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Bollettino U. M. I.
(8) 1-B (1998), 611-629

On Rank 2 Semistable Vector Bundles
Over an Irreducible Nodal Curve of Genus 2.

SONIA BRIVIO (*)

Sunto. – Sia C una curva irriducibile nodale di genere aritmetico pa42. In queste no-
te vogliamo mostrare come il sistema lineare delle quadriche, contenenti un oppor-
tuno modello proiettivo della curva, permette di descrivere i fibrati vettoriali semi-
stabili, di rango 2, su C.

Introduction.

Let C be a smooth, complex, projective curve of genus 2 and let SU(2 , v C )
be the moduli space of semistable, rank 2 holomorphic, vector bundles over C,
with determinant isomorphic to the canonical line bundle v C . As it is well kno-
wn, this moduli space was studied by Narasimhan and Ramanan, in [N-R1].
They proved that SU(2 , v C ) is naturally isomorphic to the 3-dimensional li-
near system N2UN, where U is a symmetric theta divisor on the Jacobian varie-
ty J(C) of C.

In general, if C is an irreducible projective curve, it is well known that the
existence of singular points implies that torsion free sheaves are not necessary
locally free. Even in the case of line bundles, there is no hope to obtain comple-
te moduli spaces unless we include all torsion free sheaves, (see [D]). Actually,
all the theory of vector bundles can be properly modified and applied to tor-
sion free sheaves, to prove the existence of a coarse moduli space M(r , d) for
semistable torsion free sheaves of rank r and degree d over C, (see [S2] or
[N]); in particular for r41, M(1 , d) is called the Generalized Jacobian and de-
noted by Jacd (C).

The aim of these notes is to give a geometrical description of semistable
rank-2 vector bundles, with determinant v C, over an irreducible projective
curve C, (not necessary smooth), with arithmetic genus pa 42. At this end, we
restrict our attention to curves C whose only singularities are ordinary double
points, (i.e. nodes). In fact, for such a curve the canonical sheaf v C is inverti-

(*) The author was partially supported by the European Science Project «Geometry
of Algebraic Varieties», contract no SCI-0398-C(A).
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ble, moreover the fibre, at any point, of a torsion free sheaf F is completely
known (see [S2]). More precisely: for t�Pic2 (C) let OC (H) 4v C (2 t), then the
linear system NHN gives an embedding C %KP 4, with NIC (2)NCP 3, where IC is
the ideal sheaf of C; let X%M(2 , 6 ) be the closure of the subset corresponding
to vector bundles over C with determinant OC (H), we produce an isomorphism
(see Th. 4.1)

f : XKNIC (2)N ,

which completely describes X in term of the quadrics of P 4 containing the
curve C.

If C is smooth, then actually XC SU(2 , v C ), so Th. 4.1 furnishes an alter-
native proof of the result of [N-R1].

Let C be singular: we show that vector bundles of X corresponds to qua-
drics containing C, whose singular locus does not contain any node of C, (see
Prop. 3.4 and 3.7). Actually, for any node p�C, there is a sheaf Np %NIC (2)N, of
quadrics whose wertex contains p, each quadric of Np corresponds to a torsion
free sheaf in X which is not stable, hence can be represented by A1 5A2 , with
both Ai not invertible at p, (see Prop. 4.7). Finally, these turns out to be the
only sheaves which are limits of vector bundles with determinant v C , over C.

Moreover, let Xss %X be the closed subset of not stable points: if C is smoo-
th, then as it is well known Xss C SU(2 , v C )ss , which is isomorphic to the Kum-
mer surface K associated to the Jacobian variety J(C), see [N-R1]. We genera-
lize this result as follows: we produce a regular involution i: Jac1 (C) K
Jac1 (C), which for any L�Pic1 (C) is the natural involution LKv C 7L 21, (see
Prop. 4.3), and we prove, (see 4.9) that

Xss C
Jac1 (C)

i
.

We will call this quotient the generalized Kummer surface of C. Finally, the
discriminant surface in NIC (2)N is reducible into two components: one of these
is a quartic surface S4 which turns out to be the image (via f) of the generali-
zed Kummer surface.

We point out that our method applies to curves of any genus pa , though in-
volves more delicate technical problems, (see [B-V] for the smooth case).

Finally, I wish to thank Alessandro Verra for his huseful suggestions on
the matter.

1. – Preliminaries.

Let C be a complex, projective, irreducible curve, with at most nodes as sin-
gularities, with arithmetic genus pa F2. We recall that such a curve C is stable
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«in the sense of moduli», i.e. it has only finitely many automorphisms. We re-
call the following results:

PROPOSITION 1.1. – Let C be a stable irreducible curve, v C its dualizing
sheaf, p : CA KC be the normalization of C, and p1 R pd be the nodes of C.
Then:

a) v C is invertible;

b) p* v C 4v CA 7OCA (D), where D4 !
i41

d

Pi
11 !

i41

d

Pi
2, such that p(Pi

1 ) 4
p(Pi

2 ) 4Pi , for each i41, R , d;

c) h 0 (C , v C ) 4pa (C);

d) deg (v C ) 42pa (C)22;

e) If pa (C) F2, then v C is ample, and v C
n is very ample for nF3.

