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A Variational Construction of Chaotic Trajectories
for a Hamiltonian System on a Torus.

S. V. BOLOTIN - P. H. RABINOWITZ (*)

Abstract. – A geometric criterion for the existence of chaotic trajectories of a Hamilto-
nian system with two degrees of freedom and the configuration space a torus is
given. As an application, positive topological entropy is established for a double
pendulum problem.

1. – Introduction.

Consider a Hamiltonian system with compact two-dimensional configur-
ation space M and Hamiltonian H4H(p , q) on the phase space

T * M4 ](p , q)Nq�M , p�Tq* M( .

The symplectic structure dpRdq is standard. Suppose that H satisfies the fol-
lowing condition:

(H) H�C 3 is strictly convex in the momentum p , i.e. the Hessian Hpp (p , q) is
positive definite for all (p , q) and H(p , q) KQ as pKQ .

The last condition implies that all energy levels S h 4 ]H4h( are compact.
Define the function V on M by the formula V(q) 4H(0 , q). If the system is re-
versible, i.e. H(p , q) 4H(2p , q), then V can be regarded as the potential en-
ergy. Without loss of generality it can be assumed that max

M
V40. In fact, all

the results of this paper will hold without requiring that HKQ as pKQ , if
the zero energy level is compact.

(*) The first author was supported by the RFFI under grant J96-01-00747 and by
the NSF under grant JMCS-8110556. The second author was supported by the NSF
under grant JMCS8110556 and by the U.S. Army under contract JDAAL03-87-12-
0043. Any reproduction for the purposes of the U.S. Government is permitted.
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The main example to keep in mind is a classical Hamiltonian system.
Let

H(p , q) 4
1

2
aA(q)p , pb1 av (q), pb1V(q) ,(1.1)

where A(q) is positive definite for all q and v is a vector field on M . Then condi-
tion (H) is obviously satisfied. This system can be represented in Lagrangian
form with

L(q
.
, q) 4

1

2
aq
.
2v (q), A 21 (q) (q

.
2v (q) )b2V(q) .

If v (q) 40 for all q�M , the system is reversible. Then it is called a natural
mechanical system.

The properties of the system strongly depend on the topology of the con-
figuration space M and the energy value h . First suppose that the Euler char-
acteristic x(M) E0 and hD0. Kozlov showed that an analytic natural Hamilto-
nian system is nonintegrable on the energy level S h [27, 28]. For a natural sys-
tem with V40 (geodesic flow), the topological entropy on S h was estimated
from below by Katok [25]. For any Hamiltonian system satisfying condition
(H) the topological entropy is positive on S h with hD0 if x(M) E0. The proof
is essentially the same as for a geodesic flow and will not be given here. It is
based on the classical Maupertuis principle, which reduces the problem to
Finsler geometry.

Define the Jacobi metric V QVh on the set Mh 4 ]VEh( %M by the formula

Vq
.
Vh 4 max

p
]ap , q

.
bNH(q , p) 4h( , q�Mh .(1.2)

This function on TMh is convex and homogeneous of degree one in q
.
, and so it

is a Finsler metric on Mh which degenerates on the boundary ¯Mh . For a non-
reversible system, the Jacobi metric is nonreversible: V2q

.
Vh cVq

.
Vh . For

example, for the classical system with Hamiltonian (1.1),

Vq
.
Vh 4o(2(h2V(q) )1 av (q), A 21 (q) v (q)b)aq. , A 21 (q) q

.
b1 aq

.
, A 21 (q) v (q)b .

Since any trajectory s : [a , b] KS h , s (t) 4 (p(t), q(t) ) , is uniquely deter-
mined by its projection q : [a , b] KM , such a curve q will be also referred to as
a trajectory of the Hamiltonian system. The Maupertuis principle states that if
q : [a , b] KMh is a trajectory of the Hamiltonian system with energy h , then
q : [a , b] KMh is a geodesic of the Finsler metric V QVh , i.e. an extremal of the
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length functional (Maupertuis action)

Jh (g) 4s
a

b

Vg
.
(t)Vh dt(1.3)

on the set of absolutely continuous curves g : [a , b] KM with fixed boundary
points. Conversely, any extremal of the functional Jh in Mh after a reparame-
terization becomes a trajectory of the Hamiltonian system with energy h .

For hE0 or x(M) F0 there are no purely topological obstructions to inte-
grability. Indeed, there are many classical integrable systems on a sphere or a
torus. Kozlov and Ten [30] have shown that for any 2-dimensional manifold N
with boundary there exists an integrable natural Hamiltonian system with the
domain of possible motion Mh `N . So for hE0 or x(M) F0 additional as-
sumptions are necessary for proving chaotic behavior.

In this paper, the case x(M) 40 and h small will be treated. For x(M) D0
(M is a sphere or a projective plane) there are many integrable systems, and
so the conditions for chaotic behavior are necessarily more compli-
cated [10, 11]. Without loss of generality, let M be orientable. Then M is topo-
logically a torus T 2 . Suppose that V satisfies

(V) V has a strict nondegenerate maximum q0 �M and the point z0 4 (0 , q0 )
is an equilibrium of the system, i.e. Hp (0 , q0 ) 40.

Note that for a reversible system a maximum of V is always an equilibrium,
but in general this is an additional assumption. For example, for the classical
system (1.1), this holds if v (q0 ) 40. Of course, performing a canonical trans-
formation pKp2˜ f (q), one can always assume that v (q0 ) 40, but then also
V will be changed.

An equilibrium satisfying condition (V) is always unstable and the charac-
teristic exponents 6l 1 , 6l 2 have nonzero real parts. There are two possibili-
ties:

(SF) The equilibrium is a saddle-focus, i.e. the characteristic exponents are
complex: l 1 4 l2 �R .

(S) The equilibrium is a saddle, i.e. the characteristic exponents are real:
0 El 1 Gl 2 . We will assume for simplicity that l 1 cl 2 .

Let W s and W u be the stable and unstable manifolds of the equilibrium.
Under conditions above, there always exists a homoclinic orbit g%W s OW u .
This was proved in [6] by variational methods. Generically g is transversal, i.e.
the intersection of W s and W u along g is transversal in S 0 . If (SF) holds, the
system has chaotic trajectories on the energy level S 0 . In particular, the topo-
logical entropy is positive. This was proved by Buffoni and Séré [13] for a clas-
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sical analytic Hamiltonian system (1.1) by using variational methods for homo-
clinic orbits. They have also shown that this result holds for C 3 Hamiltonians
(private communication). Essentially the same proof works for any system sat-
isfying (H), (V) and (SF). This result is a variational version of the theorem of
Devaney [19], where chaotic trajectories were constructed under the assump-
tion that there exists a transversal homoclinic trajectory g to the equilibrium
z0 . See also the recent papers of Kalies and VanderVorst [23] and Kalies,
Kwapisz, and VanderVorst [24] who also treat interesting saddle-focus
settings.

In this paper we assume that (S) holds. Recall that for a reversible system
a maximum point of V is always a saddle (Lagrange Theorem). This case is
more subtle than (SF). Indeed, Devaney [20] gave an example (Neumann
problem), where there exist 4 transversal homoclinics to a saddle equilibrium,
but the system is integrable. In his example, the configuration space M is a
projective plane RP 2 , but it is easy to give an example with M4T 2 :

EXAMPLE. – Consider two disconnected mathematical pendulums:

H4
1

2
(p1

2 1p2
2 )1l 1

2 ( cosq1 21)1l 2
2 ( cosq2 21) .

Then (0 , 0 ) �T 2 is a saddle equilibrium which possesses 4 transversal homo-
clinic trajectories. But certainly the mathematical pendulum is an integrable
system.

Thus additional assumptions are needed for chaotic behavior. Sufficient
conditions were discovered by Turayev and Shilnikov [39]. They proved that if
there exist 3 transversal homoclinics to a saddle equilibrium and they don’t
belong to the strong stable W ss %W s or strong unstable W uu %W u manifolds,
corresponding to larger eigenvalues 6l 2 , then the Hamiltonian system has a
subsystem which is the suspension over a topological Markov chain.

The main result of the present paper is a variational version of the theorem
of Turayev and Shilnikov. Instead of assuming the existence of several
transversal homoclinics an assumption of a geometrical nature is made.

