0 ; z ; z) dz4s

V

(Lz0
v)(z) G(z0 ; z21

i z) dz42v(z) .

We next consider the term s
V

g(z) c(z) dz in (3.7). By using the first inequality
of (2.4), we get

Ns
V

[c d (z0 ; z ; z)2G(z0 ; z21
i z) ] g(z) dzNG

c 1s
V

Wg Vz21
i zV

d
h G1 (z21

i z)Ng(z)NdzfR 1
d (g)(z) .

Note that, for every fixed z�RN11 , the function dOR 1
d (g)(z) is non-increas-

ing and

VR 1
d (g) Vp GVgVpNNG1 (h) Wg VhV

d
hNN1

K
dK0

0 ,

then R 1
d (g)(z) K0 as dK0, for every z�RN11 0H (here and in the sequel H

denotes a zero measure set), and so

lim
dK0

s
V

c d (z0 ; z ; z) g(z) dz4s
V

G(z0 ; z21
i z) g(z) dz ,(3.9)

for every z�RN11 0H and for every z0 �RN11 . In the same manner, we shall
estimate the next three integrals appearing in (3.7). In that order, sett-
ing

W 1 (t) f max ]NW 8 (s)N , sF t( ,
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we obtain from Lemma 3.3 that

N¯j j
Wg Vz21

i zV

d
hN4

1

d NW 8g Vz21
i zV

d
hN Q

N ¯Vz21
i zV

¯j j
NG

k

d NW 1g Vz21
i zV

d
hN,

for every j41, R , m0 . Then, by using the second inequality in (2.4), we
get

(3.10)

.
`
`
`
/
`
`
`
´

lim
dK0

s
V

aG(z), Dc d (z0 ; z ; z)b dz4s
V

aG(z), DG(z0 ; z21
i z)b dz ,

lim
dK0

s
V

aA(z0 ) D(v2hu)(z), Dc d (z0 ; z ; z)b dz4

lim
dK0

s
V

a[A(z0 )2A(z) ] D(hu)(z), Dc d (z0 ; z ; z)b dz4

s
V

aA(z0 ) D(v2hu), DG(z0 ; z21
i z)b dz ,

s
V

a[A(z0 )2A(z) ] D(hu), DG(z0 ; z21
i z)b dz ,

for every z�RN11 0H and for every z0 �RN11 .
About last integral in (3.7), it directly follows from (3.9) and (3.10) that

there exists a function T(v2hu)(z0 , z) belonging to L p (Br ) such that

s
V

(v2hu)(z) Y * c d (z0 ; z21
i z) dz K

dK0
T(v2hu)(z0 , z) ,

for every z�RN11 0H and for every z0 �RN11 . Then, setting

(3.11) w(z0 , z) 42s
V

G(z0 ; z21
i z) g(z) dz1s

V

aG(z), DG(z0 ; z21
i z)b dz1

1s
V

a[A(z0 )2A(z) ] D(hu)(z), DG(z0 ; z21
i z)b dz

and

S(v2hu)(z0 , z) 4s
V

aA(z0 ) D(v2hu)(z), DG(z0 ; z21
i z)b dz ,
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we have

(hu)(z)2w(z0 , z) 4 (hu)(z)2v(z)2S(v2hu)(z0 , z)2T(v2hu)(z0 , z)(3.12)

for every z�RN11 0H and for every z0 �RN11 .

B. In order to let vKhu , we shall find two operators S 1 and T 1 such
that

(3.13)
.
/
´

NS(v2hu)(z0 , z)NGS 1 (v2hu)(z) , for every z , z0 �RN11 ,

VS 1 (v2hu) Vp Gc(Br ) !
j41

m0

V¯xj
(v2hu) Vp .

and

.
/
´

NT(v2hu)(z0 , z)NGT 1 (v2hu)(z) , for any z�RN11 0H , z0 �RN11 ,

VT 1 (v2hu) Vp GkVv2huVp ,
(3.14)

for some positive constants c(Br ) and k .
In view of the second inequality of (2.4) and Theorem 2.9 it is clear that the

operator

S 1 (v2hu)(z) 4mc 1s
V

G1 (z21
i z)

kt2t
!