For the proof see [B]. Note that if pa (C) 42, then C has at most two
nodes.

THEOREM 1.2. – Let C be a stable irreducible curve and let H be a Cartier
divisor on C. If deg (H) F2pa (C)11, then H is very ample on C; if deg (H) F
2pa (C)21 then h 1 (C , OC (H) )40, moreover if deg H42pa (C)22 then
h 1 (OC (H) ) F1 if and only if HfKC .

For the proof of see [C-F-R].
Let C be a stable irreducible curve with pa (C) 42 and H a Cartier divisor

on it of degree 6. By (1.2) H is very ample, so we can assume

C %KP 4 4P(H 0 (C , OC (H) )* ) ,

and let IC denote its ideal sheaf.

PROPOSITION 1.3. – In the above hypothesis:

i) NIC (2)NCP 3, and the general element is a rank 5 quadric;

ii) C is projectively normal in P 4;

iii) C4S QQ, where S is a rational normal cubic scroll of P4, Q�NOP 4 (2)N.

PROOF. – First of all note that C%P 4 is linearly normal. Let’s consider
now the exact sequence of sheaves:

0 KIC (2) KOP 4 (2 ) KOC (2H) K0(1.3.1)
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which induces the global sections sequence

0 KH 0 (IC (2) )KH 0 (OP 4 (2 ) )K
r2

H 0 (OC (2H) )KH 1 (IC (2) )K0 ,(1.3.2)

one can easily see that h 0 (IC (2) )F4.
Since C is an extremal curve in P 4, then by Castelnuovo theory, (see [A-C-

G-H]), C is projectively normal; in particular r2 is surjective, so that
h 0 (IC (2) )44. Moreover for such a curve the ideal IC is generated by
quadrics.

Let’s consider the natural multiplication map

H 0 (v C )7H 0 (OC (H2KC ) )K
m

H 0 (OC (H) ) ,(1.3.3)

it is non degenerate, and thus gives rise to a rational normal cubic scroll S%P 4

containing the curve, and all the lines spanned by the linear system Nv C N, see
[E-H], Th. 2. Moreover, NIS (2)NCP 2, and S is smooth if and only if m is sur-
jective. Let Hg3KC , since v C is base points free, (see [C-F], Cor 2.5), we
have:

0 Kv C
21 KH 0 (v C )7OC Kv C K0 ,(1.3.4)

by tensoring with OC (H2KC )

0 K (OC (H22KC ) )KH 0 (v C )7OC (H2KC ) ) KOC (H) K0 ,(1.3.5)

since h 1 (OC (H22KC ) )40, passing to cohomology we have

0 KH 0 (OC (H22KC ) )KH 0 (v C )7H 0 (OC (H2KC ) )K
m

H 0 (OC (H) )K0 ,(1.3.6)

that is m is surjective. So for Hg3KC , we can conclude that S is the embedding
of the rational surface F1 by the line bundle OF1

(s12 f), where s is the funda-
mental section and f is the fibre. One can easily verify that Cf2s14 f, since S
is projectively normal and generated by quadrics, this implies C4Q QS, with
Q�NOP 4 (2 )N.

REMARK 1.4. – Let’s consider the following subvariety of NIC (2)N:

D»4 ]Q�NIC (2)N : rk QG4( ,(1.4.1)

since NIS (2)N%D, it is a reducible surface: D4S4 NNIS (2)N, and S4 is a quar-
tic surface. Assume that C is singular, let p�Sing (C), we can consider the
set

Np »4 ]Q�D : p�Sing (Q)( ,(1.4.2)

then it is easy to verify that Np is is a double line in D, which intersects NIS (2)N
in a unique point, let’s denote it by Qp .
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1.5. Here we show a natural way to associate a quadric to any rank 2 vector
bundle over a projective curve C, see [B-V]. We consider pairs (E , V) with the
following properties:

a) E is a rank 2 vector bundle on C,

b) V is a 4-dimensional vector space in H 0 (E),

c) det OC (H) is a very ample line bundle on C.

We associate to every pair (E , V):

i) the evaluation map eV : V7OC KE,

ii) the determinant map dV : R2 VKH 0 (OC(H) ),

iii) the Grassmannian G *V %P (R2 V *) of 2-dimensional subspaces of V *.

For x�C, we set Vx*4Im eVx
*, if eV is generically surjective we have a ratio-

nal map

gV : CKG *V(1.5.1)

by associating to x the point R2 V *x �G *V . We call gV the Gauss map of the pair
(E , V).