Under the conditions above, the Jacobi metric (1.2) corresponding to en-
ergy zero is defined everywhere on M , positive definite on M0]q0 (, and van-
ishes at the equilibrium q0 . Let J4J0 be the corresponding Jacobi functional.
Let G be a simple free homotopy class of closed curves g : [0 , 1 ] KM , g(0) 4

g(1), and V%G the set of loops passing through q0 :

V4 ]g�GNg (0) 4g (1) 4q0 ( .

Obviously, inf
V

JF inf
G

J .
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THEOREM 1.4. – Suppose that M is a torus and conditions ( H ), ( V ), ( S ) are
satisfied. If

c1 4 inf
V

JDc0 4 inf
G

J ,(1.5)

there exists dD0 such that one or both of the following statements hold
true.

l The system possesses chaotic trajectories on any energy level S h with
0 EhEd ;

l the system possesses chaotic trajectories on any energy level with
2dEhE0.

In particular, the system has positive topological entropy on S h . In most
cases Theorem 1.4 holds both for h� (0 , d) and h� (2d , 0 ) as will be seen in
Proposition 1.8. For a reversible system, Theorem 1.1 always holds for h� (2
d , 0 ). Condition (1.5) was introduced in [11] for a natural system on a torus. It
was used in [34, 15, 12] for systems with strong force singularities of the poten-
tial and in [35] for natural systems on a torus.

A sketch of the proof of Theorem 1.4 for an analytic natural Hamiltonian
system was given in [11]. It is based on constructing by variational methods
topologically transversal heteroclinics from the equilibrium z0 to a minimizing
periodic orbit in G and then applying a version of the Turayev-Shilnikov theo-
rem [39]. This proof doesn’t work for smooth H , since it relies heavily on the
analyticity of the stable and unstable manifolds of equilibrium and periodic or-
bits. The following corollary of Theorem 1.4 was proved in [12] for a natural
system by a different method, which doesn’t require the assumption l 1cl 2 .

COROLLARY 1.6. – If H is analytic, the system has no analytic integrals
independent of H in a neighborhood of S 0 .

Also without condition (1.5), the infimum c0 of the functional J on G is at-
tained at some curve g 0 �G . If g 0 doesn’t pass through q0 , it is a periodic orbit
of energy 0. If g 0 passes through q0 once, it is a homoclinic orbit. If g 0 passes
through q0 several times, it is a chain of homoclinics. Condition (1.4) implies
that only the first variant is possible. It is satisfied if there exists a closed
curve in the homotopy class G with action which is less than the action of any
homoclinic to the equilibrium z0 .

Under condition (1.5) the class V contains a minimizing homoclinic
g 1 of action c1 . Let V k denote the k-fold iterated homotopy class. The
set of curves in V k which don’t intersect g 0 and g 1 consists of two connected
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components V k
1 and V k

2 . The proof of Theorem 1.4 is based on the following
proposition.

PROPOSITION 1.7. – Under condition (1.5), there exist n6�N such that for
any kDn6 there exists a minimizing homoclinic in V k

6 .

For analytic H , in [12] a stronger result was obtained: there exist an infi-
nite number of transversal homoclinic orbits to z0 . The existence of an infinite
number of homoclinics (in general, not transversal) was established by
Caldiroli and JeanJean [15] by variational methods for the case of a point mov-
ing in R 2 in a potential field with a strong force singularity. A result related to
Proposition 1.7 was obtained in [35].

Recall that without condition (1.5), there are at least rank p 1 (M)11 homo-
topy classes containing minimizing homoclinics [6]. Using this result, one can
establish the existence of chaotic trajectories for small NhN if x(M) E0. How-
ever, for a torus, the existence of four homotopically different minimizing ho-
moclinics to a saddle equilibrium doesn’t yield chaotic trajectories, as the
example above shows. Thus the existence of a sufficient number of homoclinics
in Proposition 1.7 is necessary to establish chaos. Proposition 1.8 shows that
seven homotopically different minimizing homoclinics would have been
enough. Five probably is sufficient.

Proposition 1.7 is proved in § 2. In § 3 a version of the l-lemma is proved
which provides a solution of the boundary value problem for the system near
the equilibrium. In § 4 the homoclinic trajectories are glued together by using
these local results to provide first periodic and then chaotic trajectories. This
yields Theorem 1.4. The Poincaré map of the system is semiconjugate to a
topological Markov chain [26] of arbitrary order on an invariant subset in S h .
The construction of the Markov chain is a variational version of the theorem of
Turayev and Shilnikov [39].

Now a sketch of the description of the topological Markov chain will be
given. The details are contained in § 4. Take a connected component in the set
of minimizing homoclinics in every homotopy class V k

6 with kDn6 . Let E be
the set of components not containing homoclinics in W ss and W uu . Let W s

6 and
W u

6 be connected components of the sets W s 0W ss and W u 0W uu . Put s (k) 46

1 depending on whether the homoclinics from the class k�E belong to W s
6 .

Similarly, put t (k) 461 depending on whether the homoclinics from the class
k�E belong to W u

6 . The following improvement of Theorem 1.4 holds.

PROPOSITION 1.8. – Under the hypotheses of Theorem 1.4, for any finite set
K%E there exists dD0 such that for any h� (2d , d)0]0(, the Poincaré map
on S h has a subsystem semiconjugate to the topological Markov chain over K



A VARIATIONAL CONSTRUCTION OF CHAOTIC TRAJECTORIES ETC. 547

with the following matrix A :

Akj 4
.
/
´

d s (k), t ( j) ,

d s (k), 2t ( j) ,

hE0 ,

hD0 .
(1.9)

Here d is the Kronecker symbol. Thus if all the numbers s (k), t (k), k�E ,
are the same, then the matrix A is nontrivial only for hE0. If s (k) ct ( j) for
all k , j , it is nontrivial only for hD0. For a reversible system, homotopy class-
es V k

6 , with kE0, contain minimizing homoclinics, and s (2k) 4t (k). Hence
A is always nontrivial for hE0.

To conclude this section an application of Theorem 1.4 will be given.

EXAMPLE. – Consider the double mathematical pendulum with weightless
rods of length l1 , l2 , and mass points m1 , m2 . Let q1 , q2 be the angles between
the rods and the vertical. This is a natural system on T 2 4R 2 /2pZ 2 and the
Lagrangian has the form L4T2V with

T(q1 , q2 , q
.

1 , q
.

2 ) 4
1

2
(m1 1m2) l1

2 q
.

1
2 1

1

2
m2 l2

2 q
.

2
2 1m2 l1 l2 cos (q1 2q2) q

.
1 q

.
2 ,

V(q1 , q2) 4 (m1 1m2) gl1 ( cos q1 21)1m2 gl2 ( cos q2 21) .

The point 0 4 (0 , 0 ) �T 2 is the maximum point of the potential energy V and
V(0) 40. Let G be the homotopy class of the closed curve g 0 : [0 , 2p] KT 2 ,
g 0 (t) 4 (t , t1p). The Maupertuis action of g 0 is an elliptic integral

J(g 0 ) 4s
0

2p

2 k2V(t , t1p) T(t , t1p , 1 , 1 ) dtE

2p k2g(m1 l1
2 1m2 (l1 2 l2 )2 )((m1 1m2 ) l1 1m2 l2 ) .

It was shown in [12] that for the corresponding class V%G of curves passing
through 0,

inf
g�V

J(g) D
16

3
m2 kg (max ]l1 , l2 ( )3/2 .

Hence Theorem 1.4 yields

COROLLARY 1.10. – The double pendulum has positive topological entropy
on S h for 0 ENhNEd if

(1.11) 9p 2 (m1 l1
2 1m2 (l1 2 l2 )2 )( (m1 1m2 ) l1 1m2 l2 ) E32m2

2 (max ]l1 , l2 ()3 .

For the double pendulum, there exist chaotic trajectories both for hD0
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and hE0 due to the symmetry qK2q . Indeed, this involution maps W s
1

to W s
2 and W u

1 to W u
2 .

Of course, condition (1.11) is quite restrictive. Making estimates more care-
fully gives a better condition. However, our method certainly doesn’t work if
one of the rods is much shorter than the other.

Nonintegrability of the physical double pendulum was first proved by
Burov [14] by using the Poincaré-Melnikov-Arnold method. However, his
method works only for a very special physical pendulum which is close to a di-
rect product of a mathematical pendulum and a rotator. Hence this result
doesn’t work for the classical double pendulum. In principle, it is possible to
use the Poincaré-Melnikov-Arnold method in the limit hKQ . Indeed, this is
equivalent to small gravity gK0. However, the corresponding integral turns
out to be very complicated. Our method seems simpler.