j41

m0

N¯xj
(v2hu)(z)N dz

satisfies condition (3.13).
In order to prove (3.14) we first show that the function T(v2hu) satisfies

the following statement, (which allows us to use some results of singular inte-
gral theory in homogeneous space):

T(v2hu)(z0 , z) 4 lim
jKQ

s
V z21 i z VFd j

(v2hu)(z) Y * G(z0 ; z21
i z) dz ,(3.15)

for some sequence (d j )j�N such that d j K0 as jKQ , for every z�RN11 0H
and for every z0 �RN11 . To this end we note that

s
RN11

w(z) Y * c d (z0 ; z21
i z) dz4 s

V z21 i z VFdO2

w(z) Y * G(z0 ; z21
i z) dz2

s
dO2 GV z21 i z VGd

w(z) Y *gWg Vz21
i zV

d
h G(z0 ; z21

i z)h dz

for every w�L p (RN11 ). By using the third estimate in (2.4) and Lemma 3.3
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we find that there exists a bounded function WA such that WA(t) 40 for tD1
and

NY *gWg Vz21
i zV

d
h G(z0 ; z21

i z)hNG
1

d Q12
WA g Vz21

i zV

d
h

for every z0 , z , z�RN11 with dO2 GVz21
i zVGd . Moreover

s
dO2 GV z21 i z VGd

Y *gWg Vz21
i zV

d
h G(z0 ; z21

i z)h dz40 ,

then, setting

Td w(z , z0 ) 4 s
dO2 GV z21 i z VGd

w(z) Y *gWg Vz21
i zV

d
h G(z0 ; z21

i z)h dz

we get

NTd w(z , z0 )N4

N s
dO2 GV z21 i z VGd

Y *gWg Vz21
i zV

d
h G(z0 ; z21

i z)h[w(z)2w(z) ] dzNG

1

d Q12
s

dO2 GV z21 i z VGd

WAuNNDg 1

d
hz21

i z)NNvNw(z)2w(z)NdzfT 1
d w(z) .

Hence, from Minkowskii’s inequality, we obtain

VT 1
d wVp G s

1O2 GVhVG1

WA(h)u s
RN11

Nw(z i D(d) h21 )2w(z)Np dzv1Op

dh K
dK0

0 ,

from which it follows the statement (3.15).
We next consider the expansion in spherical harmonics of the function

Y * G(z0 ; Q):

Y * G(z0 ; z21
i z) 4 !

m41

Q

bm (z0 )
Km (z21

i z)

Vz21
i zV

Q12
.

Set b 1
m 4 sup

z0

Nbm (z0 )N and

T 1 (v2hu)(z) 4 lim
jKQ

!
m41

Q

b 1
m N s

V z21 i z VFd j

Km (z21
i z)

Vz21
i zV

Q12
(v2hu)(z) dzN;
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since

Y * G(z0 ; z21
i z) 4 !

m0

i , j41
ai , j (z0 ) ¯ 2

j i , j j
G(z0 ; z21

i z)

for all z0 , z , z�RN11 , with zcz , we obtain from Remark 2.10 that T 1 is well
defined and satisfies (3.14). Hence, if we set

TA(v2hu) 4N(hu)(z)2v(z)N1S 1 (v2hu)(z)1T 1 (v2hu)(z) ,(3.16)

from (3.13) and (3.14), it follows that there exists a positive constant cA such
that

(3.17)
.
/
´

Nw(z0 ; z)2 (hu)(z)NG TA(v2hu)(z) , for every z�RN11 0H , z0 �RN11 ,

VT
A

(v2hu) Vp G cA gVv2huVp 1 !
j41

m0

V¯xj
(v2hu) Vph .

C. Let (vk )k�N be a sequence of functions belonging to C Q
0 (RN11 ) such

that

Vhu2vk Vp K
kKQ

0 ,

V¯xj
(hu)2¯xj

vk Vp K
kKQ

0 for all j41, R , m0 .