Let p be an equation for G *V , we consider the dual map

dV*: H 0 (OC (H) )*KR2 V * ,(1.5.2)

we define q(E , V) �Sym2 (H 0 (OC (H) )) the pull back of p.
Since H is very ample, we can assume the curve

C %KPn 4P(H 0 (OC (H) )* ) ,(1.5.3)

if q(E , V) is not identically zero, its zero locus is a quadric in Pn : Q4Q(E , V),
with rank rG6 containing C. Q can be considered as a cone of vertex
P(Ker (dV*)) over the quadric P ( Im (dV*) )OG *V , in particular P ( Ker (dV*) ) 4
Sing Q if and only if P(Im (dV*)) is transversal to G *V , see [B-V].

LEMMA 1.6. – In the above hypothesis. Let r be the rank of q(E , V). Then:

i) rG4 if and only if ) L%E such that dim VL F2;

ii) r40 if and only if ) L%E such that dim VL F3;

iii) eV is not generically surjective if and only if ) L%E such that
dim VL 44.

For the proof see [B-V], Prop. (1.11).
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LEMMA 1.7. – Let (E1 , V1 ) and (E2 , V2 ) pairs with the following proper-
ties:

i) Q(E1 , V1 ) 4 (E2 , V2 ) 4Q, with Sing QOC4¯, rk Q45;

ii) Vi generates Ei ;
then (E1 , V1 ) and (E2 , V2 ) are isomorphic.

For the proof see [B-V], Lemma 1.18.
Finally, in the sequel we recall some definitions and results about coherent

sheaves over an irreducible stable curve C, (cf. [S2], [N]). Let F be a torsion
free sheaf on C of rank r. The degree of F is defined as follows:

deg F »4x(F)2rx(OC ) ,

where x is the Eulero Characteristic of F. For x�C, let Mx be the sheaf of
ideals defining x, we set

Fx »4
F

Mx F
,

then Fx is a torsion sheaf with support x, and it is called the «fibre» of F at x.
The fibre of a torsion free sheaf F need not have costant dimension as a vector
space: in fact if x is not singular, then Fx CrOx , while if x is a node, then Fx C
aOx 5 (r2a) Mx for some integer 0 GaGr, (see [S2], chap. 8).

LEMMA. – 1.8. – Let F be a torsion free sheaf of rank r over C, let p 8 : C 8K
C be a partial normalization of C at the points xi �C, i41, R , n, nGd,
where F is not locally free. Then there exists F 8 locally free on C 8 such that
p 8* F 84F if and only if Fxi

CrMxi
. Moreover, up to isomorphism F 8 is uni-

que and deg F 84deg F2rn.

For the proof see [S2].
Note that if r41, then every F which is not locally free can be identified

with a line bundle F 8 on a unique partial normalization of C.
We say that a subsheaf G%F is a subbundle of F is the quotient FOG is tor-

sion free too. We define the slope of F as:

m(F)»4
deg F

rk F
,

we say that a torsion free sheaf F is semistable (resp. stable) if for every non
zero proper subbundle G of F we have:

m(G) Gm(F) (resp. E) .

If F is semistable, then we can define a Jordan Holder filtration ]Fi ( and
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Gr (F) 45Fi OFi11 is uniquely defined, so that we can introduce the relation
of S-equivalence as for vector bundles: F and G are said S-equivalent if and
only if Gr (F) CGr (G), see [S1].

Finally, we will consider flat families of torsion free sheaves, i.e. sheaves F
over S3C, flat over S, whose restriction Fs to s3C is torsion free for all s�S.
We have the fundamental result:

THEOREM 1.9. – There exists a coarse moduli space Ms (r , d) for stable tor-
sion free sheaves on C of rank r and degree d, which admits a natural com-
pactification to a projective variety M(r , d), whose points correspond to clas-
ses of semistable torsion free sheaves over C under the relation of S
equivalence.

This result is also true for an irreducible projective singular curve, (with
more general singularities), see [N], and can be opportunely extended to redu-
cible curves too, see [S2]. Actually, if the curve C is stable we have the follo-
wing further information: for rG2, M(r , d) is reduced and irreducible, (see
[D] for r41 and [S2] for r42), moreover it has an open dense subset corre-
sponding to locally free sheaves over C. For this reason, in the case r41, this
moduli space is also called generalized Jacobian, and it is denoted by Jacd (C),
(see f.e. [A]), moreover it is Cohen Macaulay variety. If C is a smooth curve,
every torsion free sheaf is locally free, so that M(r , d) 4U(r , d) is the well
known moduli space of rank r semistable vector bundles on C with degree d.

2. – The moduli space M(2 , 6 ).

