Bollettino

Unione Matematica Italiana

Giuseppe Da Prato
 The Ornstein-Uhlenbeck generator perturbed by the gradient of a potential

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 1-B (1998), n.3, p. 501-519.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1998_8_1B_3_501_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1998.

The Ornstein-Uhlenbeck Generator Perturbed by the Gradient of a Potential.

Giuseppe Da Prato $\left(^{(1)}\right.$

Sunto. - Si considera, in uno spazio di Hilbert H l'operatore lineare $\mathscr{N}_{0} \varphi=$ $1 / 2 \operatorname{Tr}\left[D^{2} \varphi\right]+\langle x, A D \varphi\rangle-\langle D U(x), D \varphi\rangle$, dove A è un operatore negative autoaggiiunto e U è un potenziale che soddisfa a opportune condizioni di integrabilità. Si dimostra con un metodo analitico che \mathfrak{N}_{0} è essenzialmente autoaggiunto in uno spazio $L^{2}(H, v)$ e si caratterizza il dominio della sua chiusura \mathfrak{N} come sottospazio di $W^{2,2}(H, v)$. Si studia inoltre la «spectral gap property» del semigruppo generato $d a \mathfrak{~}$.

1. - Introduction and setting of the problem.

Let H be a separable Hilbert space, $A: D(A) \subset H \rightarrow H$ a self-adjoint negative operator such that A^{-1} is of trace class. We denote by μ the Gaussian measure of mean 0 and covariance operator $Q=-(1 / 2) A^{-1}$. We are concerned with the following linear operator on $L^{2}(H, \mu)$:
(1.1) $\quad \mathscr{N}_{0} \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[D^{2} \varphi\right]+\langle x, A D \varphi\rangle-\langle D U(x), D \varphi\rangle, \quad \varphi \in \delta_{A}(H)$,
where U is a nonlinear real function in H, and $\S_{A}(H)$ is the linear subspace of $L^{2}(H, \mu)$ spanned by all exponential functions

$$
\psi_{h}(x)=e^{\langle h, x\rangle}, \quad x \in H
$$

where $h \in D(A)$. Notice that $\delta_{A}(H)$ is dense in $L^{2}(H, \mu)$.
The goal of this paper is to show that, under suitable assumptions, \mathscr{I}_{0} is essentially self-adjoint on the space $L^{2}(H, v)$, where v is the probability measure

$$
v(d x)=c e^{-2 U(x)} \mu(d x), \quad c=\left[\int_{H} e^{-2 U(x)} \mu(d x)\right]^{-1} .
$$

This problem has a long story, see the recent paper [1] and the references therein for an approach based on the theory of Dirichlet forms. Another ap-
${ }^{(1)}$ Partially supported by the Italian National Project MURST, Equazioni di Evoluzione e Applicazioni Fisico-Matematiche.
proach consists in solving the differential stochastic equation

$$
d X=(A X-D U(X)) d t+d W(t), \quad X(0)=x
$$

where W is a cylindrical Wiener process on H, see e.g. [7], and then by identifying the closure \mathfrak{N} of \mathscr{I}_{0} with the infinitesimal generator of the transition semigroup

$$
P_{t} \varphi(x)=\mathbb{E}[\varphi(X(t, x))], \quad \varphi \in L^{2}(H, v)
$$

In this paper we follow a purely analytic approach, different of that based on Dirichlet forms. The advantage is that we require weaker assumptions on U and that we are able to characterize the domain of \mathscr{V} as a subspace of the Sobolev space $W^{2,2}(H, v)$ instead of $W^{1,2}(H, v)$, as in the case of Dirichlet forms. Moreover we believe that similar ideas could be applied to more general situations when \mathscr{N}_{0} is not symmetric.

