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On Real Algebraic Links in S 3.

R. BENEDETTI - M. SHIOTA

Sunto. – Viene presentata una costruzione che, dato un arbitrario nodo L’S 3, produce
allo stesso tempo: 1) un’applicazione polinomiale f : (R4 , 0 ) K (R2 , 0 ) con singola-
rità (debolmente) isolata in 0 e L come tipo di nodo della singolarità; 2) una risolu-
zione delle singolarità di f nel senso di Hironaka. Specializzando la costruzione ai
nodi fibrati otteniamo una versione debole (a meno di scoppiementi e nella catego-
ria analitica reale) di un reciproco per il teorema di fibrazione di Milnor.

1. – Introduction.

Milnor’s fibration theorem has been established in wide generality (arbit-
rary dimension, complex and real case) in the celebrated book [1].

Though several concepts we are going to develop should make sense in
wide generality, in some points we shall use peculiar facts of the low dimen-
sional case, so we will just settle such a case.

First fix few notations. For each eD0, for each x�Rk , set D k (x , e) the
closed ball centred at x with ray e, D k 4D k (0 , 1 ); S k21 (x , e) (resp. S k21 ) de-
notes the boundary of D k (x , e) (resp. S k21).

From now on U denotes an open neighbourhood of 0 in R4

f4 ( f1 , f2 ) : UKR2

is a continuous map such that f (0) 40.

DEFINITION 1.1. – We say that f has an isolated singularity at 0 (resp. a
weak isolated singularity at 0) if f is smooth on U0]0( and there exists dD0
such that for each y� (U0]0()OD 4 (0 , d) (resp. y� ( f 21 (0)0]0( )O
D 4 (0 , d)), rank dfy 42.

DEFINITION 1.2. – Let f have a weak isolated singularity at 0. We say that f
has tame zero set at 0 if there exists e 0 D0 such that for each 0 EeGe 0 ,
Y4 f 21 (0) is transverse to the sphere S 3 (0 , e). In particular each

L( f , e) 4e21 (YOS 3 (0 , e) %S 3

is a (tame) link in S 3. Let f have an isolated singularity at 0. We say that f is
tame at 0 if it has tame zero set and for each 0 EeGe 0 there exists d 0 4d 0 (e)
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such that for each 0 EdGd 0 ,

B( f , e , d) 4 f 21 (D 2 (0 , d) )OD 4 (0 , e)

is a 4-ball with as boundary a smooth 3-sphere with corners, S( f , e , d) say, the
corners being along f 21 (S 1 (0 , d) )OS 3 (0 , e) which is the boundary of a tubu-
lar neighbourhood of eL( f , e). In both cases such a D 4 (0 , e 0 ) is called a Mil-
nor ball for f.

DEFINITION 1.3. – A link

L4 0
i41 R k

Li %S 3

is said a fibred link if there exist a smooth map

p : S 3 0LKS 1

pairwise disjoint tubular neighbourhoods

Ti , i41 R k of Li

trivializations

t i : D 2 3S 1 KTi , t i (]0(3S 1 ) 4Li

such that:

a) p is a locally trivial fibration;

b) for each i41 R k and for each (x , y) � (D 2 0]0()3S 1

pt i (x , y) 4xVxV

21 .

It follows that for each t�S 1

Ft 4p21 (t)NL

is an orientable compact surface embedded in S 3 bounded by L (i.e. Ft is a
Seifert surface of L).

We can state now the Milnor Fibration Theorem as follows

THEOREM 1.4. – a) Let f have tame zero set at 0. Then the links L( f , e) %S 3

are ambient isotopic each other, so that the link type of f at 0 (S 3 , L4L( f ) )
(simply L) is well defined.

a8) If f is an analytic map with weak isolated singularity at 0, then f
has tame zero set at 0.

b) If f is tame at 0, then (S 3 , L) is a fibred link.
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b8) If f is an analytic map with isolated singularity at 0, then
f is tame at 0.

Few remarks about the fibration theorem.

REMARK 1.5. – 1) Simple dimensional considerations show that a «generic»
analytic f singular at 0 has critical set of dimension 1, hence the maps with iso-
lated singularity at 0 are in principle quite rare.

2) A basic way to construct examples of such maps is to consider com-
plex analytic function g : C2 KC with isolated singularity at zero (that are
«generic» in the complex setting) and to forget the complex structure; in such
a way one produces widely studied special link types (special iterated torus
links, also said (complex) algebraic links); a natural question, already posed
by Milnor in [1], is wether there are other essentially different examples, more
generally which fibred links realize the link type of analytic (polynomial) maps
with isolated singularity; in particular Milnor asked it for the simplest poten-
tial counterexample, the «figure 8» knot.

3) Looijenga [2] detected a class of fibred links, called odd links (the link
and the trivializations are invariant with respect to the antipodal maps) that
are link types of analytic (in fact odd polynomial) maps with isolated singulari-
ty, moreover he proved that a suitable «double» of any fibred knot gives an
odd knot; in such a way one can realize a lot of non complex algebraic
examples.

One can find constructions of real-not-complex algebraic knots also in [3].
For the «figure 8» knot, which is not odd, explicit equations have been

firstly established by Perron in [4], answering affirmatively to such a specific
Milnor’s question.

Lee Rudolph, using a mixing of complex and real coordinates, found a quite
efficient way to construct other explicit examples, including the «figure 8» and
also the Borromean rings as particular cases (see for instance [5]).

All the known examples have rather special topological properties and the
general question of which classical fibred links arise from isolated singulari-
ties seems to be quite open.

4) Akbulut and King [6] proved that every link in S 3 (not necessarily fi-
bred) arises as the link type of polynomial maps with weak isolated singularity
at 0, briefly every link in S 3 is weakly real algebraic; fibred links seem to be
not distinguished by that «algebrization» procedure.

5) The fibration theorem (points a 8 ) and b 8 )) actually holds under weak-
er assumptions: for instance if f is a continuous (semialgebraic) subanalytic
map. Moreover the link type is uniquely well defined if we use instead of the
small spheres around ]0(, the level surfaces (actually diffeomorphic to the
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sphere), for sufficently small values, of any non negative continuous (semial-
gebraic) subanalytic function h : UKR, such that ]h40( 4 ]0(.

6) It is quite easy to see, by means of the «cone construction» (cf. [2], [5])
that we will discuss later, that every fibred link is the link type of C r semialge-
braic tame maps (r being arbitrarily large) as well of tame smooth maps (but
flat at 0).

The present paper would outline a program to settle out the full reciprocal
of the fibration theorem for classical links; that is we state the following
conjecture.