2.1. Here we fix the notations we will follow all over the paper:

C will be a stable irreducible curve with pa (C) 42 and M(2 , 6 ) the
moduli space of semistable torsion free sheaves over C of rank 2 and
degree 6; Ms (2 , 6 ) %M(2 , 6 ) will be the open subset of stable torsion
free sheaves, Mss (2 , 6 ) 4M(2 , 6 )2Ms (2 , 6 ) the closed subset of not stable
sheaves. Moreover, if Sing Cc¯, for any node p�C, we will introduce
the following subsets of M(2 , 6 ), see [S2], chap. 8:

.
/
´

U 2
p 4 ]E�M(2 , 6 ): Ep C2Op ( ,

U 1
p 4 ]E�M(2 , 6 ): Ep COp 5 Mp ( ,

U 0
p 4 ]E�M(2 , 6 ): Ep C2 Mp ( ,

(2.1.1)

with the properties: U 2
p 4U 2

p NU 1
p NU 0

p and U 1
p 4U 1

p NU 0
p . Let’s call V%

M(2 , 6 ) the open dense subset of M(2 , 6 ) corresponding to rank 2 vector
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bundles over C, note that if Sing (C) 4 ]p(, then VCU 2
p , while if Sing (C) 4

]p , q(, then VCU 2
p OU 2

q .

LEMMA. – 2.2. – Let E�M(2 , 6 ), then

(1) h 0 (E) 44;

(2) if E�V is not globally generated at some point x then h 0 (E7v C
21 ) F1;

(3) for any subbundle L%E we have h 0 (L) G2, moreover h 0 (L) 42 if
and only if either E is not stable or L4v C .

PROOF. – (1) By applying Riemann Roch theorem we have h 0 (E) F4, if
h 1 D (E)0 then there exists a morphism f�Hom (E , v C ),

f : EKv C ;(2.2.1)

let’s consider the subbundle ker f%E, we have

deg ( ker f) Fdeg ( E )2deg (v C ) 44 ,(2.2.2)

which contradics the semistability of E.

(2) We prove that h 0 (E7v C
21 ) 40, implies E is a rank 2 vector bundle

globally generated. Look at the exact sequence:

0 K Mx EKEKEx K0 ,(2.2.3)

where Mx %Ox is the sheaf of ideals of x, passing to cohomology we have

0 KH 0 (Mx E) KH 0 (E) KH 0 (Ex ) KH 1 (Mx E) K0 ,(2.2.4)

then E is generated at x if and only if h 0 (Mx E) 42. Note that H 0 (E7v C
21 ) is

the kernel of the multilication map

n : H 0 (E)7H 0 (v C ) KH 0 (E7v C ) ,(2.2.5)

hence if h 0 (E7v C
21 ) 40 then n is injective. Let Sx 4n21 (H 0 (E7v C 7 Mx ) ),

then

Sx 4H 0 (v C 7 Mx )7H 0 (E)1H 0 (v C )7H 0 (E7 Mx ) ,(2.2.6)

since E7v C is globally generated, then dim Sx 46, which implies h 0 (Mx E) 4
2, for every x�C.

(3) Since E is semistable, for any rank 1 torsion free sheaf L%E we have
deg LG3. If deg L43 then h 0 (L) 42 and E is not stable. Let deg LG2: if L is
invertible then then h 0 (L) G2 and actually h 0 (L) 42 if and only if L4v C ,
see (1.2); if L is not locally free at p�Sing (C), then L4p * LA with deg (LA) G1,
see (1.8), of course this implies h 0 (L) G1.
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LEMMA 2.3. – There exists a natural surjective morphism

det : VKPic(6) (C) ,

by associating to each vector bundle E its determinant det ECR2 E.

PROOF. – Let E be a vector bundle over S3C, where S is an irreducible va-
riety with the property: ENs3C is a semistable rank 2 vector bundle on C with
degree 6. Then R2 E is a line bundle over S3C and of course (R2 E)Ns3C C
det (ENs3C ), is an element of Pic(6) (C). So we have a map

s : SKPic(6) (C) ,(2.3.1)

by sending sK (R2 E)Ns3C .
Let L�Pic(6) (C): we can consider vector bundles E given by the exten-

sions

0 KOC KEKLK0 ,(2.3.2)

of course det ECL, moreover these bundles are parametrized by P(Ext1(L , OC)).
Actually, for a general element e�P(Ext1 (L , OC ) ) the corresponding bundle
is semistable, see [BE], hence it defines a point of V.

If the curve C is smooth, then actually V4U(2 , 6 ), det is a surjective mor-
phism with fibre the moduli space SU(2 , L), of semistable bundles with deter-
minant isomorphic to L�Pic(6) (C). Note that if E�M(2 , 6 ) is not locally free
at p, then R2 E is not a line bundle: actually the fibre at the point p is not even
torsion free, since it contains R2 Mp . Anyway the bidual sheaf (R2 E)** turns
out to be torsion free.

LEMMA 2.4. – Let E�M(2 , 6 ), then E is an extension of some torsion free
sheaves A and B:

0 KAKEKBK0;

moreover (R2 E)**C (A7B)**.

PROOF. – Let L be an invertible sheaf such that F4E7L is globally gene-
rated, i.e. the restriction map H 0 (F) KFx is surjective for any x�C; it is enou-
gh to prove the assertion for F.