Henceforth the Jacobi metric and the Maupertuis action corresponding to
zero energy are simply denoted by V QV and J .

2. – Existence of homoclinic orbits.

In this section, it is sufficient to assume that only conditions (H), (V) and
(1.5) hold. Moreover, it isn’t necessary that the strict maximum point q0 of V is
nondegenerate. The results of this section use the methods of Morse [31] and
Hedlund [22] on minimizing geodesics on compact surfaces. The difference is
that now the Jacobi metric is a nonreversible Finsler metric and it degener-
ates at the point q0 . However, under condition (1.5), the proofs are practically
the same as that of Morse and Hedlund.

Let d be the distance on M defined by the Jacobi metric:

d(a , b) 4 inf ]J(g)Ng�C 1 ( [0 , 1 ], M), g (0) 4a , g(1) 4b( .(2.1)

This metric satisfies the axioms of a metric space except for symmetry when
the system is nonreversible. A ball with center a�M can be defined in two
ways:

Be
1 (a) 4 ]q�MNd(q , a) Ge( , Be

2 (a) 4 ]q�MNd(a , q) Ge( .

Both systems of balls define the same standard topology on M . Denote

Ue
14Be

1 (q0 ) , Ue
24Be

2 (q0 ) , Ue4Ue
1OUe

2 .(2.2)

The length 0 GJ(g) G1Q can be defined for any oriented continuous curve
g�C 0 ( [0 , 1 ], M) by the formula

J(g) 4supm!
i41

n

d(g(ti21 ), g(ti ) ) N0 4 t0 E t1 ERE tn 41n .
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Let P%C 0 ( [0 , 1 ], M) be the set of all rectifiable curves g such that J(g) EQ .
It is well known that the length J is lower semicontinuous on P . Since the
length of a curve is independent of the parameterization, a curve will mean an
oriented nonparameterized curve. Thus curves differing by a parameterization
are identified, and P is the corresponding quotient space. Every element in P
will be represented by a curve g : [0 , 1 ] KM parameterized proportionally to
the arc length. Then for any cD0 the set ]g�PNJ(g) Gc( is compact in the
C 0 topology.

Let p : MA 4R 2 KM be the universal covering of M . Lift the Jacobi metric
to MA. The corresponding distance in MA will be also denoted by d . Recall that a
curve g : [0 , 1 ] KM is called minimizing if its lift gA: [0 , 1 ] K MA to the cover-
ing plane MA minimizes the distance d between any of its points. Thus
J(gN[a , b] ) 4d(gA(a), gA(b) ) for any 0 GaEbG1. Any minimizer is a geodesic of
the Jacobi metric everywhere, except the point q0 , where the metric
degenerates.

Just as in Riemannian geometry, any two minimizers a , a 8 : [0 , 1 ] K MA

have the following nonintersection property.

LEMMA 2.3. – If there exist 0 EaEbE1 and 0 Ea 8Eb 8E1 such that
a(a) 4a 8(a), a(b) 4a 8(b) and the sets a( [a , b] ), a 8( [a 8, b 8] ) are contained in
MA0p21 (q0), then, up to a reparameterization, aN[a , b] 4a 8N[a 8, b 8] . r

The ordering is important because the metric is nonreversible.
The metric d is complete on MA, i.e. closed bounded sets are compact. Hence

any two points in MA can be connected by a minimizer. The standard proof of
the Hopf-Rinov theorem doesn’t work in the present setting, because the
geodesic flow isn’t complete: geodesics entering q0 can’t be continued further.
They are asymptotic trajectories to q0 [29]. This yields the following result
which (for natural systems) is essentially due to Kozlov [29].

LEMMA 2.4. – Any two points a , b�M can be connected by a minimizing
curve g from a given homotopy class. The curve g is either a geodesic (i.e. tra-
jectory of zero energy) or a broken geodesic (i.e. chain of trajectories of zero
energy) aNg 1NRNg nNb , where a connects a with q0 , b connects q0 with b ,
and g i are geodesic loops with origin q0 , i.e. trajectories homoclinic to q0 .
Any free homotopy class of closed curves in M contains a minimizer which is
either a closed geodesic (periodic trajectory of zero energy) or a chain of
homoclinics.

In particular, any point a�M can be connected with q0 by minimizing
asymptotic trajectories g a

1 : [0 , 1Q) KM and g a
2 : (2Q , 0 ] KM of zero en-

ergy such that g a
6 (0) 4a and g a

6 (6Q) 4q0 . Any homotopy class of loops



S. V. BOLOTIN - P. H. RABINOWITZ550

with origin q0 contains a minimizer which is a homoclinic or a chain of
homoclinics.

Now suppose that condition (1.5) is satisfied. Take some d� (0 , c1 2c0 ) and
let U4Ud/4 be the set defined in (2.2).

LEMMA 2.5. – Let G 0 %G be the set of closed curves g�G such that J(g) 4c0 .
Then any g�G 0 is contained in M0U , is a minimizing geodesic, has no self-
intersections and gOg 84¯ for different g , g 8�G 0 . The set G 0 is compact in
P if every geodesic is parameterized by the arc length.

PROOF. – The first statement follows from Lemma 2.4 since any curve g�G
with J(g) Ec0 1d/2 doesn’t intersect U . The fact that any g�G 0 is minimizing
was proved by Morse [31] for geodesics on a closed surface of genus greater
than one, and by Hedlund [22] for geodesics on a torus. The same proof carries
over in the present setting. Lemma 2.3 yields the nonintersection proper-
ty. r

Morse also established the existence of heteroclinics connecting neighbor-
ing geodesics in G 0 . However, this fact is not needed here.

COROLLARY 2.6. – There exists a closed cylinder N%M bounded by mini-
mizing closed geodesics g 6�G 0 (possibly with g 14g 2 ) such that q0 �
N0¯N , J(g 6 ) 4c0 and J(g) Dc0 for any curve g�G such that g%N and
gcg 6 .

Corollary 2.6 follows from Lemma 2.5. An orientation of M makes it possi-
ble to speak of the left and right sides of an oriented curve. Let g 2 be the
right most geodesic from G 0 having q0 on its right side, and define g 1 similar-
ly. Then the oriented geodesic g 2 is the left boundary of N , and g 1 the right
boundary. When the curves g 6 coincide: g 24g 1 , then M is obtained from N
by gluing the opposite faces of the cylinder. r

Let V 0 %V be the set of minimizing homoclinics:

V 0 4 ]g�VNJ(g) 4c1 ( .

The curves in V 0 are non self-intersecting and don’t intersect each other (ex-
cept at the common point q0 ) and the boundary curves g 6 of the cylinder N .
The set V 0 is compact if every homoclinic is parameterized by the arc length.
Let s 1 and s 2 be the rightmost and the leftmost minimizing homoclinics from
the set V 0 respectively. Let N1 and N2 be compact cylinders in N bounded by
the closed curves s 1 and g 1 , and g 2 and s 2 respectively. When there is a
unique minimizing homoclinic in V 0 , the curves s 6 coincide and N4N1N
N2 . However, the possibility that s 1cs 2 can’t be ruled out.
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Let p : S% MA KN be the universal covering of the cylinder N and p : S6%
SKN6 the coverings of the cylinders N6 . Then S6 are infinite strips bound-
ed by the curves b 64p21 (g 6 ) and a 64p21 (s 6 ) respectively. Let T be the
covering transformation of MA corresponding to the homotopy class G . Then
p i T4p and N64S6 /T . If the curves a 6 and b 6 are parameterized by the
arc length, then Ta 6 (t) fa 6 (t1c1 ) and Tb 6 (t) fb 6 (t1c0 ). Fix some point
P0 �S such that p(P0 ) 4q0 . Then p21 (q0 ) 4 ]Pk (k�Z and p21 (U) 4Nk Vk ,
where Pk 4T k (P0 ) and Vk 4T k (V0 ) is a neighborhood of Pk . The curves a 6

are broken geodesics: they are not smooth at the points Pk .
The distance d6 on S6 , defined by a formula similar to (2.1), is complete.

Hence any points a , b�S6 can be connected by a minimizing curve g%S6 of
length d6 (a , b). Although the boundary ¯S6 consists of minimizing geodesics
except at the points Pk , contrary to the reversible case, g can have common
points with the boundary. However, if, for example, b4T k a with kF0, then
by Lemma 2.3, g will not touch b 6 , and will not touch a 6 except maybe at one
of the break points Pk . Thus g is a geodesic everywhere in S6 0]Pk (k�Z .