CONJECTURE 1.6. – Every fibred link in S 3 is the link type of a polynomial
map f with isolated singularity at 0, briefly every fibred link is real
algebraic.

Unfortunately, we are not able, for the moment, to achieve the whole pro-
gram, but we already got the following results that we state now in a slightly
informal way; we will precise them in the sequel of the paper. They give the
conjecture few evidence.

We are firstly able to improve the result of [6] as follows

THEOREM 1.7. – It is settled an «algebrization procedure» that for any
given link L%S 3 , produces at the same time a polynomial map f with weak
isolated singularity at 0 having L as link type, and also an explicit embed-
ded algebraic resolution of the singularity of f via a finite tower of blowing-
up of non singular centres over 0 �R4 (in the sense of Hironaka).

Specializing the general procedure to fibred knot, we get a weak reciprocal
up to blowing-up of the fibration theorem

THEOREM 1.8. – For any non trivial fibred knot L (adopting the notations
of the previous theorem), there exists a tame map g, sharing with the polyno-
mial map f a Milnor ball B and the zero set Y%B, such that, denoting
p : B *KB the blowing-up composition resolving f, then h4gp : B *KR2 is
an analytic map and for each x�B * 0(p21 (0) ), rank dhx 42.

Remark that the zero set of h is the union (in general position in B *) of
p21 (0), that is the total exceptional divisor of p, and the strict transform Y *
of Y which is a non singular surface in B *, transverse to ¯B *4S 3 , so that
(S 3 , Y *OS 3 ) is the link type of f.

We have stated the result for fibred knot, but the method does work for
any fibred link such that the fibre of the fibration carries a divisorial spine
(see later for the definition); actually it could be presumably generalized to
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any fibred link, allowing divisorial spines with immersed and not only embed-
ded components, but we will not insist on this technical point.

The main step we lack to complete the program is clearly a suitable «blow-
ing-down» lemma (better, a refinement of the construction so that such a lem-
ma does hold) so that one could take the map g to be analytic; in such a case
well established «finite-sufficency» results should allow to finally convert g
into a polynomial map.

Two words about the few ideas developed in the paper. The first idea is a
refinement of an already extensively exploited one, mostly in Akbulut-King
works on the topology of real algebraic sets (see [6], [7]): to find a good topo-
logical counterpart of the algebraic resolution of singularities and then try to
make it «algebraic» via suitable approximations. The refinement consists in
dealing with the embedded resolutions of singularities, rather than the ab-
stract ones: the topological resolution shall be embedded in a tower of genuine
algebraic blow-up along non singular centres. This is the main ingredient to
prove our improvement of [6].

The proof of the weak reciprocal of the fibration theorem is already quite
subtle: it consists, roughly speaking, in a careful approximation result of topo-
logically monomial like maps by analytic map, without changing the critical
set (a non trivial task - recall the above remark 1). We note that, at present, we
are able to develop this last method strictly in the analytic cathegory; for in-
stance, if we would try it in the Nash case, the method should produce non-
affine Nash manifolds, and this not satisfactory.

The proofs shall be somewhat concise, as we prefer to point out the few ba-
sic new ideas, instead to write down all the full details that in some case should
be a little heavy.

Finally we remark that our work could be seen also as a generalization of
[2]: odd links are resolved after the single blowing-up of 0 �R4.

The first author presented the content of this paper at the Real Algebraic
and Analytic Geometry Meeting in Geneve, September 16 to 20 1996; this is,
in a sense, an expanded version of the text of that talk.

2. – Divisorial spines.

In this section we will work in arbitrary dimension. From now on we de-
note by W a compact connected smooth n-manifold with non empty boundary
¯W4Z. Let

E4E1 NRNEh % (W0Z)

where
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a) each Ei is a compact connected closed smooth hypersurface em-
bedded in W0Z;

b) the family E of such hypersurfaces is in general position in W0Z.

DEFINITION 2.1. – x�E is said of depth j if there are Ei1
, R , Eij

distinct hy-
persurfaces of E, such that

x� 1
s41, R , j

Eis

but there are not j11 distinct hypersurfaces such that x belongs to their in-
tersection. Note that if x is of depth j then ]Eis

(s41Rj is uniquely determined.
Set

E j 4 ]x�E ; depth (x) 4 j (

E j is a submanifold of W0Z (not necessarily closed) of codimension j; each E j

has a finite number of connected components ]S j
r (r41Rhj

and the union of
]S j

r (j41Rn , r41Rhj
makes a natural stratification of E.

For each i41, Rn define a map

p i : Rn KRn21

p 1 (x1 , R , xn ) 4 (x2 , R , xn )

for i42, R , n

p i (x1 , R , xn ) 4 (x 2
1 2x 2

2 , R , x 2
1 2x 2

i , xi11 , R , xn )

DEFINITION 2.2. – Let W and E be as above. A retraction r : WKE
is said a normal retraction if for each x0 �E of depth j there exists a
neighbourhood V of x0 in E and a smooth diffeomorphism

f : r 21 (V) KV 8j 4 ]x4 (x1 , R , xn ) �Rn ; Nx1 R xj NG1(

such that:

f(x0 ) 40 and f(V) 4 ]x1 R xj 40( ,

(x�V

f(r 21 (x) )4

]the connected component of p j
21 (p j (f(x) )OV 8j ) containing f(x)( .

If W and each Ei are analytic manifolds and each f is an analytic
diffeomorphism we say that r is a normal analytic retraction. If r : WKE
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is a normal retraction, then we say that E is a divisorial spine, briefly
a D2spine, of W.

It is not hard to prove that the property to be a normal retraction is a co-
herent property, that is

LEMMA 2.3. – If x0 �E has a neighbourhood V as stated by the above defi-
nition then each x�V0x0 has such a kind of neighbourhood.

If E%W is a D2spine, then clearly W is a regular neighbourhood of E
(that is W7E and (W0E) CZ3 (0 , 1 ]). In fact the notion of normal retrac-
tion is a natural extention to E of the notion of tubular neighbourhood of a
smooth submanifold, and it is not so hard to prove a generalization of the
uniqeness of tubular neighbourhood up to ambient isotopy for normal retrac-
tions. Note also that if E is not necessarily a D-spine of W it is a D-spine for its
closed regular neighbourhoods in W.

It is useful to recognize a D-spine E of W with its normal retraction
r in terms of suitable boundary data. First of all we remark how to
lift to the boundary Z the natural stratification of E. Let S j

i be a stratum
of E. r 21 (S j

i )OZ is a (not necessarily closed) submanifold of Z of codimension
j21. Taking its connected components and varying the stratum of E
we get a stratification F of Z. If we denote by r the restriction of r
to Z, r is actually a stratified map from the stratified boundary Z onto
the stratified spine E, more it is a local diffeomorphism on every stratum
of F. Denote by Z j 4Z j

F the union of stata of Z of codimension j and
by

Z j 4 0
jG iGn

Z i

the codimensional j-skelton of F. For each x in some S j
i %E

r21 (x) %Z j21

and

Jr21 (x) 42 j .