Let us briefly explain our method. We first consider the linear operator

$$
\begin{equation*}
\mathfrak{Q}_{0} \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[D^{2} \varphi\right]+\langle x, A D \varphi\rangle, \quad \varphi \in \delta_{A}(H) \tag{1.2}
\end{equation*}
$$

It well known see e.g. [7], that \mathcal{G}_{0} is essentially self-adjoint. Moreover the domain of the closure \mathfrak{A} of \mathfrak{Q}_{0} is given by, see [5] and $\S 2$ below,

$$
\begin{equation*}
D(\mathcal{A})=\left\{\varphi \in W^{2,2}(H, \mu):\left|(-A)^{1 / 2} D \varphi\right| \in L^{2}(H ; \mu)\right\} . \tag{1.3}
\end{equation*}
$$

We first study the operator \mathscr{R}_{0} under the assumption that U is of class C^{2} and $D U$ and $D^{2} U$ are bounded, see $\S 3$. In this case we prove that \mathscr{I}_{0} is symmetric on $L^{2}(H, v)$ and the following identity holds for any $\varphi \in \delta_{A}(H)$,

$$
\begin{align*}
& \frac{1}{2} \int_{H} \operatorname{Tr}\left[\left(D^{2} \varphi\right)^{2}\right] d v+\int_{H}\left|(-A)^{1 / 2} D \varphi\right|^{2} d v+\int_{H}\left\langle D^{2} U D \varphi, D \varphi\right\rangle d v= \tag{1.4}\\
& 2 \int_{H}\left(\mathscr{N}_{0} \varphi\right)^{2} d v
\end{align*}
$$

Finally, denoting by \mathscr{I}^{2} the closure of \mathscr{N}_{0}, we show, by a simple perturbation argument that for λ_{0} sufficiently large we have

$$
\left(\lambda_{0}-গ \tau\right)(D(গ)) \supset L^{2}(H, \mu)
$$

Since $L^{2}(H, \mu)$ is dense on $L^{2}(H, v)$, it follows that \mathscr{N} is m-dissipative see e.g. [4, Corollaire II.9.3], and so it is self-adjoint.

In § 4 we consider a more general case when

$$
\begin{equation*}
\int_{H}|D U(x)|^{p} v(d x)<+\infty \tag{1.5}
\end{equation*}
$$

This condition is similar to assumptions (5) and (6) in [1], that however are required to hold for all p. Under this assumption we can again show that \mathscr{I}_{0} is symmetric, that an estimate similar to identity (1.4) holds and that for all $\lambda>$ $0,(\lambda-\vartheta \tau)(D(গ))$ contains the closure on $L^{2}(H, v)$ of $W^{1,2 p /(p-2)}(H, \mu)$, that is dense in $L^{2}(H, v)$. This implies, by the previous argument, that \mathfrak{V} is self-adjoint on $L^{2}(H, v)$. In order to prove the above inclusion we need some a-priori estimates on $W^{1,2 p /(p-2)}(H, \mu)$, that are proved in Appendix A.

Finally § 5 is devoted to ergodicity and spectral gap for the semigroup $e^{t \tau}$. Here we generalize to the situation when (1.5) holds, some previous results due to [2], [1], and [7].

2. - Notation and preliminary results.

We are given a separable Hilbert space H, (norm $|\cdot|$, inner product $\langle\cdot, \cdot\rangle$), and a linear operator $A: D(A) \subset H \rightarrow H$. We assume

Hypothesis 2.1. - (i) A is self-adjoint and there exists $\omega>0$ such that

$$
\begin{equation*}
\langle A x, x\rangle \leqslant-\omega|x|^{2}, \quad x \in D(A) . \tag{2.1}
\end{equation*}
$$

(ii) A^{-1} is of trace-class.

There exists a complete orthonormal system $\left\{e_{k}\right\}$ in H and a sequence of positive numbers $\left\{\mu_{k}\right\}$ such that

$$
\begin{equation*}
A e_{k}=-\mu_{k} e_{k}, \quad k \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

We denote by μ the Gaussian measure on $(H, \mathscr{B}(H))\left(^{2}\right)$ with mean 0 and covariance operator $Q=-(1 / 2) A^{-1}$, and we set $\lambda_{k}=1 / 2 \mu_{k}, k \in \mathbb{N}$.
$\left.{ }^{(2}\right) ~ ß(H)$ is the σ-algebra of all Borel subsets of H.