In order to prove Proposition 1.7, recall the notation introduced in § 1. Let
V k

6�p 1 (M , q0 ) be the class of loops with origin q0 which are contained in N6

and homotopic to curves from V iterated k times. Denote

ck
64 inf

V k
6

J , k�Z0]0( .

By definition, ck
64d6 (P0 , Pk ), c2k

6 4d6 (Pk , P0 ) for k�N , and c1
64c1 . A

minimizing curve from the class V k
6 corresponds to a curve of length ck

6 con-
necting the points P0 and Pk in S6 . If the system is reversible, then
ck

64c2k
6 .

Using the intersection property, Morse proved [31] that if G k is the free ho-
motopy class of curves in G iterated k times, then

inf
G k

J4kc0 , k�N .(2.7)

Probably this fact goes back to the last century. Exactly the same proof
yields:

LEMMA 2.8. – For k�N , the function kKck
6 is increasing and con-

cave:

ck
6Fck21

6 1c0 , ck
62ck21

6 Fck11
6 2ck

6 .(2.9)

REMARK. – Condition (1.5) is not needed here. Moreover, such result holds
for any metric satisfying triangle inequality and defining the standard topolo-
gy on an orientable two-dimensional surface. Inequalities similar to (2.9) are
also common in the Aubry-Mather theory of monotone twist maps [3]. Inequal-
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ity (2.9) was proved by Caldiroli and JeanJean [15] for the case of a point mov-
ing in the plane in a force field with a singular potential. Hedlund’s example
[22] shows that Lemma 2.8 doesn’t hold for dim MF3.

PROOF OF LEMMA 2.8. – The proof is the same as that of (2.7) [31]. For sim-
plicity write ck 4ck

6 . It is sufficient to show that for any kD1 there exists v�
G such that

ck11 2ck GJ(v) Gck 2ck21 .(2.10)

Let s : [0 , 1 ] KS6 be a minimizer connecting P0 with Pk in S6 . Then
J(s) 4ck . There exist sE t such that s (t) 4Ts (s). Indeed, this means the exis-
tence of a self-intersection point of the curve p (s) �V k

6 such that the corre-
sponding loop goes about the cylinder N6 once and thus belongs to G. Thus
the curve sN[0 , s] NT 21 sN[t , ck ] connects P0 with Pk21 and the curve sN[0 , t] N
TsN[s , t] NTsN[t , ck ] connects P0 with Pk11 . Inequality (2.11) follows immediately
with v4psN[s , t] . r

Now under condition (1.5) the existence of a minimizing homoclinic orbit to
the equilibrium q0 in the class V k

6 will be proved for all large k. A modification
of the approach of Caldiroli and JeanJean [15] will be used. Let D64

d6 (P0 , b 6 )1d6 (b 6 , P0) Then

kc0 1D6Fck
6Fkc0 1d .(2.11)

Let

n64 sup ]k�NNck
64kc1 ( .

By (2.11), n6 is finite: 1 Gn6GD6 /d . Let n 64 (n611) c1
62cn11

6 D0.

PROPOSITION 2.12. – For kDn6 and any i , j�Z0]0( such that i1j4k ,

ci
61cj

6Fck
61n 6 .(2.13)

This is a general property of concave functions. However, for completeness
the proof will be included. Again 6 will be dropped from the notation.

PROOF. – For all kFn ,

ck11 G
k11

k
ck 2

nn

k
.(2.14)

Since cn 4nc1 and cn11 E (n11) c1 , inequality (2.14) holds for k4n . Suppose
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that (2.14) is already proved for all integers less than k . Then by (2.9),

ck11 E2ck 2ck21 E2ck 2gck 1
nn

k21
h k21

k
4ck

k11

k
2

nn

k
.

Inequality (2.14) is proved. Induction yields the inequalities:

ck G
k

i
ci 2

k2 i

i
nn(2.15)

for kF iFn , and

ck G
k

i
ci 2 (k2n) n(2.16)

for nF iD0.
Inequality (2.13) obviously holds if iE0 or jE0. First suppose that kD iD

n and kD jDn . Then by (2.15)

ci F
i

k
ck 1

j

k
nn , cj F

j

k
ck 1

i

k
nn .

Therefore,

ci 1cj Fck 1nn .

Now suppose that 1 G iGn and kD jDn . Then by (2.15) and (2.16),

ci 1cj F
i

k
(ck 1 (k2n) n)1

j

k
ck 1

i

k
nn4ck 1 in .

Finally, suppose that 1 G iGn and 1 G jGn . Then

ci 1cj F
i

k
(ck 1 (k2n) n)1

j

k
(ck 1 (k2n) n)4ck 1 (k2n) n .

Proposition 2.12 is proved. r

Take eD0 so small that Ue
2NUe

1%U , where the notations from (2.2) are
used. Let 0 ErEmin (e/2 , n/4 ) and Ur4Ur

2OUr
1 . Denote by W0 the con-

nected component of the set p21 (Ur) containing P0 . Then Wk 4T k W0 is a r-
neighborhood of the point Pk .

PROPOSITION 2.17. – For kDn6 , any curve s connecting P0 with Pk in S6

such that J(s) Gck
61r can’t pass through the neighborhoods Wi with

ic0, k .
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PROOF. – If s passes through some point q�Wi with ic0, k , then q can be
connected with Pi and Pi with q by curves in N6 of length Gr . This gives a
curve a connecting the points P0 and Pi , and the curve b connecting the points
Pi and Pk . Moreover

J(a)1J(b) 4J(s)12rGck
613r .

But by Proposition 2.12,

ck 13rFJ(a)1J(b) Fci
61ck2 i

6 Fck
61n 6 ,

which is a contradiction. r

In particular, any minimizer in the homotopy class V k
6 is homoclinic orbit.

The existence of a homoclinic in a homotopy class V k
6 under the condition of

Proposition 2.12 is a particular case of a result of [6].

COROLLARY 2.18. – Any homotopy class V k
6 with kDn6 contains a mini-

mizing homoclinic g k
6%N6 such that J(g k

6 ) 4ck
6 . r

Thus Proposition 1.7 is proved (see Figure 1). If the system is analytic, the
homoclinics g k

6 are isolated and topologically transversal. For a smooth sys-
tem there can be a continuum of minimizing homoclinics in V k

6 .
Denote U 64Ue

6 and let S24¯U 2 , S14¯U 1 . Take any minimizing ho-
moclinic g�V k

6 and parameterize g : [0 , 1 ] KN6 proportionally to the arc
length. Then g(e/ck

6 ) �S2 and g(12e/ck
6 ) �S1 are respectively the first in-

tersection point of g with the curve S2 and the last intersection point with S1 .
By Proposition 2, g(t) �Mr4M0Ur for t� [e/ck

6 , 12e/ck
6 ]. Let Ak

6%S2 and
Bk

6%S1 be the sets of first and last intersection points with S2 and S1

for all minimizing homoclinics g�V k
6 . The sets Ak

6 and Bk
6 are closed and

Fig. 1. – Minimizing homoclinics and heteroclinics.
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Ak
6OAi

64¯ and Bk
6OBi

64¯ for kci . For a reversible system, Ak
6OBi

64¯

except for k42i , when Ak
64B2k

6 . Similarly, let A1 and B1 be the sets of first
and last points in S6 respectively of minimizing homoclinics from the class V .
Introduce the clockwise cyclic order on the circles S6 . Lemma 2.3 yields

PROPOSITION 2.19. – The following sequences of closed sets in S6 are well
ordered:

REAk11
2 EAk

2EREAn2

2 EA1 EAn1

1 EREAk
1EAk11

1 ER

REBk11
1 EBk

1EREBn1

1 EB1 EBn2

2 EREBk
2EBk11

2 ER .

The existence of minimizing heteroclinics from q0 to g 6 under condition
(1.4) was established in [11, 12, 35] for a natural system on a torus. A similar
result was proved by Morse [31] for the geodesic problem. The same proof
works in the present setting and yields:

PROPOSITION 2.20. – There exist minimizing heteroclinic orbits s 6 from
the equilibrium q0 to the periodic orbits g 1 , g 2 , and minimizing heteroclin-
ic orbits t 6 from these periodic orbits to the equilibrium.