Of course W is naturally identified with the mapping cylinder of r : ZKE.
As Z 0 is open an dense in Z, r (whence W and r) is determined by
its restriction r 8 to Z 0. Moreover the equivalence relation induced by
r 8 on Z 0 is in fact the relation of an involution t : Z 0 KZ 0. The triple

(Z , F , t)
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is the triple of boundary data associated to the D-spine

(W , E , r)

and it is enough to determine it.

3. – Embedded resolution of singularities.

The construction of blowing-up a non singular algebraic variety (an ana-
lytic manifold) along a non singular centre (an analytic submanifold) is classi-
cal and well known (see for instance [9] for a definition in the real algebraic
case). This construction can be straightforwardly extented to the smooth case
(see for instance [8] where one uses such constructions in a low dimensional
setting similar to the present one). Let us recall briefly how. Let M be a
smooth manifold and Int (M) its interior. Let N be a closed submanifold of
Int (M) of codimension s. Denote by p : n M (N) KN the normal bundle of N in
M; an associated D s-bundle

p : D(n M (N) )KN

make a neighbourhood of the zero section N3 ]0( CN and can be naturally
identified with a tubular neighbourhood T4TM (N) of N in M. Let

p : P(n M (N) )KN

be the projectivization of n M (N); it is a Ps21-bundle over N. There is a tauto-
logical line bundle

q : g M (N) KP(n M (N) )

with associated D 1-bundle D(g M (N) ). Then there is a natural diffeomor-
phism

m : D(g M (N) )0P(n M (N) )KD(n M (N) )0N

m can be extended to a map

d : D(g M (N) )KD(n M (N) )

by setting dNP(n M (N) )4p. Now the blowing-up of M along the smooth
centre N

s4s N : M *4B(M , N) KM

is obtained by glueing D(g M (N) ) to T0N via m, the smooth map s is de-
fined by sN(M 0 N) 4 id and sNP(n M (N) )4d. By construction

sN : B(M , N)0s21 (N) KM0N
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is a diffeomorfism and we got B(M , N) «replacing» N by F4F(M , N) 4

P(n M (N) ) which is called the exceptional divisor of s.
Let Y be a closed subset of M such that Y0N is dense in Y. The closure

Y *4Y *(M , N) of s21 (Y0N) in B(M , N) is called the strict transform of Y.
If Y is a closed submanifold of M transverse to N,

sN : Y *KY

is naturally identified with

s YON : B(Y , YON) KY .

Moreover Y * is transverse to F(M , N) along F(Y , YON). If N is a sub-
manifold of Y, Y * is identified with B(Y , N) and it is transverse to F(M , N)
along F(Y , N). Remark also that if M is a tubular neighbourhood of N then
F(M , N) is a D2spine of B(M , N). In particular if M4D n and N4 ]0(, then
B(M , N) CPn 0D n , F(M , N) CPn21 and the boundary data of such a spine
are (S n21 , ]S n21 (, t4 the antipodal map). As we will use such an example ,
we give it a name:

(Pn , Kn , a n )

If M is a non singular algebraic variety (an analytic manifold) and N is a
non singular centre (a smooth analytic centre), it turns out that B(M , N) is
also a non singular algebraic variety (an analytic manifold) and s is a regular
(analytic) map, and so on. In any case we shall speak of blowing-up along a
smooth centre. If we have a finite tower of blowing-up along smooth centres
and we also denote s : M **KM the composition, then the notion of strict
transform of Y%M via s and the total exceptional divisor of s are naturally
defined.

Let r : WKE be now a divisorial spine with (Z , F , t) its boundary data.
We want to discuss now its behaviour up to blowing-up of smooth centres suit-
ably placed in E.

DEFINITION 3.1. – A compact closed connected submanifold X of W is said
well placed in E if

a) X%E

b) X is completely contained in some 1
s41Rr

Eis
and the family

]X , Et (X + Et
is in general position in W0Z.
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Assume that X is well placed in E4 0
i41Rh

Ei . Consider the blowing-up

s : W *4B(W , X) KW .

Set:

E *4 0
i41Rh

Ei*,

E 84F(W , X)NE *.

It is easy to see that E 8 is a D-spine of W *. For if T4TW (X) is a small
closed tubular neighbourhood of X in W, clearly W7 (K4ENT) and r in-
duced a retraction s : WKK factorized by the inclusion ¯T%T; remark that we
may assume that ¯T is in general position with E so that T induces a tubular
neighbourhood Ti1 Ris

of each Xi1 Ris
4XOEi1 Ris

in Ei1 Ris
, Ei1 Ris

4 1
j41Rs

Eij
. To

get r 8 : W *KE 8, we have only to modify r on B(T , X); we prefer to describe it
in terms of the boundary data (Z , F8 , t 8 ) (note that, clearly, ¯W4¯W *4Z).

The simplest case. Assume that the centre X is entirely contained in a codi-
mension 1 stratum S4S 1

i of E, s4 codimW X. Consider a closed tubular neigh-
bourhood T of X in W inducing a tubular neighbourhood T 8 of X in S. On T it is
defined a natural involution h operating on each fibre of the associated D s-
bundle like the antipodal map and such that T 8 is h-invariant. Set

U 4r 21 (T8)OZ , U4r 21 ( int T 8 )OZ

where int Y denotes the interior of Y. U4 int U. U is an open set in r 21 (S)OZ,
locally diffeomorphic onto int T 8. Using r, in fact s, we can construct a diffeo-
morphism of U onto ¯T0S and lift the involution h to h 8 defined on U. We can
describe now (Z , F8 , t 8 ). R4r 21 (S)OZ is union of strata of Z 0

F containing U;
split R into the connected components of R0U and of U. The other codimen-
sion 0 strata of F are untouched. In this way we get Z 0

F 8 . To get the whole F 8

add as strata the connected components of ¯U. t 84t on Z 0
F 8 , t 84h 8 on U.

The general case. Consider again the tube T along X in W inducing a regu-
lar neighbourhood T 8 of X in E stratified by the above Ti1 Ris

. U 4r 21 (T 8 )OZ
is a regular neighbourhood of r 21 (X)OZ such that ¯U is in general position
with the codimension 1 skelton Z1

F . Set U4 int U. Hence

(¯U N Z1
F )0U

is naturally stratified and makes the new codimension 1 skelton Z1
F 8 . The new

Z 0
F 8 is obtained by taking ]Z 0

F 0U , U( stratified by the connected components.
Using the retraction s we send isomorphically U onto ¯T0E and we lift to U,
as before, the fiber-wise antipodal involution on ¯T, obtaining an involution h 8
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on U. Set

t 84t on Z 0
F 0U

t 84h 8 on U .