We consider the Ornstein-Uhlenbeck semigroup $R_{t}, t \geqslant 0$, defined by

$$
\begin{equation*}
R_{t} \varphi(x)=\int_{H} \varphi(y) \mathscr{N}\left(e^{t A} x, Q_{t}\right)(d y), \quad \varphi \in L^{2}(H, \mu) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{t}=\frac{1}{2} A^{-1}\left(e^{2 t A}-1\right), \quad t \geqslant 0 \tag{2.4}
\end{equation*}
$$

One can show, see [7], that $R_{t}, t \geqslant 0$, is a strongly continuous contraction semigroup on $L^{2}(H, \mu)$, having as infinitesimal generator \mathfrak{G} the closure of the linear operator \mathfrak{G}_{0} defined as

$$
\begin{equation*}
\mathcal{Q}_{0} \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[D^{2} \varphi(x)\right]+\langle x, A D \varphi(x)\rangle, \quad \varphi \in \mathcal{E}_{A}(H), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{E}_{A}(H)=\operatorname{span}\left\{x \rightarrow e^{\langle h, x\rangle}, h \in D(A)\right\} \tag{2.6}
\end{equation*}
$$

We finally recall two identities, valid for any $\varphi, \psi \in \delta_{A}(H)$, that we shall use later, see [5] and the references therein

$$
\begin{equation*}
\int_{H} \mathfrak{A} \varphi(x) \varphi(x) \mu(d x)=-\frac{1}{2} \int_{H}|D \varphi(x)|^{2} \mu(d x), \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} \int_{H} \operatorname{Tr}\left[\left(D^{2} \varphi\right)^{2}\right] \mu(d x)+\int_{H}\left|(-A)^{1 / 2} D \varphi(x)\right|^{2} \mu(d x)=2 \int_{H}|\mathcal{Q} \varphi(x)|^{2} \mu(d x) \tag{2.8}
\end{equation*}
$$

The following result is an easy consequence of estimates (2.7) and (2.8), see [5].

Proposition 2.2. - We have
(i) $D\left((-\mathcal{Q})^{1 / 2}\right)=W^{1,2}(H, \mu)\left({ }^{3}\right)$;
(ii) $D(\mathcal{Q})=\left\{\varphi \in W^{2,2}(H, \mu):\left|(-A)^{1 / 2} D \varphi\right| \in L^{2}(H ; \mu)\right\}\left({ }^{4}\right)$.
$\left(^{3}\right) W^{1,2}(H, \mu)$ is the space of all $\varphi \in L^{2}(H ; \mu)$ such that $\sum_{k=1}^{\infty} \int_{H_{\infty}}\left|D_{k} \varphi(x)\right|^{2} \mu(d x)<$
∞, where D_{k} is the derivative in the direction e_{k}. $+\infty$, where D_{k} is the derivative in the direction e_{k}.
${ }^{\left({ }^{4}\right)} W^{2,2}(H, \mu)$ is the space of all $\varphi \in W^{1,2}(H ; \mu)$ such that $\sum_{h, k=1}^{\infty} \int_{H}\left|D_{h} D_{k} \varphi(x)\right|^{2}$.
$x)<+\infty$. $\mu(d x)<+\infty$.

Moreover, for all $\lambda>0, \varphi \in D(\mathfrak{a})$, we have, setting $f=\lambda \varphi-\mathcal{Q}$,

$$
\begin{equation*}
\|\varphi\|_{L^{2}(H, \mu)} \leqslant \frac{1}{\lambda}\|f\|_{L^{2}(H, \mu)}, \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\|D \varphi\|_{L^{2}(H, \mu)} \leqslant \sqrt{\frac{2}{\lambda}}\|f\|_{L^{2}(H, \mu)} \tag{2.10}
\end{equation*}
$$

In the following we shall write

$$
D(\mathfrak{a})=W^{2,2}(H, \mu) \cap W_{A}^{1,2}(H, \mu)
$$

where

$$
W_{A}^{1,2}(H, \mu)=\left\{\varphi \in L^{2}(H, \mu):\left|(-A)^{1 / 2} D \varphi\right| \in L^{2}(H ; \mu)\right\}
$$

3. - The case when U is regular.