Let’s consider the following subset of H 0 (F):

Y4 ]s�H 0 (F), )x�C , s(x) 40( ,(2.4.1)

it is easy to verify that dim YGh 0 (F)21, which implies the existence
of a section s with s(x) c0 for any x�C. This induces an injective map
of sheaves OC KF. If FOOC is actually torsion free, then we have an
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exact sequence

0 KOC KFKBK0 ,(2.4.2)

and the assertion follows.
On the contrary, if OC %F is not a subbundle, then there exists a torsion

free sheaf with OC %A%F and FOA is torsion free too, see [N], so the assertion
follows.

Let E be extension of two torsion free sheaves A and B, then the sheaf R
2 E has a finite filtration as follows, see [H]:

.
/
´

0 KE1 KR2 EKR2 BK0 ,

0 KR2 AKE1 KA7BK0 .
(2.4.3)

By applying the funtor Hom to these exact sequences we have (R2 E)**C
(A7B)**.

We have the following:

PROPOSITION 2.5. – There is a rational map d : M(2 , 6 ) KJac6 ( C ) by asso-
ciating to EK (R2 E)**, such that for any vector bundle d(E) 4det E.

PROOF. – It follows from Lemmas 2.3 and 2.4 and the following facts:

1) Hom (Mp , Op)CEnd (Mp)CHom (Mp7Mp , Op)CMp , see [S2], chap. 8.

2) For any rank 1 torsion free sheaf A over C , A **CA.

Let A4p*AA, we have Hom (p*AA, OC ) Cp*( Hom (AA, OCA ) )7v C
21, see [C],

which implies the claim.
Actually, let E be extension of two torsion free sheaves A and B: if both are

locally free, then obviously (R2 E)**Cdet E. Assume that A is invertible and
B is not. Then

(R2 E)**CA7B **CA7B ,(2.5.1)

hence it is an element of Jac6 (C), but not of Pic6 (C). Finally, if both A and B
are not locally free at the same point p: then as we have already seen A4p*AA

and B4p*BA, one can verify that

(A7B)**Cp*(AA 7BA) ,(2.5.2)

so that deg (A7B)**G5, hence d is not defined at E.

REMARK. – 2.6. – Let H1 , H2 �Pic(6) (C), we prove that the open subsets of
V: d 21 (OC (H1 ) ) and d 21 (OC (H2 ) ) are isomorphic. In fact, let t�Pic(0) (C) such
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that OC (H1 )72 tCOC (H2 ); we have a natural map

n t : d 21 (OC (H1 ) )Kd 21 (OC (H2 ) ) ,

by sending E to E7 t, which actually turns out to be an isomorphism.

3. – The fundamental map.

3.1. For any line bundle OC (H) �Pic(6) (C), we will consider the open subset

d 21 (OC (H) )%V ,(3.1.1)

and we will study its closure in M(2 , 6 ), let’s denote it by X. We will introduce
the following subsets of X:

VX »4XOV ,(3.1.2)

the subset of X corresponding to vector bundles,

.
/
´

Xs »4XOMs (2 , 6 ) ,

Xss »4XOMss (2 , 6 ) ,

V4 ]E�X : h 0 (E7v C
21 ) F1( ,

(3.1.3)

finally

W »4VX OXs O (X2V) .

Moreover, by lemma 2.5 we can conclude that X2VX %0U 0
p , for p�

Sing (C).

3.2. Assume C %KP 4 by the linear system NHN, and IC denote its ideal
sheaf. Let E�X be a rank 2 vector bundle, by Lemma 2.2, h 0 (E) 44, and E
does not contain any subbundle L of rank 1 with h 0 (L) F3: so we can consider
the quadratic form q(E , H 0 (E) ) defined in (1.5), which actually is not zero.
Hence its zero locus defines uniquely a quadric Q(E , H 0 (E) ) in the linear
system NIC (2)N. This allow us to define the following map

f : XKNIC (2)N ,(3.2.1)

by sending E to Q(E , H 0 (E) ). f will be said the fundamental map. Let
Q4f(E): note that rk QG5, moreover by (2.2), rk Q44 if and only if either
E is not stable or v C %E as a subbundle. Then we have the following result:

PROPOSITION 3.3. – f : VX KNIC (2)N is a morphism.