Setting

wA(z) 4 inf mTA(vk 2hu)(z): k�Nn

and using the results proved in step B, we find a zero measure set H%RN11

such that

Nw(z0 , z)2 (hu)(z)NG wA(z) , VwA Vp G inf ] VTA(vk 2hu) Vp : k�N( ,

for every z�RN11 0H and for every z0 �RN11 .
Thus, by using inequalities (3.17) for every function vk , we conclude

that

(hu)(z) 4w(z0 , z)

for every z0 �RN11 and for every z�RN11 0H . By choosing z0 4z , we finally
find identity (3.5).
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We are left with the proof of (3.6). We first remark that if g�C Q
0 (RN11 ), it

is quite standard (see for example Theorem 2.4 in [2]) to prove that

¯xj
s

RN11

G(z0 ; z21
i z) g(z) dz4 s

RN11

G j (z0 ; z21
i z) g(z) dz ,

for all j41, R , m0 and for every z , z0 �RN11 . By a density argument and
Theorem 2.9 we extend the last identity to every function g�L p (RN11 ). Pro-
ceeding in much the same way for the other integrals which define the func-
tion w(z0 , z) and by using Theorem 2.8 we get

(3.18) ¯xj
w(z0 , z) 4

2 s
RN11

G j (z0 ; z21
i z) g(z) dz1 !

k41

m0

Gk (z) s
V z V41

G j (z0 ; z) n k (z) ds1

!
h , k41

m0

lim
eK0

s
V z21 i z VFe

G jh (z0 ; z21
i z) [(ah , k (z0 )2ah , k (z) ) ¯xk

(hu)(z)1Gh (z) ] dz ,

for every z0 �RN11 and for almost every z�RN11 .
The proof of Theorem 3.1 will be concluded if identity (3.18) holds with

z0 4z .
For every fixed z0 we consider the expansion in spherical harmonics of the

terms in (3.18). In order to simplify the notations we write

¯xj
(hu)(z) 4¯xj

w(z0 , z) 4 !
m41

Q

bm (z0 ) Tm (gm )(z) ,

where gm denotes one of the following functions: g , Gj , ¯xj
(hu) or aj , h ¯xh

(hu),
( j , h41, R , m0), and Tm indicates the convolution with a suitable homoge-
neous function. By Proposition 2.7, the convergence is uniform with respect to
z0 then

¯xj
(hu)(z) 4 !

m41

Q

bm (z) Tm (gm )(z) ,

for almost every z�RN11 . This concludes the proof of Theorem 3.1, since the
last expression is the expansion in spherical harmonics of the second member
of (3.6).

We are left with the

PROOF OF LEMMA 3.3. – Accordingly with Definition 2.2 the norm of w4

(y , s) �RN11 0]0( is the unique positive solution r of the equation

M(w , r) 4
y 2

1

r 2a 1
1R1

y 2
N

r 2a N
1

s 2

r 4
41 ;
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then

¯VwV

¯yi

4
21

(¯MO¯r)(w , VwV)
Q

¯M(w , VwV)

¯yi

,

¯VwV

¯s
4

21

(¯MO¯r)(w , VwV)
Q

¯M(w , VwV)

¯s
,

and since Nyi NGVwV

a i , NsNGVwV

2 , we have

N ¯VwV

¯yi
N G

Nyi N

VwV

2a i21
GVwV

12a i , N ¯VwV

¯s NG
NsN

VwV

3
GVwV

21 .(3.19)

That being stated, by writing z21
i z4 (x2E(t2t) j , t2t) , we get

¯Vz21
i zV

¯j j

42 !
k41

N ¯Vz21
i zV

¯yk

ekj (t2t) ,

where E(s) 4exp (2sB T ) and B is the matrix in Hypothesis H. Then,
since

¯Vz21
i zV

¯j j

4
¯Vz21

i zV

¯yj

2 (t2t) !
k4m011

m01m1

ekj (1)
¯Vz21

i zV

¯yk

1R1

(2 (t2t) )r

r!
!

k4m01m11R1mr2111

N

ekj (1)
¯Vz21

i zV

¯yk

.

and a 14R4a m0
41, a m0114R4a m01m1

43, R , a m01m11R1mr21114R4a N4

2r11, the first assertion of Lemma 3.3 follows straightforwardly from (3.19).
The proof of the second assertion is again a consequence of (3.19), since a

direct calculation gives

Y *
Vz21

i zV42
¯V Q V

¯s
(z21

i z) .