We are given here a mapping $U: H \rightarrow \mathbb{R}$ such that
Hypothesis 3.1. - (i) U is nonnegative and twice Gateaux differentiable.
(ii) There exists $\kappa>0$ such that

$$
\sup _{x \in H}|D U(x)|+\sup _{x \in H}\left\|D^{2} U(x)\right\| \leqslant \kappa .
$$

We define a linear operator

$$
\begin{equation*}
\mathfrak{N}_{0} \varphi=\mathfrak{A} \varphi-\langle D U(x), D \varphi\rangle, \quad \varphi \in \mathcal{E}_{A}(H) \tag{3.1}
\end{equation*}
$$

and a measure v on $(H, \mathcal{B}(H))$, by setting

$$
v(d x)=c e^{-2 U(x)} \mu(d x)
$$

where $c=\left[\int_{H} e^{-2 U(x)} \mu(d x)\right]^{-1}$.
Our goal is to prove that \mathscr{I}_{0} is essentially self-adjoint. To do this we will prove that $\mathscr{\tau}_{0}$ is symmetric and that for some $\lambda_{0}>0$ the set

$$
\left(\lambda_{0}-\Upsilon\right)(D(গ \tau)),
$$

where \mathscr{H} is the closure of \mathscr{I}_{0}, is dense on $L^{2}(H, \mu)$. This will imply that \mathscr{N} is m-dissipative, and thus self-adjoint, see [4].

To carry out this program we need some preliminary results: an integration by parts formula, and some a-priori estimates.

Lemma 3.2. - Assume that Hypotheses 2.1, and 3.1 hold. Let $\varphi, \psi \in \delta_{A}(H)$, and let $h \in \mathbb{N}$. Then we have

$$
\begin{equation*}
\int_{H}\left[D_{h} \varphi \psi+\varphi D_{h} \psi\right] d v=\int_{H}\left(\frac{x_{h}}{\lambda_{h}}+2 D_{h} U\right) \varphi \psi d v, \tag{3.2}
\end{equation*}
$$

where $x_{h}=\left\langle x, e_{h}\right\rangle$ and D_{h} denotes the derivative in the direction e_{h}.
Proof. - We recall a well known formula, see e.g. [3], [8],

$$
\int_{H}\left[D_{h} \alpha \beta+\alpha D_{h} \beta\right] d \mu=\int_{H} \frac{x_{h}}{\lambda_{h}} \alpha \beta d \mu, \quad \alpha, \beta \in \varepsilon_{A}(H) .
$$

Using this formula we find

$$
\begin{aligned}
& \int_{H} D_{h} \varphi \psi d v=c \int_{H} D_{h} \varphi \psi e^{-2 U} d \mu= \\
&-c \int_{H} \varphi D_{h}\left(\psi e^{-2 U}\right) d \mu+\int_{H} \frac{x_{h}}{\lambda_{h}} \varphi \psi e^{-2 U} d \mu= \\
&-\int_{H} \varphi D_{h} \psi d v+2 \int_{H} \varphi \psi D_{h} U d v+\int_{H} \frac{x_{h}}{\lambda_{h}} \varphi \psi d v .
\end{aligned}
$$