See Figure 1. If these heteroclinic orbits are parameterized by the arc
length so that s 6 : [0 , Q) KN6 and t 6 : (2Q , 0 ] KN6 , then s 6 (t) �Mr4

M0Ur for
tFe , t 6 (t) �Mr for tG2e , and s 6 (e) �S2 , t 6 (2e) �S1 . Let AQ

6%S2 be
the set of first intersection points s 6 (e) with S2 for minimizing heteroclinics
from the equilibrium q0 to the orbit g 6 . Similarly, BQ

6 is the set of last inter-
section points with S1 for minimizing heteroclinics from the orbit g6 to the equi-
librium.

PROPOSITION 2.21. – The sets AQ
6 and BQ

6 are closed. For all k ,

AQ
2EAk

2EAk
1EAQ

1 , BQ
1EBk

1EBk
2EBQ

2 .

As kKQ, the set Ak
1 tends to inf AQ

1 , the set Ak
2 to sup AQ

2 , and similarly
for Bk

Q . In the reversible case BQ
2EAQ

2 and AQ
1EBQ

1 .

The last statement follows from the fact that when kKQ , minimizing ho-
moclinics, if represented by minimizers connecting P0 with Pk in S6 , tend to
minimizing heteroclinics from the equilibrium q0 to periodic orbits g 6 . Simi-
larly, if represented by minimizers connecting P2k with P0 in S6 , they tend to
minimizing heteroclinics from the periodic orbits g 6 to the equilibrium
q0 . r

These sets will be used in § 4 to get an improvement of Theorem 1.4.
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3. – Boundary value problem.

Suppose that conditions (V) and (S) hold: q0 is a point of nondegenerate
maximum of the function V and the eigenvalues 0 El 1 El 2 are real and differ-
ent. In this section the existence and uniqueness of orbits with small energy h
connecting two points a , b in a neighborhood of q0 will be proved. The sign of h
depends on the position of the points a , b . Let the curves D6%U 6 passing
through q0 be the unions of the trajectories of asymptotic orbits with the char-
acteristic exponent Zl 2 respectively. Then D6 divides U 6 into two compo-
nents U1

6 and U2
6 . The energy h will be negative if a and b both lie either to

the right or to the left of D1 and D2 , respectively, and positive if they lie on
different sides. The case when one of the points lies on D6 is more compli-
cated, and won’t be consided.

This result certainly isn’t new: a similar proposition must have been used
by Turayev and Shilnikov [39]. However, [39] contains no formulation of such a
result and, as far as we know, the proof was never given.

In the next section this local proposition will be used to glue together the
homoclinics obtained in § 2.

Under condition (V), the equilibrium z0 is hyperbolic. Hence the existence
of the local stable and unstable manifolds Wloc

s , u of the equilibrium follows from
the Hadamard-Perron theorem [1]. The projections of Wloc

s , u to M are diffeo-
morphisms of small neighborhoods of z0 in Wloc

s and Wloc
u to a neighborhood U of

q0 in M . It is well known that Wloc
s , u are Lagrangian manifolds, i.e., the restric-

tions of the 1-form ap , dqb to Wloc
s , u are closed. Hence these manifolds are de-

fined by generating function s 6 on U such that s 6 (q0 ) 40:

Wloc
u 4 ](p , q)Np4˜s 2 (q), q�U( , Wloc

s 4 ](p , q)Np42˜s 1 (q), q�U( .

For a reversible system, s 14s 2 .
The classical calculus of variations implies that s 1 (q) 4d(q , q0 ) and

s 2 (q) 4d(q0 , q), where the distance d is defined by the Jacobi metric. Indeed,
s 2 satisfies the Hamilton-Jacobi equation H(˜s 2 (q), q)40. By the definition
(1.2) of the Jacobi metric,

Vq
.
V4 max ]ap , q

.
bNH(p , q) 40( F a˜s 2 (q), q

.
b 4 s

.2 (q) ,

and equality holds iff q
.
4lHp (˜s 2 (q), q) for some lD0

The functions s 6 each have a nondegenerate minimum at the point q0 . For
small eD0, the e-balls U 64Ue

6 are disks in M with smooth boundaries S6 .
The calculation above yields the following analogue of the Gauss lemma. For a
generalization see [5].

LEMMA 3.1. – For any point a�U 6 , there exist unique trajectories
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g a
1 : [0 , Q) KU 1 and g a

2 : (2Q , 0 ] KU 2 with zero energy such that

lim
tK6Q

g a
6 (t) 4q0

and g a
6 (0) 4a . The curves g a

6 are minimizing: J(g a
6 ) 4s 6 (a). r

For the trajectories g a
6 (t), let za

6 (t) 4 (pa
6 (t), g a

6 (t) ) be the correspond-
ing orbits in the phase space. Then za

1 (t) �Wloc
s and za

2 (t) �Wloc
u . For a�S6 ,

the curves g a
6 intersect the circles S6 orthogonally: pa

6 (0) »Ta S6 .
The next lemma gives a solution of the boundary value problem similar to

the problem studied by Shilnikov [38].

LEMMA 3.2. – Let TD0 be sufficiently large. Then for any points a�U 1 ,
b�U 2 and tFT there exists a unique trajectory

z(t) 4 (p(t), q(t) )4 f (a , b , t , t) , (t , t) �DT 4 ](t , t)NtFT , 0 G tGt( ,

such that q(0) 4a and q(t) 4b . The map f is C 2 on U 13U 23DT . More-
over, z(0) 4 f (a , b , t , 0 ) Kza

1 (0) and z(t) 4 f (a , b , t , t) Kzb
2 (0) as tKQ

uniformly in (a , b) �U 13U 2 .

Lemma 3.2 follows from the results of [38]. It follows also from the l-lem-
ma [33] and the fact that for a , b�U the planes X4Ta* M and Y4Tb* M inter-
sect the invariant manifolds Wloc

u and Wloc
s transversally.

Later an estimate for z(t) for all t� [0 , t] will be needed:

f (a , b , t , t) 4za
1 (t)1zb

2 (t2t)1e 2l 1 t f(a , b , t , t) .(3.3)

where VfVC 1 is uniformly bounded on U 13U 23DT . Of course, when writing
this formula, it is assumed that some local coordinates such that z0 40 are
chosen.

In [38] a weaker estimate was proved. Representation (3.3) doesn’t follow
from the usual l-lemma, but it can be deduced from the strong l-lemma
proved by Deng [18]. Consider the differential equation z

.
4v (z), where v is a

C 2 vector field in a neighborhood of 0 �Rn . Let gt , t�R , be the phase flow.
Suppose that v (0) 40 and the matrix Dz v (0) has no eigenvalues on the imagi-
nary axis. Assume that there are eigenvalues both with positive and negative
real parts. Let l4min NRe Spec Dz v (0)N . The system has nonempty stable
W s and unstable W u local invariant manifolds at the equilibrium 0.

LEMMA 3.4. – Let X , Y be manifolds in Rn intersecting the manifolds W s,
W u, respectively, transversally at some points x0 and y0 . Then for sufficiently
large TD0 and any tFT there exists a solution z(t) 4gt (z(0) ) , 0 G tGt ,
such that:

l z(0) �X and z(t) �Y ;
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l there is a representation

z(t) 4gt (x0 )1gt2t (y0 )1e 2lt f(t , t) ,(3.5)

where f is C 1 uniformly bounded on DT , i.e. there exists a constant CD0
such that

VfVC 1 (DT , Rn ) GC , DT 4 ](t , t)NtFT , 0 G tGt( ;

l If the manifolds X , Y smoothly depend on a parameter c taking
values in a compact manifold Z, then f(t , t , c) is a C 1 function of (t , t , c) �
DT 3Z , and VfVC 1 (DT3Z , R n ) GC .

A little weaker statement is proved in [38]. Lemma 3.4 can be deduced also
from the exponential expansion proved by Deng [18].

PROOF OF LEMMA 3.4. – In a neighborhood N4W u 3W s of the equilibrium
0 in Rn , the coordinates x�W u and y�W s will be used. Set z4 (x , y). Suppose
that the manifold X intersecting the manifold W s at the point y0 is given by the
equation y4 f (x), where x�W u and y�W s , and the manifold Y by the equa-
tion x4h(y). Then f(0) 4y0 �XOW s and h(0) 4x0 �YOW u. Let the mani-
fold gt (X)ON [33] be given by the equation y4 ft (x). The strong l-lemma [18]
says that Vft VC 1 K0 exponentially: Vft VC 1 GCe 2lt for tF0 and such an estimate
holds for the derivative Dt ft . An analogous estimate Vht VC 1 GCe lt also holds for
the equation x4ht (y) of the manifold gt (Y)ON for tG0.