4. – L p estimates.

To simplify the notations, in this Section, we shall denote

D0 u4 (¯x1
u , R , ¯xm0

u)

and we shall write VFVp , VD0 uVp instead of !
k41

m0

VFk Vp , !
k41

m0

V¯xk
uVp , respect-

ively.
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For every z 0 �V and for r , sD0 such that Br (z 0 ) ’V and sEr consider
the function h defined in (3.2).

For the sake of brevity, in the sequel we shall write Br instead of Br (z0 ),
and

v(z) 4h(z) u(z) ;

note that, using the notations introduced in (3.3), we have

Lv4div (G)1g .

In order to prove Theorem 1.1 we give some preliminary results.

LEMMA 4.1. – Let u, F�L p(Br) and D0 u�L q(Br), with 1Oq41Op11O(Q12).
There exists a positive constant r0 , depending only on the operator L, such
that, if rGr0 , then D0 u�L p

loc (Br ) and

VD0 u ; L p (Bs ) VGk(VF ; L p (Br ) V1Vu ; L p (Br ) V1VD0 u ; L q (Br ) V) ,

for every s�]0 , r[, where k4k(r , s) D0.

PROOF OF LEMMA 4.1. – We first prove the claim assuming that D0 u�
L p (Br ). Using the same notations of Theorems 2.8 and 2.9 and letting

cj , k (z) 4 s
S N11

G j (z ; z) n k (z) ds ,

accordingly to Theorem 3.1, we may write the derivatives of v as

vxj
(z) 4 !

h , k41

m0

Cj , k [ah , k , vxk
](z)2 !

h41

m0

Tj , h (Gh )(z)2Tg(z)2 !
h41

m0

cj , h (z) Gh (z) .

Then, Theorems 2.8 and 2.9 (since cj , h are bounded functions) give

V¯xj
vVp Gcg !

h , k41

m0

Vah , k V* V¯xk
vVp 1VGVp 1VgV qh ,

where the norm V Q V* is in fact taken in the set Br . As a consequence of the
VMOL hypothesis on the coefficients ah , k , there exists r0 D0 such that

VD0 vVp Gc 8 (VGVp 1VgV q )

for every r�]0 , r0 ]. Since pDq and h is a bounded function with support con-
tained in the ball Br (z0 ) the proof of the Lemma immediately follows from this
inequality and from (3.4).
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We next remove the assumption that D0 u�L p (Br ). First of all, we note
that the map

TA: (L q (Br ) )m0 K (L q (Br ) )m0 ,(4.1)

defined for every U� (L q (Br ) )m0 as

(TA U)j (z) 4 !
h , k41

m0

Cj , k [ah , k , Uk ](z)1 !
h41

m0

Tj , h (Gh )(z)2Tg(z)2 !
h41

m0

cj , h (z) Gh (z) ,

( j41, R , m0 ) is a contraction and so D0 v is its unique fixed point. On the
other hand, (if r0 is small enough), TA is also a contraction in L p (Br ) then has a
unique fixed point Up �L p (Br ). Since L p (Br ) &L q (Br ) the function D0 v must
coincide with Up �L p (Br ).

REMARK 4.2. – The idea of using the Banach fixed point theorem to show
that D0 u�L p

loc (Br ) is contained in [3]. By iterating the method we find that, if
u is a weak solution of (1.1) and u , F�L p

loc (V), then also D0 u�L p
loc (V). In the

sequel we shall implicitly use this result.

LEMMA 4.3. – Let r , s�R , with 0 EsErGr0 , where r0 is as in the Lem-
ma 4.1, and let pD2. If u, F�L p (Br ) then there exists a constant c0 4

c0 (r , s , p) D0 such that

VD0 u ; L p (Bs ) VGc0 (VF ; L p (Br ) V1Vu ; L p (Br ) V1VD0 u ; L 2 (Br ) V) .

PROOF OF LEMMA 4.3. – If 1Op11O(Q12) F1O2 the result immediately
follows from Lemma 4.1, applied with r4r and s4s , being h(z) 41 for every
z�Bs (z0 ).