In this way we have completely described (Z , F 8 , t 8 ).

DEFINITION 3.2. – Let (W , E , r) and (W 8 , E 8 , r 8 ) be the data of two divi-
sorial spines. We say that (W 8 , E 8 , r 8 ) is a modification of (W , E , r) if there
exists a finite tower (W1 , E1 , r1 ), R , (Ws , Es , rs ) of divisorial spines such
that

a) (W1 , E1 , r1 ) 4 (W , E , r) and (Ws , Es , rs ) 4 (W 8 , E 8 , r 8 )

b) for each i there is a centre Xi well placed in Ei so that
(Wi11 , Ei11 , ri11 ) is obtained from (Wi , Ei , ri ) by blowing-up along Xi .

DEFINITION 3.3. – Let (W , E , r), (X , H , s) be the data of two divisorial
spines. Set Y4¯X and assume that dim XEdim W. Call E the family of hyper-
surfaces in E and by H the family of H. We say that (X , H , s) is properly em-
bedded in (W , E , r) if

a) (X , Y) is a proper submanifold of (W , Z) i.e. XOZ4YOZ and Y is
transverse to Z;

b) ]X , E( is in general position in W;

c) H 4XO E;

d) s is the restriction of r.

Proper embedding can be naturally recognized in terms of boundary data.
Let (Z , F , t) and (Y , G , h) be the corresponding data. Then Y and F are in
general position in Z, so that we get by intersection a stratification of Y that is
actually equal to G, h is obtained by restriction of t.

Note that if (X , H , s) is properly embedded into (W , K , r), and Y is a well
placed centre in the first one, then it is well placed also in the second, and by
blow-up both the divisorial spines along Y we get two other divisorial spines,
the first properly embedded into the second one.

DEFINITION 3.4. – Let L be a closed submanifold of S n21 4¯D n. Consider
the pair (D n , c(L) ) where c(L) is the geometric cone with base L and centre
0 �D n. An embedded resolution of (D n , c(L) ) is given by

a) a modification (W 8 , E 8 , r 8 ) of (Pn , Kn , a n ) );
b) a divisorial spine (X , H , s) such that L4¯X;

c) a proper embedding (X , H , s) % (W 8 , E 8 , r 8 ).
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If V is a germ at ]0( of an analytic set with isolated singularity, then the
locally cone structure (see [9]) says that (B , V), B being a «small» ball around
]0(, is isomorphic to (D n , c(L) ), L4¯BOV; of course Hironaka’s embedded
resolution theorem implies an embedded resolution in our sense. Later we
shall see directly the existence of such embedded resolutions (with further re-
finements) when L is a link in S 3.

We end this section posing a general question which is probably not
easy.

QUESTION 3.5. – Let L be as in the above definition. Assume that L is (ab-
stractly) a boundary. Does there exist an embedded resolution of
(D n , c(L) )?

A positive (topological) answer should allow, for example, to avoid the use
of Hironaka’s algebraic resolution of singularities (that is somewhat «blind» in
a contest that is, otherwise, rather constructive) in Mihalkin’s solution of the
Nash «topological rationality» question (see [8], [10]). Probably one could eas-
ierly deal when L bounds a submanifold of S n21, like links in S 3 , but this case
is not relevant to Mihalkin’s application.

4. – Embedded resolutions for classical links in S 3.

The input of the contruction consists of the following data

1) A link L in S 3.

2) A connected Seifert surface F for L.
3) A divisorial spine r : FKE.

For any link L there exists such a pair (F , E).
The output will be an explicit embedded resolution of (D 4 , c(L) ).
V4F3 [21, 1 ] is embedded in S 3 with boundary S isomorphic to the

«double» of F (after corners smoothing). E is regarded as a subset of F3 ]0(

is a spine (not a divisorial one) of V. We can consider another copy of V, V 8 say,
with boundary S 8, isotopic to V, such that

1) V 8 contains F3 ]0( (hence E is also a spine for V 8 ).

2) S and S 8 intersect transversely along L.

Infact we will produce simultaneously embedded resolutions of (D 4 , c(S) )
and (D 4 , c(S 8 ) ) in such a way that a resolution of (D 4 , c(L) ) is properly em-
bedded into both, actually being their transverse intersection.

Before the general construction let us show the elementary basic idea.
Blow-up D 4 at the centre and get the starting divisorial spine that we denote
simply (W0 , K0 , r0 ). Assume that T is a closed submanifold of S 3 , M is closed
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tubular neighbourhood of T in S 3 and N4T3 [21, 1 ] (T is identified with
the zero-section) is properly embedded into M. Thus T is a, not necessarily di-
visorial, spine of M and a divisorial one for N. Assume that M is contained in
the upper half-sphere of S 3 , so that the restriction of r0 to M is an embedding
in K0 . For any subset A of M we denote A 8 its image in K0 . Then T is a well
placed centre for (N , T) and T 8 is so for (W0 , K0 ). Blow-up M and N along T
and W0 along T 8. We get: M1 with a divisorial spine H1; (N1 , T1 ), that in this
case is isomorphic to (N , T), that properly embeds into (M1 , H1 ); (W1 , K1 ) so
that M1 naturally embeds into K1 . In fact (N1 , T1 ) almost properly embeds
into (W1 , H1 ) in the sense that one can embed it with compatible normal re-
tractions, but not in general position (in terms of boundary data, this means
that the boundary of N1 embeds into the stratification of S 3 associated to the
boundary data of K1 , with compatible involutions, but it is not in general posi-
tion with respect to this stratification). To get a proper embedding blow-up M1

and N1 along T1 and W1 along the image T 81 of T1 , that is the intersection of the
two hypersurfaces making the spine K1 . We get M2 with a divisorial spine H2;
(N2 , T2 ) that in this case is again isomorphic to the initial one and that embeds
into (M2 , H2 ); (W2 , K2 ) so that M2 naturally embeds into K2 . Now (N2 , T2 )
properly embeds into (W2 , K2 ). (M2 , H2 ) almost properly embeds into
(W2 , K2 ) in the above sense. A further blowing-up of M2 , along the proper
transform in H2 of H1 and of W2 along its image, creates finally
(M3 , H3 ), (N3 , T3 ), (W3 , K3 ) so that all the spines are divisorial and there is a
natural chain of proper embeddings.