PROOF. – Let V be a family of rank 2 vector bundles on S, where S is an ir-
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reducible variety, s.t. (s�S, Vs 4 VNs3C is a semistable vector bundle of rank
2, with det E4OC (H). As usual, we have a morphism

s : SKX ,(3.3.1)

just sending s to the equivalence class of Vs.
We consider the sheaf on S:

p1*
V ,(3.3.2)

where p1 : S3CKS is the first projection. Since h 0 (Vs ) 44, for any s�S,
then p1*

V is a rank 4 vector bundles on S. Then we can consider the determi-
nant map

d : R2 (p1*
V) Kp1*

(R2 V) ,(3.3.3)

which at each point s�S is so defined:

ds : R2 H 0 (Vs ) KH 0 (OC (H) ) .(3.3.4)

Note that there exists a natural symmetric bilinear pairing

p : R2 (p1*
V)3R2 (p1*

V) KR4 (p1*
V) ,(3.3.5)

by sending (s1 Rs2 , s3 Rs4 ) to (s1 Rs2 Rs3 Rs4 ); p turns out to be a global sec-
tion of the space H 0 (S , Sym2 (R2 (p1*

V) ). Finally we consider the following
map of sheaves:

d 2 : Sym2 (R2 (p1*
V) )KSym2 (p1*

(R2 V) ) ,(3.3.6)

which induces the global sections map

d 2
S : H 0 (Sym2 (R2 (p1*

V) ))KH 0 (Sym2 (p1*
(R2 V) )) ,(3.3.7)

we set q»4d 2
S (p), i.e. the image of the section p. Then by construction it turns

out that q(s) 4q(Vs , H 0 (Vs ) )�Sym2 (H 0 (OC (H) )), by (2.1), it is not identical-
ly zero. So we have a morphism

f S : SKNIC (2)N(3.3.8)

by sending s to div q(s); so we can conclude that f is a morphism too.
Let’s define the following open subset of NIC (2)N:

V5 »4 ]Q�NIC (2)Nrk Q45( ,

of course V5 4NIC (2)N2D, then we have the following result:

PROPOSITION 3.4. – fNW : WKV5 is a biregular morphism.
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PROOF. – Since V5 is smooth, it is enought to prove that f NW is bijec-
tive.

Let Q�V5 : it can be considered as a smooth hyperplane section of the
Grassmannian variety G4G(2 , V) %P 5, where V is a 4-dimensional vector
space, let U and Q be respectively the universal and the quotient bundle over
G, then as it is well known det (U*) COG (1), H 0 (U*) CV and

0 K U KV7OG K Q K0.(3.4.1)

Moreover, as it is well known the restrictions of U* and Q to any smooth
hyperplane section of G are isomorphic. Let i : CKQ the natural inclusion, we
define

E»4 i *(U*NQ ) , VE »4 i * V .(3.4.2)

Then E is a rank 2 vector bundle on C, with det (E) C i * (OQ (1) )COC (H), and
VE %H 0 (E) is a 4-dimensional subspace which generates E. Moreover it’s easy
to verify that actually Q(E , VE ) 4Q. It remains to prove that E is stable. Let
L%E be a destabilizing subbundle, with deg LF3, and let M be the quotient,
since h 1 (L) 40, we have an exact sequence

0 KH 0 (L) KH 0 (E) KH 0 (M) K0 ,(3.4.3)

from which we can see dim (VE OH 0 (L) )F2, which implies rk QG4, see (1.6),
and contradicts the hypothesis. Hence we can conclude that E�W and
f(E) 4Q.

Finally, let E1 , E2 �W such that f(E1 ) 4f(E2 ) 4Q�V5 . Since E1 and E2

are stable and globally generated, see (2.2), then by (1.7) they are isomorphic.
This concludes the proof.

3.5. Let E�VOVX : then E fits into a non splitting exact sequence

0 Kv C KEKOC (H2KC ) K0 ,(3.5.1)

it is well known that all such extensions are parametrized by P(Ext1 (OC (H2
KC ), v C ))CP(H 0 (OC (H2KC ) )* )4P 2, and give rise to vector bundles with
determinant OC (H). This get a well defined rational extension map, (see
[BE]):

e : P(Ext1 (OC (H2KC ), v C ))CP 2 KVOVX(3.5.2)

by associating to each x�P 2, the bundle e(x) obtained from the corresponding
extension. We have the following result:

LEMMA 3.6. – Assume C%P 2, by the linear system NH2KC N. Then the
bundle e(x) is semistable for any x�P 2, e(x) is stable if and only if
x�P 2 2C.
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PROOF. – For x�P 2, let E4e(x) the bundle corresponding to the exten-
sion x,

0 Kv C KEKOC (H2KC ) K0 .(3.6.1)

We prove that E is semistable. Let EKLK0 a destabilizing torsion free
sheaf, with deg LG2, then a : v C KL is defined: if a is zero, then b : OC (H2
KC ) KL is defined but this is impossible since deg LG2. So a is not zero, ac-
tually is an isomorphism, L4v C and the extension splits, which is impossible.

Let x�C2Sing (C): then it is easy to see that E admits the quotient EK
v C (x) K0, hence E is not stable, and can be identified by S-equivalence to to
OC (H2KC 2x)5v C (x).

Finally let x4p�Sing (C): in this case E admits the quotient EK
v C7p * OCA, where p : CA KC is a partial normalization of C at p, so that E is not
stable, and we can identify, by S-equivalence the bundle with (v C7p * OCA )5
(OC (H2KC )7 Mp ).