According to the boundary conditions, z(t) �g t (X)Og t2t (Y). Thus z(t) 4

(x , y) with x , y satisfying the equations

y4 ft (x) , x4ht2t (y) .

By the above estimates and the implicit function theorem, equation y4

ft (ht2t (y) ) has a unique solution y4gt (y0 )1h(t , t) for any t� [0 , t]. In-
deed,

y4 ft (ht2t (y) )4gt (y0 )1 [ ft (ht2t (y) )2 ft (0) ] 4gt (y0 )1F t , t (y) .

The term F t , t (y) is quadratically small if ft and ht2t are small: VF t , t VC 1 G

Vft VC 1 Vht2t VC 1 . Hence VF t , t VC 1 GC 2 e 2lt and

Nh(t , t)NGC 2 e 2lt .

A similar inequality holds for the derivatives of h in t , t. The representation
(3.5) is proved for the coordinate y�W s . For the coordinate x, the proof is
similar. When X , Y depend on a parameter c�Z, the estimates above will be
uniform in c. r

Lemma 3.4 implies Lemma 3.2 and representation (3.3). Indeed, put X4
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Ta* M and Y4Tb* M . Then gt (z) 4za
1 (t) for z�Wloc

s OX and gt (z) 4za
2 (t) for

z�Wloc
u OY . Equation (3.3) implies the following:

COROLLARY 3.6. – Let S(a , b , t) be the action

S(a , b , t) 4s
0

t

ap , dqb 4s
0

t

ap(t), Hp (z(t) )b dt

of the trajectory z(t) 4 (p(t), q(t) ) in Lemma 3.2. Then S�C 2 (U 13U 23

[T , Q) ) and S(a , b , t) Ks 1 (a)1s 2 (b) as tKQ uniformly in (a , b) �
U 13U 2.

Now we seek to estimate the energy h(a , b , t) of the trajectory z(t) 4

(p(t), q(t) ) . The energy h is a C 2 function on U 13U 23 [T , Q). Obviously,
hK0 as tKQ, but for the sequel it is necessary to know the sign of h.

Let Wloc
uu %Wloc

u be the strong unstable curve of the equilibrium q0 , i.e., the
invariant curve tangent to the eigenvector with the larger eigenvalue l 2 Dl 1 .
The definition of the strong stable curve Wloc

ss %Wloc
s is similar. They are pro-

jected to the curves D6%M which divide the neighborhoods U 6 of the point q0

into open sets U1
6 and U2

6 . Thus U 6 0D64U1
6NU2

6 and W6
u 4p21 (U6

2 )O
Wloc

u and W6
s 4p21 (U6

1 )OWloc
s .

LEMMA 3.7. – There exists a C 1 function h0 on U 13U 2 such that h0 D0
on (U1

13U2
2 )N (U2

13U1
2 ) and h0 E0 on (U1

13U1
2 )N (U2

13U2
2 ) and

the function h on U 13U 23 [T , Q) has the form

h(a , b , t) 4e 2l 1 t (h0 (a , b)1h1 (a , b , t) ) ,

where the function h1 : U 13U 23 [T , Q) KR is small for large t :

Vh1 VC 1 (U 13U 23 [t , Q) )K0 as tKQ .

PROOF. – This follows from a calculation in normal coordinates in a neigh-
borhood of the equilibrium. Note first that there exist local symplectic coordi-
nates x1 , x2 , y1 , y2 such that W u 4 ]y40(, W s 4 ]x40(, and the Hamiltoni-
an takes the form

H(x , y) 4l 1 x1 y1 (11O(x , y) )1l 2 x2 y2 (11O(x , y) ) .(3.8)

Thus x is the coordinate on W u , and y on W s . The coordinates can be chosen in
such a way that W uu 4 ]x1 40, y40( and W ss 4 ]y1 40, x40(. Moreover,
we can assume that W1

u is given by the inequality x1 D0. Then it is easy to see
that W1

s is given by the inequality y1 D0.
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The Hamiltonian system on the unstable manifold takes the form

x
.

1 4 (l 1 1O(x) ) x1 , x
.

2 4O(x) x1 1 (l 2 1O(x) ) x2 .

The first equation can be transformed to a linear form j
.

1 4l 1 j 1 by a C 1

change of variables j 1 4x1 f (x), with f (0) D0 [1]. The phase flow g2t on W u

takes the form

g2t (x) 4 (e 2l 1 t x1 f (x), 0)1e 2l 1 t G(x , t) ,(3.9)

where VGVC 1 K0 uniformly as tKQ . In [18] such a representation is called an
exponential expansion.

A similar representation holds for the flow on the stable manifold:

gt (y) 4 (e 2l 1 t y1 g(y), 0)1e 2l 1 t E(y , t) , g(0) D0 ,(3.10)

where VEVC 1 K0 uniformly as tKQ .
Now put t4t/2 in (3.3) and estimate the energy H at the point z(t/2 ). De-

note za
1 (0) 4 (0 , y) �W s and zb

2 (0) 4 (x , 0 ) �W u . By (3.3), (3.9) and
(3.10),

z(t/2 ) 4 (e 2l 1 t/2 x1 f (x), 0 , e 2l 1 t/2 y1 g(y), 0)1e 2l 1 t/2 F(x , y , t) ,(3.11)

where VFVC 1 K0 as TKQ . Substituting (3.11) into (3.8) gives

h(a , b , t) 4H(z(t/2 ) )4e 2l 1 t (l 1 x1 y1 f (x)g(y)1h1 (x , y , t) ) ,

where Vh1 VC 1 K0 as TKQ . This completes the proof of Lemma 3.7. r

A similar argument was recently used by Buffoni and Séré [13] for the case
of a saddle-focus equilibrium, following an earlier paper of Devaney [19]. In
our setting, a result like Lemma 3.7 was probably the basis for the theorem of
Turayev and Shilnikov [39], although it wasn’t formulated in [39]. (This paper
contains no proofs).

Let K% (U 1 0D1 )3 (U 2 0D2 ) be a compact set. Then for (a , b) �K the
function h0 (a , b) is bounded away from zero. Thus h(a , b , t) is monotone in t
for sufficiently large t . Solving the equation h4h(a , b , t) for t yields a C 2

function
t4t h (a , b) provided h is chosen with the right sign. This gives:

PROPOSITION 3.12. – Let K% (U 1 0D1 )3 (U 2 0D2 ) be a compact connect-
ed set. There exists dD0 such that for all h� [2d , 0 ) if K% (U1

13U1
2 )N

(U2
13U2

2 ) and for all h� (0 , d] if K% (U1
13U2

2 )N (U2
13U1

2 ) the follow-
ing holds.

l For any point (a , b) �K , there exists a unique trajectory
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za , b
h : [0 , t] KU of energy h connecting the points a and b. As hK0,

za , b
h (0) Kza

1 (0) and za , b
h (t) Kzb

2 (0).

l The time t4t h (a , b) is a C 2 function on K and t h KQ as hK0.
Moreover

t h (a , b) 42
log NhN

l 1

1m(a , b , h) ,(3.13)

where the function m is bounded as hK0.

l The action fh (a , b) 4S(a , b , t h (a , b) ) of this trajectory is a C 2 func-
tion on K and fh (a , b) Ks 1 (a)1s 2 (b) uniformly as hK0.

Denote the projection to M of the trajectory za , b
h of energy h connecting

the points a , b by v h
a , b : [0 , t h (a , b) ] KM . Then

fh (a , b) 4Jh (v h
a , b ) Ks 1 (a)1s 2 (b) as hK0 .(3.14)

4. – Gluing of homoclinics.

In this section the results of § 2-3 will be combined to obtain the existence
of an infinite number of periodic and chaotic orbits. The variational problem
for finding homoclinics in § 2 will be reformulated in a different way. Let
S64¯U 6 and Mr4M0Ur . Consider the set P of rectifiable curves
g : [0 , 1 ] K Mr such that g(0) �S2 and g(1) �S1 . In fact, as in § 2, P will de-
note the quotent space: curves obtained by a reparameterization are identi-
fied. The topology on P is the C 0 topology if curves in P are parameterized
proportionally to the arc length in the Jacobi metric. The length functional J
on P is lower semicontinuous in the C 0 topology on P%C 0 ( [0 , 1 ], M) and the
set P C 4 ]g�PNJ(g) GC( is compact for any CD0.