The idea is to extend the above construction to our actual situation, where
(F , E) should play the role of (N , T) and both V and V 8 the role of M; of
course a complication comes from the fact that E is not made by a single com-
ponent, so one should work step by step with respect to the strata of the natu-
ral stratification of E. But the essential behaviour already manifests in the
above elementary case.

As in the example we start with (W0 , K0 ) and we assume that VNV 8 is con-
tained in the upper half-shere, so that it embeds into K0 . At each step we
have:

1) A modification (Fi , Ei ) of (F4F0 , E4E0 ), that is contained in the
intersection Zi 4Vi OV 8i of a modification Bi 4Vi NV 8i of B0 4VNV 8.

2) Hi a common, not necessarily divisorial, spine of both Vi and V 8i that
gives Ei by intersection.

3) A modification (Wi , Ki ) of (W0 , K0 ) so that Bi is naturally embedded
into Ki .

4) a centre Xi well placed either in (Fi , Ei ) or in Hi (when it becomes a
divisorial spine; in such a case the intersection will be well placed in Ei ), so
that its image X 8i in Ki is also well placed in (Wi , Ki ).
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Then we get (Fi11 , Ei11 ), Bi11 Zi11 and (Wi11 , Ki11 ) by blowing-up of Xi

and X 8i .
Step by step we shall get, essentially in the order: a modification of

(F0 , H0 ) that properly embeds into a modification of (W0 , K0 ) and this proper-
ty shall be preserved by the eventual further modifications; divisorial spines
for modifications of V and V 8 and, finally, chains of proper embeddings of divi-
sorial spines.

We are ready to describe the actual tower of blowing-up.
X0 consists of the strata of depth 2 of E0 , that is of the finite set of double

points of E0 .
X1 consists of the strict-transform of the components of E0 that are compo-

nents of E1 .
X2 consists of the set of double points of E2 .
X3 is the strict transform in E3 of the exceptional divisor of the blow-up

that produced F1 .
X4 is the strict transform in E4 of the components of the initial E0 .
One verifies that we have already realized a modification (F5 , E5 ) that

properly embeds into the modification (W5 , K5 ). Note that till now the dimen-
sion of the blow-up centres is G1.

Futher blow-up of the same type allow to complete the program. We left
the reader to do it, suggesting to follow the construction also in terms of
boundary data, and remarking that the centres are always of dimension G2,
centres X 8i of dimension 2 are exceptional divisors of blow-up of components of
previous Kj along centres of dimension G1.

5. – Weakly real algebraic links.

We are able now to outline the proof of the result on weakly real algebraic
links stated in the introduction.

For technical reasons it is better to consider D 4 as an half-disk of S 4 , so
that S 3 divides S 4 in two parts. Perform symmetrically all the constructions
we have done or we are going to do in D 4 also in the other copy. The advan-
tage, referring to the content of the previous section, is that the constructed
proper embeddings of divisorial spines in modifications of D 4 , «double» to em-
bedded closed submanifolds in modifications of S 4 , and it is easier to apply
suitable algebraic approximation results . For simplicity we keep for these
doubled modifications the same name, so that, for example W0 denotes now
the blow-up of S 4 at two points (the two centres of the two copies of D 4) and
so on.

Recall that a non singular projective (hence affine) real algebraic variety is
said totally algebraic if the whole Z2-homology is generated by the fundamen-
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tal class of algebraic subsets. The first remark is that we can assume that each
centre X 8i of the blow-up producing Wi11 is a totally algebraic projective non
singular real algebraic variety of dimension G2. The claim on the dimension
comes from the topological construction; again from the construction each
centre is a submanifold of submanifolds of dimension 3 (some components of
the spine Ki), and the eventual 2-dimensional centres are exceptional divisors
of previous blowing-up of such 3-submanifolds along 0 or 1-dimensional cen-
tres. Thus, arguing like e.g. in [8], we can assume, up to little isotopy and in-
ductively, that each centre of dimesion G1, whence every centre X 8i is non sin-
gular algebraic and totally algebraic (connected algebraic G1-dimensional
centres are trivially totally algebraic by dimensional reasons).

It follows we can assume that:

1) The blow-up towers producing the modifications Wj are towers of
genuine real algebraic blow-up along non singular centres.

2) Every Wj is a totally algebraic non singular real algebraic variety.

3) The spine Kj is the union of non singular totally algebraic real
hypersurfaces.

Let W * be the last modification of the tower, with spine K * and containing
properly embedded modifications V * (V 8*) of V (V 8 ). In the present situation,
algebraic approximation arguments (a variation in the series of results inagu-
rated by the so called Nash-Tognoli theorem, see [7], [9]) shows that there is a
regular rational map h4 (g , g 8 ): W *KR2 such that:

1) g 21 (0) 4K *NA, g 821 (0) 4K *NA 8.

2) A is close to V *, A 8 is close to V 8*, AOA 8 is close to the correspond-
ing modification F * of F, so that AOA 8OS 3 is a link close (hence isotopic to)
the initial link L.

3) The rank of dh is equal to 2 on (AOA 8 )0K *.

As h is regular rational and the tower is made by algebraic blow-up, one
can blow-down h to a regular algebraic map f : S 4 KR2 that (considering its re-
striction to the first copy of D 4) realizes the link L as a weakly real algebraic
link, and, as promised, we already dispose of an algebraic resolution of the sin-
gularities of f.

Note that in this section we have used some special facts holding for low
dimensions.

6. – R-cones and momomial like maps.

For a while we will treat arbitrary dimensions. Let E%W be a D-spine and
r : WKE be a normal retraction. Z4¯W, n4dim W.
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DEFINITION 6.1. – Let f : ZKRm , mGn, be a smooth map. Let F : Z3

(0 , 1 ] KRm defined by

F(x , t) 4 tf (x) .

A smooth extension

g : WKRm

of f is called an r-cone of f if there exists a diffeomorphism

c : Z3 (0 , 1 ] KW0E ,

such that

gc4F

and (x�Z

c(x , 1 ) 4x ,

and c(]x(3 (0 , 1 ] is a connected component of r 21 (r(x) )0r(x).
Denoting

p : Z3 (0 , 1 ] K (0 , 1 ]

the natural projection, we note that the function

d : WKR , d4pc21 on W0E , df0 on E

is a non negative continuous function such that ]d40( 4E; set

Wt 4h 21 ( (0 , t] ) , Zt 4h 21 (t)

then (Wt , ¯Wt 4Zt ) is a submanifold of W, isomorphic to (W , Z) and having E
as D-spine. Each Zt is transverse to the foliation by arcs induced by the normal
retraction r.