Note that the bundle e(X) fails to be globally generated if and only if
x�C.

PROPOSITION 3.7. – The following restrictions are bijective:

f NVOVX
: VOVX KNIS (2)N2 ]Qp (p�Sing (C) , fNXssOVX

: Xss OVX KS4 20Np .

PROOF. – Let E�VOVX : then the inclusion v C %E, implies H 0 (v C ) %
H 0 (E) and consequently the quadric f(E) �NIS (2)N.

Let Q�NIS (2)N, with QcQp . We claim that there exists a unique vector
bundle E�V, with f(E) 4Q. The two rulings of Q defines on C two
pencils:

NA1 N4NKC N , NA2 N%NH2KC N ;(3.7.1)

note that A2 corresponds to the pencil of lines in P 2 4P(H 0 (OC (H2KC ) )* )
of center x�P 2 : let’s consider the bundle

E»4e(x) �VOVX ,(3.7.2)

given by the extension associated to x. By Lemma 3.6, E is semistable,
moreover

H 0 (E) 4H 0 (v C )5V2 , P (V2 ) 4NA2 N ;(3.7.3)

so it’s easy to see that Q(E , H 0 (E) )4Q, which implies f(E) 4Q. Note that E
is not stable if and only if x�C.

Finally, by (3.7.1) and (3.7.3) follows immediately that E is the unique bun-
dle of VOVX with f(E) 4Q.

Let Q�S4 , Q�0Np . As above let’s consider the two rulings of Q: they cut
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two pencils

NAi N , deg A1 4deg A2 , A1 7A2 4OC (H) .(3.7.4)

Let’s define:

E»4A1 5A2 ,(3.7.5)

it’s easy to verify that E�Xss OVX and f(E) 4Q. Moreover, each bundle F
with f(F) 4Q is obtained as an extension of Ai , so it defines the same point
in Xss .

Note that if Q�NIS (2)N, then by (2.2) the pencils NAi N are base points free;
conversely if Q�NIS (2)NOS4 , it’s easy to see that one of the pencil is just
Nv C(x)N, so that E is not globally generated at the point x, and E�VOXssOVX.

We can conclude that f induces a bijective morphism between the open
subsets VX and NIC (2)N20Np .

If the curve is smooth, then X4VX 4SU(2 , OC (H) ), so we have the
result:

COROLLARY 3.8. – f : SU(2 , OC (H) ) KNIC (2)N is an isomorphism.

PROOF. – In this case f : SU(2 , OC (H) )KNIC (2)N is a bijective morphism:
since SU(2 , OC (H) ) is normal and NIC (2)NCP 3 is smooth, this implies the
claim.

4. – The main result.

We completely devote this section to prove our main result:

THEOREM 4.1. – Let C be a stable irreducible curve with pa 42, then the
fundamental map

f : XKNIC (2)N

is an isomorphism.

4.2. Let C be a stable, irreducible curve with pa 42. As it is well known,
there is a natural involution over Pic1 (C):

i : LKv C 7L 21 ;(4.2.1)

we recall that if C is smooth then the quotient K»4Pic1 (C)Oi is called the
Kummer surface associated to J(C), see [G-H].

PROPOSITION 4.3. – There exists a regular involution i: Jac1 (C) KJac1 (C)
which is an extension of i.
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PROOF. – Let L�Jac1 (C), a torsion free sheaf which is not locally free over
C. Then, as usual, let p : CA KC be a partial normalization of C at the points
where L is not invertible: there exists LA �Pic gA 21 (CA), (either gA 41 or gA 40), s.t.
p*LA 4L. Let iA(LA) 4v CA 7LA21, the corresponding involution defined on
Pic gA 21 (CA), we set

i(L)»4p* ( iA(LA) ) .(4.3.1)

It ’s immediate to verify that: i(L) �Jac1 (C) and i ( i(L) )4L. It remains to
prove that actually i is a morphism, which is an extension of i. At this end, we
prove that

i(L) 4Hom (L , v C ) .(4.3.2)

This is obvious if L is invertible. Let L�Pic1 (C) then we have, see [C]:

Hom(p*(LA), v C )Cp* Hom (LA, v CA ) Cp*(LA21 7v C ) ,(4.3.3)

from which follows the claim.

4.4. Assume OC (H) 4v C 7OC (2 t), with OC (t) �Pic2 (C). We have a natural
map

n : Jac1 (C) KM(2 , 6 )ss(4.4.1)

which is defined for each L�Jac1 (C) by associating the rank 2 torsion free
sheaf

n(L)»4L(t)5 i(L)(t) ,(4.4.2)

which actually turns out to be semistable (not stable). Note that n factors
through the involution i, so it is a finite map of degree 2.