Otherwise we must iterate the method: set

m4minmk�N :
k

Q12
F

1

2
2

1

p
n , d4g r

s
h1Om

and, for h41, R , m11,

sh 4d h21 s , rh 4d h s , qh 4
p(Q12)

(h21)p1 (Q12)
.

By Lemma 4.1 we obtain

VD0 u ; L qh (Bsh
) VGch (VF ; L qh (Brh

) V1Vu ; L qh (Brh
) V1VD0 u ; L qh11 (Brh

) V)

for every h41, R , m . Since s1 4s , rm 4r and qm11 G2 Eqm EREq1 4p ,
from these inequalities we get the proof of the Lemma.
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LEMMA 4.4. – If u, F�L 2 (Br ) then for every s, with 0 EsEr , there exists a
constant c1 4c1 (r , s) D0 such that

VD0 u ; L 2 (Bs ) VGc1 (VF ; L 2 (Br ) V1Vu ; L 2 (Br ) V) .

PROOF OF LEMMA 4.4. – Let h be the function defined in (3.2), and let
(c k )k�N be a sequence of C Q

0 (V) functions converging to uh 2 in the L 2 (V)
norm. Using c k as a test function in the definition of weak solution and letting
kKQ we easily find

s
V

(h 2 aADu , Dub12uhaADu , Dhb )1
1

2
s

V

Y(h 2 u 2 )2s
V

hu 2 Yh4

s
V

(h 2 aF , Dub12uhaF , Dhb ) ,

and then

(4.2) m21
VhD0 uV

2
2 Gc(VuV

2
2 1VuV2 VhD0 uV2 1VFV2 VhD0 uV2 1VuV2 VFV2 )G

c 8 (e) (VuV

2
2 1VFV

2
2 )1eVhD0 uV

2
2 ,

where the norms are taken in Br , m is the constant of Hypothesis H and e is ar-
bitrary. Since h(z) 41 for every z�Bs , the proof of the Lemma is a direct con-
sequence of (4.2).

PROOF OF THEOREM 1.1. – First of all we note that it is sufficient to prove
the Theorem when the open set V is a Br and the compact set K is Bs , with s�
]0 , r[. Recall that in Remark 4.2 we showed that D0 u�L p

loc (V). Moreover, it is
enough to consider the case pD2, since the case p42 is contained in Lemma
4.4 and the case 1 EpE2 can be recovered by an elementary duality argu-
ment. After that, the proof of Theorem 1.1 is a simple consequence of Lemmas
4.3 and 4.4.

5. – Hölder continuity.

In this Section we shall prove the Hölder continuity result stated in Theo-
rem 1.2. We first prove a mean value result that is essentially contained in [14],
Proposition 1.15.

LEMMA 5.1. – Let K�C 1 (RN11 0]0() be a homogeneous function of degree
a , with respect to the group (D(l), l 2 )lD0 . Then there exist two constants cD
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0 and MD1 such that

NK(z)2K(z)NGcVz 21
i zV Q VzV

a21

for every z , z such that VzVFMVz 21
i zV .

An immediate consequence of Lemma 5.1 is the following result:

PROPOSITION 5.2. – There exist two constants cD0 and MD1 such
that

NG(z0 ; w 21
i z)2G(z0 ; w 21

i z)NGc
Vz21

i zV

Vz 21
i wV

Q11
,

NG j (z0 ; w 21
i z)2G j (z0 ; w 21

i z)NGc
Vz21

i zV

Vz 21
i wV

Q12
,

NG ij (z0 ; w 21
i z)2G ij (z0 ; w 21

i z)NGc
Vz21

i zV

Vz 21
i wV

Q13
,

for every z , z , w , z0 �RN11 such that Vz 21
i wVFMVz 21

i zV and for any i ,
j41, R , m0 .

PROOF OF LEMMA 5.1. – We first prove the result assuming that VzV41.
Denote w4z 21

i z , and note that, since MD1, we obtain from Proposition
2.3

VzV4Vz i wVGc0 (111/M) G2c0 ,

and then, again by Proposition 2.3,

Nz2zNGc2 Vz21
i zV4c2 VwV .