Any curve g�P defines a curve gA �V by connecting the points q0 with a4

g(0) and b4g(1) with q0 by the minimizers g a
2 and g b

1 given in Lemma 3.1.
Thus gA 4g a

2NgNg b
1 and J(gA) 4J(g)12e . Let P6%P be the set of curves

contained in D64 MrON6 . Let P k
64 ]g�P6 NgA �V k (. Proposition 2.17

and Corollary 2.18 imply the following

LEMMA 4.1. – For kDn6 the class P k
6 contains a minimizer g k

6 of the
functional J such that

J(g k
6 ) 4ck

622e .

The curves gAk
6�V k

6 corresponding to minimizers g k
6 are trajectories of min-

imizing homoclinics from the class V k
6 . Any curve g�P k

6 such that J(g) G

ck
622e1r is contained in Mr . For any k�N there exists c� (0 , r] such that
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any curve g�P k
6 with J(g) Gck

622e1c is contained in D6 0¯D6 . r

For any k�N such that kDn6 let

L k
64 ]g�P k

6 NJ(g) 4ck
622e( .

Then the sets Ak
6 and Bk

6 in Proposition 2.19 can be defined as

Ak
64 ]g(0)Ng�L k

6( %S2 , Bk
64 ]g(1)Ng�L k

6( %S1 .(4.2)

Lemma 4.1 implies that the sets Ak
6 and Bk

6 are nonempty and closed for
kDn6 .

To simplify the notation, set

Z3Z2 4 ]k4 ( j , s)Nj�Z , s46(

and for any k4 (j , s) in this set write Ak and Bk instead of Aj
s and Bj

s , ck in-
stead of cj

s , P k instead of P j
s and L k instead of L j

s .
Recall that the curves D6%U 6 dividing U 6 into two components U1

6 and
U2

6 were defined in § 3. The intersection S6OD6 consists of two points divid-
ing S6 into arcs S 1

6 4S6OU1
6 and S 2

6 4S6OU2
6 .

Let G%Z be the set of indices k�Z3Z2 such that Ak contains a point from
the set S2OD2 or Bk contains a point from the set S1OD1 . There are at
most four such indices k , and so G contains at most four elements.
Denote

E4 ]k4 ( j , s) �Z3Z2 NjDns , k�G( .(4.3)

For any k�E , denote by A 8k an arbitrary connected component of the set Ak %
S and let

B 8k 4 ]g(1)Ng�L k , g(0) �Ak8( %Bk .

Then A 8k %S2
1 or A 8k %S2

2 , and Bk8%S1
1 or B 8k %S1

2 .

REMARK. – The indices k�G are deleted because we would like to glue to-
gether minimizing curves in P k by connecting orbits with given energy hc0
constructed in the previous section. For points near S6OD6 , the connecting
orbits with given nonzero energy depend discontinuously on the boundary
points.

Fix an arbitrary finite set K%E . Let Xk %S2 be a small closed neighbor-
hood of A 8k such that Xk O (Ak 0A 8k ) 4¯ , and let Yk %S1 be an analogous neigh-
borhood of B 8k . If these neighborhoods are sufficiently small, then Xk OXl 4

Yk OYl 4¯ for kc l , and Xk OD24Yk OD14¯ .
For the chosen finite set K%E , there exists c� (0 , r] such that

J(g) Dck 22e1c
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for any k�K and any g�P k such that g(0) �¯Xk or g(1) �¯Yk . Denote

Zk 4 ]g�P k NJ(g) Gck 22e1c , g(0) �Xk , g(1) �Yk ( .(4.4)

Then Zk is compact and L k %Zk . The boundary ¯Zk of the set Zk in P k consists
of the curves g�P such that g(0) �¯Xk or g(1) �¯Yk or J(g) 4ck 22e1c . If c
is sufficiently small, the definition of the sets Xk and Yk implies the
following:

LEMMA 4.5. – For any k�K ,

inf
¯Zk

JFck 22e1c .(4.6)

and g%D6 0¯D6 for any curve g�Zk .

Now we start gluing the homoclinics. First the existence of multibump
periodic orbits will be proved. Take an arbitrary N�Z1 and an arbitrary se-
quence ki �K , i41, R , N , and extend it to a periodic sequence setting
ki1N 4ki . A sequence ]ki ( will be called admissible for negative and positive
energy respectively if it satisfies one of the following conditions.

Connection condition for negative energy. If Xki
%S 1

2 for some i , then
Yki21

%S 1
1 , and if Xki

%S 2
2 , then Yki21

%S 2
1 .

Connection condition for positive energy. If Xki
%S 1

2 , then Yki21
%S 2

1 , and
if Xki

%S 2
2 , then Xki21

%S 1
1 .

Now a periodic orbit close to a sequence of minimizing homoclinics will be
constructed.

THEOREM 4.7. – For any finite set K%E , there exists dD0 such that for
any h� [2d , d]0]0( and any admissible sequence ]ki �K(i41

N , there exists a
periodic trajectory z(t) 4 (p(t), q(t) ) of energy h and a monotone periodic
sequence

REai Ebi Eai11 Ebi11 ER , ai1N 4ai 1T and bi1N 4bi 1T ,

where T is the period of the trajectory, such that for all i�Z :

l q(ai ) �Xki
, q(bi ) �Yki

, qN[ai , bi ] �Zki
;

l q(t) 4v h
q(bi ), q(ai11 ) (t2bi ) for all t� [bi , ai11 ];

l there exists a constant CD0, depending only on K, such that

bi 2ai GC , bi11 2ai 1
log NhN

l 1

GC .(4.8)
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REMARKS. – The proof of Theorem 4.7 shows that the constant dD0 de-
pends only on the set K and is independent of N and of the sequence ki �K .
The period T depends on h and goes to infinity like N log NhN when
hK0.

The constructed periodic orbit belongs to the homotopy class G r with r4

!
i41

N

ji , where ji is determined from ki 4 ( ji , si ).
The proof of Theorem 4.7 requires introducing of an appropriate function

space. Consider the Cartesian product

Z4P k1
3R3P kN

with the product topology. The topology on P k was defined above. Thus Z is
the set of sequences z4 (g 1 , R , g N ), where g i �P ki

. Set g N1 i 4g i . Then any
point z�Z defines a periodic sequence ]g i (i�Z .

Fix energy h� [2d , d]0]0( as in Proposition 3.12. Later dD0 will have to
be decreased several times. Choose dD0 so small that VE2d on Mr. Then
for NhNEd the Jacobi metric V QVh is positive definite on Mr. Hence the Mauper-
tuis functional Jh corresponding to the energy h is well defined and lower
semicontinuous on P .

Fix some constant

CD max
k�K

ck 22e1c .(4.9)

Then for any g�P such that J(g) GC ,

NJh (g)2J(g)NGl(d)(4.10)

for some l(d) D0 independent of g�P and such that l(d) K0 as dK0.
Indeed, for any q� Mr, the set S h (q) 4 ]p�Tq* MNH(p , q) 4h( is compact

and S h (q) KS 0 (q) in the Hausdorff metric as hK0. Then

Vq
.
Vh 4 max

p�S h (q)
ap , q

.
b K max

p�S 0 (q)
ap , q

.
b 4Vq

.
V

uniformly in q� Mr . Hence

(12a(d) )Vq
.
VGVq

.
Vh G (11a(d) )Vq

.
V ,

where a(d) K0 as dK0. Hence (4.10) holds with l(d) 4Ca(d).
Define the following functional F h on Z :

F h (z) 4 !
i41

N

(Jh (g i )1 fh (g i (1), g i11 (0) )) ,(4.11)

where the function fh was defined in Proposition 3.12. The functional (4.11) is
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similar to the functional used in the Aubry-Mather theory [3, 32]. For
h40,

F 0 (z) 4 !
i41

N

(J(g i )1s 1 (g i (1) )1s 2 (g i11 (0) ))4 !
i41

N

J(g i )12NeF !
i41

N

cki
.

The inequality turns out to be an equality iff g i is a minimizer in its homotopy
class P ki

. Thus the functional F 0 on Z has a minimum equal to

min
Z

F 0 4 !
i41

N

cki
.

By Corollary 2, the minimum is attained on the set of sequences z4

(g 1 , R , g N ) such that J(g i ) 4cki
22e , i.e. g i �L ki

. Hence the set of minimum
points of F 0 equals L k1

3R3L kN
. Any minimum point of F 0 represents a se-

quence of homoclinics gAi �V ki
.