Moreover, if L�Pic1 (C), then

n(L) 4L(t)5 (v C 7L 21 )(t)(4.4.3)

is a vector bundle with determinant OC (H), hence an element of Xss , so that
n(Pic1 (C) )%VX OXss . Since Xss is a closed subset of M(2 , 6 )ss , this implies that
n(Jac1 (C) ) is an irreducible component of Xss .

From the above considerations we can conclude with the following:

PROPOSITION 4.5. – Xss has an irreducible component X 8ss which can be
identified with the quotient K 4Jac1 (C)O i.

We will call K the generalized Kummer surface of Jac1 (C).
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4.6. Let’s consider now the composition of maps c»4f Qn,

c : Jac1 (C) KX 8ss KS4 ,(4.5.1)

c is a rational map, which factors trough the involution i. Actually we have the
following result:

PROPOSITION 4.7. – j induces a bijection between the quotient Jac1 (C)O i
and the quartic surface S4 .

PROOF. – We will show an injective map

r : S4 K
Jac1 (C)

i
(4.7.1)

which is set theoretically the inverse map of c.
Let Q�S4 : assume Q�Np , as we saw in Prop. (3.7) the two rulings of Q cut

two linear systems over C

NA1N , NA2N ,(4.7.2)

with A1 7A2 4OC (H). Set Ai (2t) 4Li then: Li �Pic1 (C) and i(L1 ) 4L2 . So we
have a well defined map by setting

r(Q)»4 [L1 ] ,(4.7.3)

where [L1 ] stands for the equivalence class of L1 in the quotient Jac1 (C)O i. It
is easy to verify that r is injective, and c(r(Q) )4Q.

Let now Q�Np . Assume first that Sing (C) 4 ]p(. Here the rulings cannot
define any divisor on C. Let p : CA KC be the normalization at p: the rulings in-
duce univoquely the existence of AA1 , AA2 locally free of degree 2 over CA

with

AA1 7AA2 4p* OC (H)7OCA (2x1 2x2 ) ,(4.7.4)

with ]x1 , x2 ( 4p21 (p). Then p*AAi is torsion free of degree 3, for i41, 2;
set

Li »4p*AAi (2t) ,(4.7.5)

one can easily verify that i(L1 )4L2 . So we can extend the definition r(Q)4: [L1 ].
This allow us to identify Np with Pic0 (CA)O iA.

Finally, assume that Sing (C) 4 ]p , q(. Let Qp , q �Np ONq : similar argu-
ments as before, allow us to conclude that for each node we have

Np 2 ]Qp , q ( C
Pic0 (CA)

i
A .(4.7.6)
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On the other end, r can be defined at Qp , q as follows: let p : CA KC is the total
normalization of C, since rk Qp , q 43, the two rulings coincide so we have a
unique AA �Pic1 (CA). By setting L as in (4.7.5), we define r(Q)»4 [L], the unique
point of Pic21 (CA)O iA. This concludes the proof.

As a consequence of the preceding results we have:

PROPOSITION 4.8. – The restriction f : X 8ss KS4 is bijective.

Finally we can prove our fundamental result.

PROOF OF TH. 4.1. – We proved that f : XKNIC (2)N is a surjective biratio-
nal map. Since NIC (2)N is smooth, by the main theorem of Zariski we can con-
clude that either f is an isomorphism or f is the blow up of NIC (2)N at some
points. Actually we prove that f is an isomorphism, X 8ss 4Xss , so the only tor-
sion free sheaves of X which are limits of vector bundles are exactly the shea-
ves of f21 (Np ), for any p�Sing (C).

At this end, assume first that Sing (C) 4 ]p(. Note that as a consequence
of lemma 2.5 we have

X2VX %U 0
p ;(4.1.1)

actually, let E such a sheaf we claim that E is not stable. In fact, as we have al-
ready seen, E4p*EA, where EA is a rank 2 vector bundle over CA of degree 4, so
EA is not stable, see [AT]. So we can conclude that E�X 8ss , and f(E) �Np . This
immediately implies that f is an isomorphism.

Assume now Sing (C) 4 ]p , q(. Again we have

X2VX %U 0
p NU 0

q .(4.1.2)

Let E be such a sheaf: if E�XOU 0
p OU 2 q , then an argument similar to the

preceding can show that E is not stable, hence E�X 8ss , and f(E) �Np . The sa-
me for XOU 0

q OU 2
p . Actually we claim that the closed sets

E1 4XO (U 0
p OU 1

q ) E2 4XO (U 0
q OU 1

p ) ,(4.1.3)

consist of a single point, the bundle E�U 0
p OU 0

q , with f(E) 4Qp , q 4Np ONq .
In fact, suppose on the contrary that these sets are not reduced to a point,
since f is an isomorphism outside the closed set E1 N E2 , this implies that
each Ei turns out to be an exceptional divisor of f, but this is impossible, since
E1 O E2 c¯. This concludes the proof.

As an immediate consequence we have the following:

COROLLARY 4.9. – Xss CJac1 (C)O i CS4 .
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