Moreover

1 4VzV4Vz i(w 21 ) VGc0 (VzV1Vw 21
V) Gc0 (VzV1c1 VwV) Gc0 (VzV1c1 /M) ,

from which we get, by choosing MDc0 c1 ,

VzVFmf

1

c0

2
c1

M
D0 .

Then, being K�C 1 (RN11 0]0( ) , we obtain

NK(z)2K(z)NG sup
mGV hVG2c0

NDK(h)NNz2zNGcVhV ,

where c4c2 sup
mGV hVG2c0

NDK(h)N .
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If now z is any point of RN11 0]0(, then

NK(z)2K(z)N4VzV

a NK(D(VzV

21 ) z)2K(D(VzV

21 ) z)NG

cVzV

a
V(D(VzV

21 ) z)21
i (D(VzV

21 ) z)V4cVzV

a21
Vz21

i zV ,

since, for every lD0 we have

(D(l) z)21
i (D(l) z)4 (D(l)(z 21 )) i (D(l) z)4D(l)(z 21

i z) .

This completes the proof of Lemma 5.1.

PROOF OF THEOREM 1.2. – As in Section 4, we shall prove the Theorem for
the compact set K4 Bs (z0 ) ’V . It is convenient to write equation (1.1) in the
following form

L0 ufdiv (JDu)1 ax , BDub2¯t u4div (FA) ,

where FAj 4Fj 1¯xj
u2 !

k41

m0

aj , k ¯xk
u for j41, R , m0 , FAj 40 for j4m0 1

1, R , N and J is defined in (1.5).
Let rD0 be such that Br (z0 ) %V and let h be the function defined in (3.2).

If we set

v(z) 4h(z) u(z) ,

we find

L0 v4div (hFA)2 aFA, Dhb1uLh12aJDu , Dhb .

Note that, by Theorem 1.1, we have

VFA; L p (Br) VGc(VF ; L p (V) V1Vu ; L p (V) V)(5.1)

and, since the functions u and v coincide in the set Bs , it is sufficient to prove
(1.4) for the function v .

Denote by G 0 (z ; w) fG 0 (w 21
i z) the fundamental solution of the opera-

tor L0 , with pole at w ; then the following representation formula for the func-
tion v holds:

(5.2) v(z)4sG 0 (z ; w) (aFA(w), Dh(w)b2u(w) Lh(w)22aJDu(w), Dh(w)b ) dw2

!
j41

m0

sG 0
j (z ; w) h(w) FAj (w) dwfv0 (z)2 !

j41

m0

vj (z) .
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Consider one of the integrals vj in the last sum. It results

Nvj (z)2vj (z)N4Ns (G 0
j (z ; w)2G 0

j (z ; w) ) h(w) FAj (w) dwNG

s
V z 21 i w VGMVz 21 i z V

(NG 0
j (z ; w)N1NG 0

j (z ; w)N)Nh(w) FAj (w)N dw1

s
Vz 21 i w VFMVz 21 i z V

NG 0
j (z ; w)2G 0

j (z ; w)NNh(w) FAj (w)N dwG

(from Propositions 2.3 and 5.2)

c s
Vz 21 i w VGMVz 21 i z V

Vz 21
i wV

2(Q11) Nh(w) FAj (w)N dw1

c s
V z21 i w VGc0 (M1c1 ) Vz 21 i z V

Vz21
i wV

2(Q11) Nh(w) FAj (w)N dw1

c s
V z 21 i w VFMVz 21 i z V

Vz21
i zV

Vz 21
i wV

Q12
Nh(w) FAj (w)N dw .

Applying the Hölder inequality it then follows that

Nvj (z)2vj (z)NG cA; VFA; L p (Br) V Q Vz21
i zV

12 (Q12)Op(5.3)

for j41, R , m0 , where cA is a positive constant depending only on the oper-
ator L .

With a similar argument, using the Hölder inequality with q instead of p ,
where 1/q41/p11/(Q12), we obtain

Nv0 (z)2v0 (z)NG cA VFA; L q (Br) V Q Vz21
i zV

12 (Q12) /p .

Being qEp , the proof of Theorem 1.2 follows from this inequality, from (5.3)
and (5.1).
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