LEMMA 4.12. – Suppose z4 (g 1 , R , g N ) �Z gives a point of local mini-
mum for the functional F h , h� [2d , d]0]0(, such that g i %D6 0¯D6 for all i .
For each i�Z , connect the point yi 4g i (1) with xi11 4g i11 (0) by the trajec-
tory v i 4v yi , xi11

h constructed in Proposition 3.12. Then the closed curve

g4g 1 Nv 1 Ng 2 Nv 2 NRNg N Nv N

is a trajectory of a periodic orbit with energy h provided that dD0 is suffi-
ciently small.

PROOF. – Since g i is a local minimum of Jh on P ki
and g i has no common

points with the boundary ¯D6 , by the Maupertuis principle it is a trajectory of
energy h . Thus it is a projection of a solution zi : [0 , t i ] KP , zi (t) 4

(pi (t), qi (t) ) such that qi (0) 4g i (0) 4xi , qi (t i ) 4g i (1) 4yi . It is sufficient to
show that for all i

zi (t i ) 4zyi , xi11
h (t i ) , zi (0) 4zyi21 , xi

h (t h (yi21 , xi ) ) .

Then g is a smooth curve and hence it is a trajectory of Hamilton’s
equations.

Thus it is sufficient to show that the momentum has no jump at the points
yi and xi (see Figure 2). It will be shown, for example, that the momentum has
no jump at the point yi . Take a variation of the point yi 4g i (1) �S1 and a

Fig. 2. – Gluing.
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smooth variation of the curve g i , keeping the point xi and all curves g j with jc

i fixed. By the first variation formula,

dJh (g i ) 4 api (t), dqi (t)bN0
t i 4 ap2 , dyi b ,

where p24pi (t i ) �Tyi
* M . Similarly,

dJh (v i ) 42ap1 , dyi b ,

where p1�Tyi
* M is defined by zyi , xi11

h (0) 4 (p1 , yi ). Since dyi �Tyi
S1 is arbit-

rary and dJh (g i )1dJh (v i ) 40, the jump p12p2 of the momentum satisfies
the condition

p12p2»Tyi
S1 , H(p2 , yi ) 4H(p1 , yi ) 4h .(4.13)

Since H is convex in the momentum, for small NhN and given p1 equations
(4.13) have two solutions p24p1 and p24p11ln , where n�Tyi

* M is the ex-
terior normal to S1 and lD0. Suppose that p1cp2 . By Proposition 3.12, for
small NhN the direction of the momentum p1 is close to the interior normal 2n
to S1 . Hence the direction of p24p11ln is close to the exterior normal n .
Since g i is a trajectory of energy h , g

.
i (1) is directed outside S1 for small NhN .

This implies that g i enters the small neighborhood Ur of the point q0 and con-
tradicts the assumption that g i %Mr . r

In view of Lemma 4.12, to establish the existence of a multibump periodic
orbit it is sufficient to show that for small NhN the functional F h has a local
minimizer z4(g 1 , R , g N ) near L k1

3R3L kN
such that g i %D60¯D6 for all i .

Let Zk %P k be the set defined in (4.4) and let

X4 ](g 1 , R , g N ) �ZNg i �Zki
( 4Zk1

3R3ZkN
.

The set X is compact as a product of compact sets. By Lemma 4.5, g%D6 0¯D6

for any g�Zk and k�K .

LEMMA 4.14. – There exists dD0 such that for h� [2d , d]0]0( the func-
tional F h is well defined and lower semicontinuous on X .

Indeed, the functional F h is a sum of continuous and semicontinuous
functions.

PROOF OF THEOREM 4.7. – By Lemma 4.14, for h� [2d , d]0]0( the func-
tional F h has a minimum point z�X . In view of Lemma 4.12, to complete the
proof it remains to show that any minimum point z4 (g 1 , R , g N ) of F h in X
lies in the interior of X in Z. Since g i %D6 0¯D6 , Lemma 4.12 applies and gives
the theorem. The boundary of X in Z consists of the points z4 (g 1 , R , g N )
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with g i �¯Zki
for some i41, R , N . Suppose that the minimum point z lies on

the boundary, so that g i �¯Zki
for some i . By (4.6) and (4.10),

Jh (g i ) Fcki
1c22e2l(d) .(4.15)

Perturb the curve g i , replacing it by an arbitrary curve g×i �L ki
. The fact that

the interaction between the components g i and g i61 in (4.11) is very small for
small NhN , implies that the new point z× 4 (g 1 , R , g×i , R , g N ) �X satisfies
F h (z×) EF h (z). Indeed, by (4.10),

Jh (g×i ) Gcki
22e1l(d) .(4.16)

By (3.14), for NhNGd , the interaction term in (4.11) can be estimated as
follows

Nfh (g i21 (1), g×i (0) )1 fh (g×i (1), g i11 (0) )24eNGm(d) ,(4.17)

where m(d) K0 as dK0. By (4.15), (4.16) and (4.17), if dD0 is so small that
m(d)12l(d) Ec , then for h� [2d , d]0]0(,

F h (z×) 4F h (g 1 , R , g×i , R , g N ) GF h (z)2c1m(d)12l(d) EF h (z) ,

which is a contradiction. Theorem 4.7 is proved. r

A similar result for infinite sequences ]ki �K(i�Z will be proved next.

THEOREM 4.18. – For any finite set K%E, there exists dD0 such that for
all h� [2d , d]0]0( and any admissible sequence ]ki �K(i�Z , there exists a
trajectory of energy h and an infinite monotone sequence

REai21 Ebi21 Eai Ebi Eai11 Ebi11 ER

satisfying the properties in Theorem 4.7.

Theorem 4.18 implies Theorem 1.4 and Proposition 1.8.

PROOF OF THEOREM 4.18. – The proof is obtained by a limit procedure which
is standard in the Aubry-Mather theory [3]. Fix a constant CD0 as in (4.9) and
consider the infinite product

Q4 (P C )Z
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with the product topology. Let Y%Q be the set of sequences z4 ]g i (i�Z with
g i �Zki

for all i�Z . A sequence z�Y will be called minimizing if for any
z× 4 ]g×i (i�Z �Y such that g×i 4g i for all i except belonging to a finite set
I%Z ,

!
i�I

(Jh (g×i )1 fh (g×i (1), g×i11 (0) )2Jh (g i )2 fh (g i (1), g i11 (0) ))F0 .

This is a standard definition in the Aubry-Mather theory [3, 32].
Exactly as in the proof of Theorem 4.7, for any minimizer z�Y , it follows

that g i �Zki
0¯Zki

for all i . Thus by Lemma 4.12 any minimizing sequence z
gives a trajectory of energy h satisfying the condition of Theorem 4.18. There-
fore, it is sufficient to prove the existence of a minimizing sequence.

Take a sequence ]ni �K(i�Z and for any N�Z1 replace it by a periodic se-
quence ]ki (i�Z such that ki 4ni for i42N , R , N and ki12N11 4ki for all i�
Z . Since the sequence ]ki (i�Z is periodic, Theorem 4.7 applies. This gives a

minimum point of the functional F h on »
i42N

N

Zki
which defines a 2N11-peri-

odic sequence z (N) �Q . Now let NKQ . Since Q is compact in the product
topology, z (N) has a subsequence z (Nj ) converging to a sequence z (Q) �Q . Obvi-
ously, z (Q) �Y . Since for any finite set I%Z , g i

(Nj ) Kg i
(Q) for all i�I , the limit

sequence is minimizing. The proof of Theorem 4.18 is complete. r

REMARK. – One can extend the above construction to glue together not only
homoclinics to q0 but also heteroclinics from q0 to g 1 , g 2 and from g 1 , g 2 to
q0 . Namely fix the energy h� [2d , d]0]0( and consider a finite sequence
k2 , k1 , R , kN , k1 , where ki �E and k2 , k1�Z2 4 ]6(. Such a sequence is
called admissible if the sequence ]ki ( is admissible, the sets AQ

k1 and BQ
k2 in

Proposition 2.21 have connected components that don’t intersect the curves
DZ respectively and conditions similar to the connection conditions above are
satisfied. For any admissible sequence and sufficiently small dD0, there
exists a heteroclinic trajectory s of energy h with properties as in Theorem 4.7
which is asymptotic to a periodic orbit a%Nk2

as tK2Q and to a periodic
orbit b%Nk1

as tK1Q . For small h , the orbit a is close to g k2
and b is close

to g k1
.

Consider, for example the sequence k2 , k1 containing only two terms.
Then the corresponding orbit s will be heteroclinic from the periodic orbit a to
the periodic orbit b and passing near the equilibrium q0 once. In general, it will
be a multibump heteroclinic passing near the equilibrium N11 times.
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