An r-cone g is said regular if the map F is regular that is dF is of maximal
rank everywhere; of course a regular r-cone is regular, as a smooth map, on
W0E. Assume that W and each hypersurface Ei %E are analytic manifolds. If
an r-cone g of f is an analytic map and the associated function d is analytic on
W0E and globally subanalytic, then it is called an analytic r-cone.

EXAMPLE 6.2. – This is our basic example. Assume that L is a fibred link in
S 3 ; let b : [0 , 1 ] K [0 , 1 ] be a smooth function such that b40 on [0 , 1 /3],
b41 on [2 /3 , 1 ], b is strictly monotone on (1 /3 , 2 /3). Let p : D 2 3S 1 KD 2 be
the natural projection. Adopting the notations of 1.3, set T40Ti , t40t i ,
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r4t21 . Define the smooth map

f : S 3 KR2 ,

f4p on S 3 0T ,

f(x) 4(12b(Vpr(x)V) pr(x)1b(Vpr(x)V) p(x) , (x�T0L ,

f(x) 40 , (x�L .

It is clear that rank df42 on a neighbourhood of L and rank df x F1, (x�S 3 .
Moreover f21 (0) 4L. Let (W , E , r) be any modification of (P4 , K4 , a 4 ) . Any
r-cone of f is regular and g 21 (0) 4ENc(L3 (0 , 1 ] ). Applying a similar
«cone» construction (see [2]) to the natural radial retraction of D 4 onto ]0(,
we get L as the link type of (continuous, but also, with minor changes, C r semi-
lagebraic or smooth, but flat at ]0() tame maps, in the sense of the
introduction.

We stipulate that the topology of smooth maps is the usual Whitney strong
topology.

LEMMA 6.3. – If g is a regular r-cone of f and f 8 is close enough to f then
any r-cone of f 8 is regular.

PROOF OF 6.3. – Set X1 4 f 21 (0) and X2 4 ]x�Z ; f is not regular at x(. Set
similarly X18 , X28 for f 8. rank dfx 4rank dF(x , t) for each (x , t) �X1 3 (0 , 1 ], so
that X1 OX2 4¯. If f 8 is close enough to f, there exists an open set U%Z , X1 %U
such that

X2 OU4¯ , X18%U , X28OU4¯ .

Clearly F 8 is regular on U3 (0 , 1 ]; since F is regular on Z0U, then (x�Z0U ,
Im dfx and f (x) span Rm . As Z0U is a compact set, if f 8 is close to f, F 8 keeps
this property and it is regular on the whole Z3 (0 , 1 ]. r

Let g4 (g1 , R , gm ): WKRm be an r-cone. Set

Ai 4gi
21 (0) .

DEFINITION 6.4. – An r-cone g is said tame if it is regular and

a) for every i Ai 4ENYi and Yi is a smooth hypersurface;

b) the family of hypersurfaces ]Ej , Yi ( is in general position in (W , Z).
We note that each Zt is transverse to each Yi .

Given a normal retraction r : WKE, E4 0
i41, R , h

Ei we can construct in a

natural way systems of (open) tubes Ui along each hypersurface Ei of E and in-
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volutions i i : Ui KUi such that:

(i , Ei 4 ]i i (x) 4x( ,

i i i j 4 i j i i on Ui OUj ,

(i , ri i 4 i i r on Ui .

We admit that the tubes could be arbitrarily small. Assume such a system to
be fixed.

DEFINITION 6.5. – A tame r-cone g is said monomial like if there is a
map

r4 (r 1 , R , r m ): ]1, R , h( K ]0, 1(m

such that

(i gs 4 (21)r s (i) gi i on Ui .

7. – Fibred links.

In this section we assume that L is a non trivial fibred knot or more gener-
ally a fibred link such that the fibre F of the fibration carries a divisorial spine
E.

Our aim is to outline the prove of the weak reciprocal to the Milnor fibra-
tion theorem stated in the introduction.

The first ingredient is to specialise the previous contructions to the present
situation; adopting the notations of the other sections, now (F , E) is a fibre of
the fibration endowed with the fixed spine; V and V 8 are made by fibres of the
fibration, with boundary S and S 8 made by two couple of fibres glued along L.
Then we can perform the blow-up procedure following also the behavior of the
r-cones (that we have defined before in the basic example) till we get finally, at
the last step of the tower, a monomial like r-cone.

The second one is summarized in the following proposition. With the nota-
tions of the section on r-cones.

THEOREM 7.1. – Let g : WKR2 be a monomial like smooth r-cone of a map
f, relatively to a normal retraction r : WKE. Assume that

a) dim W44;

b) W, the hypersurfaces Ej , Y1 , Y2 are analytic manifolds.

Then one can construct an analytic tame r-cone g 8 of an analytic map f 8

close to f such that ]g 840( 4 ]g40(.
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We have focused the hypothesis on the dimension because we will use few
peculiar facts holding for low dimensions (in particular 3 4dim ¯W).

The rest of the section is devoted to outline the proof of this theorem. For
simplicity we will neglige Y1 and Y2 in the discussion, because the part of the
statement that regards them can be easily obtained invoking well-known rela-
tive versions of approximation results of smooth maps by analytic ones.

We state a lemma useful in the sequel.

LEMMA 7.2. – Assume that W4 ]x�R4 ; Nx1 R x4 NG1(, Ei 4 ]xi 40(, and
r : WKE is defined by p 4 (with the notation of the section on the divisorial
spines). Let V1 and V2 be connected open sets in ¯W, and let b : V1 KV2 be an
analytic diffeomorphism such that b(V1 Or 21 (Ei ) )4V2 Or 21 (Ei ) for i4

1, 4. Then there exists an analytic diffeomorphism B : r 21 (r(V1 ) )K

r 21 (r(V2 ) ) extending b and such that

1) B(r 21 (r(x) )4r 21 (rb(x) ) for x�V1 ;

2) B(r(V1 ) )4r(V2 ).
The proof is a little long but based on direct calculations. We left it to the

reader.
Let us come now to the main steps of the proof.

STEP 1. – In the hypothesis of the theorem we may assume that r is an ana-
lytic normal retraction and that the involutions i i of the monomial-like struc-
ture are analytic involutions.

More precisely: fix for any component Ei of the spine E a positive even in-
teger m(i) and a non negative analytic function hi such that Ei 4hi

21 (0) and at
each point x0 of Ei the germ of hi is the m(i)-th-power of an analytic regular
function germ. Set h the product of the hi . Then we may assume that (adopting
the notations of the previous sections):

1) The above h coincides with the function d of r-cones definition, rela-
tively to an r-cone g of f (and an analytic diffeomorphism c).

2) Using the analytic local coordinates of the analytic normal retrac-
tion r, at each point x0 �E we can assume, for some i41, R , 4,

W4 ]x�R4 ; Nx1 Rxi NG1, Nxi
2 2x2

2 NG1, R , Nx1
2 2xi

2 NG1,

Nxi11 NG1, R , Nx4 NG1( .

3) E4 ]x1 Rxi 40(, x0 40.

4) ]r 21 (x); x�E( 4 ]connected components of the levels of p i (.

5) h(x) 4x1
m(1)

Rxi
m(i) a(x) where a is a positive analytic fuction on W.

6) The tubes Ui of the definition of the monomial like notion make a
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covering of W, they are the inverse image by the analytic retraction r of open
neighbourhoods of Ei in E, and, as already stated, the involutions i i are
analytic.

This step actually should hold without dimensional limitation.
Let us sketch the proof.
Let hi and h be as before. For each j-tuple of distinct indices J4

(i1 , R , ij ), set

EJ 4 1
i4 i1 , R , ij

Ei 0 0
ic i1 Rij

Ei .

Let pJ : UJ KEJ be a small analytic tubular neighbourhood in W, such
that:

1) UJ OEi is empty if i does not belong to J.

2) For each x0 �EJ , pJ
21 (x0 ) is an analytic submanifold with boundary

of W.

3) (6hi1
1 /m(i1 ) , R , 6hij

1/m(ij ) ), for suitable 6, makes analytic coordinates
on pJ

21 (x0 ).

Using it, we construct an analytic normal retraction rJ : UJ KEOUJ . We
want to past these partial retractions toghether. For each k40, 1 , 2 , 3, let E k

denote the union of strata of dimension k of the natural stratification of E, and
let, with the obvious meaning, p k : U k KE k , r k : U k KEOU k be defined by
means of pJ and rJ . Replace U 0 with (r 0 )21 (EO ]the closed e-neighbourhood
of E 0 (, for a suitable small e, and U 1 with (r 1 )21 (EOU 1 0]the open e-neigh-
bourhood of E 0 (, respectively. Regard EOU 0 OU 1 included in U 0 and in U 1

as disjoint pairs, paste them at EOU 0 OU 1 by the identity map, and then
paste (r 0 )21 (EOU 0 OU 1 and (r 1 )21 (EOU 0 OU 1 ) so that r 0 and r 1 are com-
patible. Repeating it for the other strata, we get, abstractly, an analytic mani-
fold, with an analytic retraction to E; it can be easily smoothly embedded onto
an open neighbourhood of E in W, keeping E pointwise fixed. Using Cartan
Theorem A we can take in fact an analytic diffeomorphism, and, eventually
shinking the neighbourhood of E, we can assume that it is of the form W 84

h 21 ( [0 , e] ) for some small e, the level surfaces of h being transversal to the fo-
liation by arcs induced by r. Finally, using the fact that W0W 8 is an analytic
collar of ¯W, and the previous lemma, we can lift what we have done along E to
the whole W. Thus we have converted r to an analytic normal retraction, and
eventually modifying the initial hi , the required properties are satisfied. We
want to define now the analytic involutions. On each UJ we define these ana-
lytic i i1

, R , i ij
by the conditions that they are invariant on each fibre of pJ , and

his
i it

4his
for every s and t. Then we have rJ i is

4 i is
rJ . Moreover, by the above

method of pasting U 1 and U 2 , and so on, we see that the definition of i i does
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not depend on J, namely, each i i is defined on some neighbourhood of Ei in W,
of the form Ui as stated above. By construction we have the conditions i i i j 4

i j i i; moreover, up to eventual isotopy of f, g4 (21)r(i) gi i ( for a suitable r-cone
of f ) is satisfied.

STEP 2. – Up to approximation, we can replace f by an analytic map f 8.

Apply the above step 1 imposing that m(i) 44 if r(i) 40 and m(i) 42 if
r(i) 41.

A stratification of ¯W. Let Q 0 be the union of all UJ 4Ui1
ORUi4

for any
set of 4 distinct indices; let Q 1 be the union of all UJ 0r 21 (E 0 ), for any set J of
3 distinct indices, and so on. Then each Q j is a neighbourhood of E j and
r 21 (Q j OE) 4Q j . Set R j 4Q j O¯W, denote R j

s its connected components,
S j

s 4r 21 (E j )OR j
s and similarly for S j . Then R j

s is an open neighbourhood of
the analytic j-submanifold S j

s in ¯W and the involutions i i induce analytic dif-
feomorphisms v j

st : (R j
s , S j

s ) K (R j
t , S j

t ) for some triples j , s , t. Then

1) v j
sq 4v j

pq v j
sp and v j

ii 4 id.

2) v j
st is defined iff v j

ts is defined.

3) v j
st is defined iff r(S j

s ) 4r(S j
t ), in such a case v j

st (S j
s ) 4S j

t .

4) If v j
st is defined, v j

st (R j
s OR k

q ) 4R j
s OR k

p , for k smaller than j, then it
is defined v k

qp that equals v j
st on R j

s OR k
q .

5) r induces numbers r j
st , equal to either 0 or 1, such that

f4 (21)r j
st fv j

st

on R j
st . In the sequel we will refer to this last condition as condition (*).

In the sequel we shall work up to firstly shrinking and then restoring the
whole W similarly to the above step 1. We tacitely do it. During the construc-
tion the functions hi and h shall be modified but keeping their qualitative
properties.

Putting f in normal form. At this point we use peculiar, well known (see
[11]), facts in low dimensions, that is that generic smooth maps between low-
dimensional manifolds make a dense subset, are stable and have simple (local)
normal forms. More precisely here is the normal forms we are going to
use:

let m be the source dimension and n the target dimension.

If m43 and n42 we have the following three possibilities:

(x1 , x2 , x3 ) K (x1 , 6x 2
2 1x3

3 1x3 x1 ) , (x1 , 6x2
2 6x3

2 ) , (x1 , x3 ) .
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If m4n42 we have the three possibilities:

(x1 , x2 ) K (x1 , x2
3 1x2 x1 ) , (x1 , x2

2 ) , (x1 , x2 ) .

If m41 and n42 the generic maps are the regular ones.
When m43 and n42; in the first case 0 is a singular point of type 1 and in

the second case a singular point of type 2. If q is a generic map, its singular set
is Sing q = Sing1 qN Sing2 q, with the obvious meaning; Sing q is a closed sub-
manifold of the source manifold, Sing j q are, in general not closed, submani-
folds of dimension j21. If q is analytic these manifolds are analytic; a similar
fact holds when m4n42.

In case the source manifold M has boundary (or corners) we consider maps
defined on bigger manifold M 8 containing the first one in the interior. Thus a
generic map on M is, by definition, generic on M 8 and with singular sets in
general position w.r.t. the boundary.

CLAIM. – We can assume that the smooth map f is generic on ¯W and on
each ¯WOr 21 (Ei1

OROEij
); moreover all the curves f ( Sing2 fNS j

s ), j42, 3,
f (S 1

s ), and all the points f ( Sing1 fNS j
s ) j42, 3, f (S 0

s ) are in general position
(multi-transversality condition; briefly we call such a map good).

To realize it, we note first that for every x0 of ¯W there are open neigh-
bourhoods N 8%N such that f can be perturbed with support on N in order to
get fN that is good map N 8. We have also the global problem to preserve the
condition (*). To do it we choose the above N so that

N%R j
s , NOv j

st 4¯ ,

for suitable j and all possible sc t. Then define a perturbation of fN on each v j
st

to be (21)r j
st fN v j

st in order to restore the condition (*). Then perform this type
of local perturbation in sequence on S 0 , R , S 3 (here we use also the stability
of good maps, that is a small perturbation of a good map is again good); as ¯W
is compact, this process ends and we finally obtain the required good version
of f.

Making f analytic. The idea is to firstly get the analitycity up to a modifi-
cation of the analytic structure of W, and then to restore the initial setting by
the use of Cartan theorem A (in the same spirit of what we have done in step 1,
to produce the analytic retraction). As in the previuos point we use the same
trick in order to first perturb and then to restore the condition (*).

Eventually adding to S 0 any finite set, we can assume (up to a perturbation
with small support) that f is analytic on R 0 ; the reason to increase S 0 is to gain
further regularity conditions for the restriction of f to S j , 0 G j; for example,
considering the finite set made by the union of the sets Sing1 fNS j , j42, 3,
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and the sets of inverse image in S 1 of double points of f, we can assume also
that the restriction of f to S 1 is a smooth covering map onto the curve f (S 1 ). In
the sequel we will modify several time in the same spirit S 0 .

We can assume that f (S 1 ) is an analytic curve by the following reason: give
f (R 0 NR 1 ) a suitable analytic structure that coincides with the old one on
f (R 0 ) and such that f (S 1 ) is an analytic curve. Paste analytically f (R 0 NR 1 )
with R2 0 f (S 0 NS 1 ) to get an analytic manifold U and a smooth diffeomor-
phism g : R2 KU that is analytic on f (R 0 ) and such that gf (S 1 ) is an analytic
curve. Approximate g by an analytic a and replace f with a21 gf; then we can
assume that f (S 1 ) is an analytic curve.

By modifying the analytic structure on ¯W we can assume that fNS 1 is ana-
lytic. The idea is to pull-back on S 1 the analytic structure on f (S 1 ) using the
fact that the restriction of f to S 1 is a covering map, and then make it compati-
ble with a global change of analytic structure on W (preserving all the other
structures: analytic retraction etc.), that is possible by the previous lemma.

Up to modify S 0 as said before, we can assume that fNR 1 Or 21 (Ei OEj ) is a
regular map for any ic j. Let p and q analytic projections of tubular neigh-
bourhoods of S 1 and f (S 1 ), such that qf4 fp. We want to modify the analytic
structure on a neighbourhood of S 1 0R 0 , so that f becomes analytic on it.
Using p , q we can assume that

R 1 4R2 3R , S 1 4 ](6t , t), (0 , 2t); 0 G t(3R ,

f (x , y , z) 4 (a(x , y , z), z) ,

a(0 , 0 , z) 40; a is analytic outside R2 3 [0 , 1 ]; for each z a is regular on R2 3

]z( and on S 1 N (R2 3 ]z(.
Set A4 ](t , t); tF0(, B4 ](2t , t); tF0(, C4 ](0 , 2t); tF0(. We have

a smooth diffeomorphism of A3R of the form (? , z) which is analytic outside
A3 [0 , 1 ] and whose composition with a is 6(the projection to the y-axis) on a
neighbourhood of ]0(3R. Similar properties holds for B3R and C3R.
Hence, via a smooth diffeomorphism of R2 3R we can change S 1 and a so that
a(x , y , z) 4y and S 1 4 (ANB)3RNC 8, where C 8 is a smooth 2-dimensional
manifold with boundary ]0(3R, contained in (R1 )2 3R and analytic outside
R2 3 [0 , 1 ]. Moreover it is easy to find a smooth diffeomorphism d of R2 3R of
the form d(x , y , z) 4 (b(x , y , z), y , z), such that d(A3R) 4A3R, similarly
for d(B3R, and such that d(C 8 )O (R2 3 ]z0 () is a segment for each z0 �R; d
is analytic outside R2 3 [0 , 1 ]. Note that ad4a. Hence we can assume that
(C 8OR2 )3 ]z0 ( is a segment for each z0 . Define a smooth function U on R so
that

(C 8OR2 )3 ]z0 ( 4 ](x , y , z0 ); x4U(z0 ) y , yG0( .
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U is analytic outside R2 3 [0 , 1 ]. We can assume that U is regular. Change the
analytic structure on neighbourhoods of ]0(3R and of f (]0(3R). Thus we
make U globally analytic. Note that by the condition (*) such a modification of
analytic structures can be made compatible w.r.t. all R 1

s because f (S 1
s )O f (S 1

t )
is non empty iff f (S 1

s ) 4 f (S 1
t ), that is iff v 1

st is defined. In this way we can as-
sume that f is analytic on R 0 NR 1 .

We repeat this procedure of modifying the analytic structures firstly to
make f analytic on S 2 , without changing it where it is already analytic, and
then on R 0 NR 1 NR 2 . And so on, till f becomes analytic on a modified analytic
structure on W. The new analytic W is smoothly diffeomorphic to the old one,
and the normal retraction r keeps meaning, i.e. it was invariant under the
above changements. So using Cartan theorem A we can construct an analytic
diffeomorphism between the old and new W preserving r 21 (x) for each x�E.
So we can assume that the conclusions of both step 1 and 2 hold at the same
time.

FINAL STEP. – An analytic r-cone.

This step contains, in a sense, the core of the construction. Set

g(x) 46f(r 21 (r(x) ) h 1/2 , x�W .

Here the 6 are chosen so that g is a continuos extension of f. We claim that
g is analytic. The problem is local. Consider g around a point of, say, E1 OR

OE4 . Then we can assume W4V 84 (with the notation of the definition of divi-
sorial spines), r is defined by p 4 , and there exist analytic functions a on V 84 and
f * on R3 such that

g(x) 46 x1
22r(1)

R x4
22r(4) a(x)( f * p 4 )(x) .

Here 6 is independent of the points of V 84 because of condition (*), hence,
finally, g is analytic.
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