Proposition 3.3. - Let $\varphi, \psi \in \delta_{A}(H)$. Then
(i) We have

$$
\begin{equation*}
\int_{H} \varkappa_{0} \varphi \psi d \nu=-\frac{1}{2} \int_{H}\langle D \varphi, D \psi\rangle d v, \tag{3.3}
\end{equation*}
$$

so that \mathscr{H}_{0} is symmetric.
(ii) We have
(3.4) $\quad \frac{1}{2} \int_{H} \operatorname{Tr}\left[\left(D^{2} \varphi\right)^{2}\right] d v+\int_{H}\left|(-A)^{1 / 2} D \varphi\right|^{2} d v+\int_{H}\left\langle D^{2} U D \varphi, D \varphi\right\rangle d v=$

$$
2 \int_{H}\left(\mathscr{\varkappa}_{0} \varphi\right)^{2} d \nu .
$$

Proof. - We first compute, following [8],

$$
\int_{H}\langle A x, D \varphi\rangle \psi d v=-\frac{1}{2} \sum_{h=1}^{\infty} \int_{H} \frac{x_{h}}{\lambda_{h}} D_{h} \varphi \psi d v .
$$

By (3.19) we have

$$
\begin{aligned}
\int_{H}\langle A x, D \varphi\rangle \psi d v= & \\
& -\frac{1}{2} \sum_{h=1}^{\infty} \int_{H}\left[D_{h}^{2} \varphi \psi+D_{h} \varphi D_{h} \psi\right] d v+\sum_{h=1}^{\infty} \int_{H} D_{h} U D_{h} \varphi \psi d v= \\
& -\frac{1}{2} \int_{H} \operatorname{Tr}\left[D^{2} \varphi\right] \psi d v-\frac{1}{2}\langle D \varphi, D \psi\rangle d v+\int_{H}\langle D U, D \varphi\rangle \psi d v .
\end{aligned}
$$

Now (3.3) follows easily. Let us prove (3.4). Set $\mathfrak{G} \varphi=f$, and

$$
\mathscr{N}_{0} \varphi=\frac{1}{2} \sum_{k=1}^{\infty} D_{k}^{2} \varphi-\sum_{k=1}^{\infty} \mu_{k} x_{k} D_{k} \varphi-\sum_{k=1}^{\infty} D_{k} U D_{k} \varphi=f .
$$

Differentiating with respect to e_{h} gives

$$
\mathscr{N}_{0} D_{h} \varphi-\mu_{h} D_{h} \varphi-\sum_{k=1}^{\infty} D_{h} D_{k} U D_{k} \varphi=D_{h} f .
$$

Multiplying both sides for $D_{h} \varphi$, integrating in H with respect to v, and taking into account (3.19), we find

$$
\begin{aligned}
& \frac{1}{2} \int_{H}\left|D D_{h} \varphi\right|^{2} d v+\int_{H} \mu_{h}\left|D_{h} \varphi\right|^{2} d v+\sum_{k=1}^{\infty} \int_{H} D_{h} D_{k} U D_{h} \varphi D_{k} \varphi d v= \\
& -\int_{H} D_{h} f D_{h} \varphi d v=\int_{H} D_{h}^{2} \varphi f d v-\int_{H} \frac{x_{h}}{\lambda_{h}} D_{h} \varphi f d v-2 \int_{H} D_{h} U D_{h} \varphi f d v,
\end{aligned}
$$

where we have used again the integration by parts formula (3.2). Summing up on h gives (3.4).

We are now able to prove the main result of this section.
Theorem 3.4. - Assume that Hypotheses 2.1 and 3.1 hold. Then the operator \mathscr{I}_{0}, defined by (3.1) is essentially self-adjoint. Denoting by \mathfrak{N} its closure we have

$$
\begin{equation*}
D\left((-গ \tau)^{1 / 2}\right)=W^{1,2}(H, v) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
D(\mathfrak{T})=\left\{\varphi \in W^{2,2}(H, v):\left|(-A)^{1 / 2} D \varphi\right| \in L^{2}(H, v)\right\} . \tag{3.6}
\end{equation*}
$$

Moreover the measure v is invariant for the semigroup $e^{t \tau \pi}$.
Proof. - We first notice that, since \mathscr{T}_{0} is symmetric by (3.3), then it is closable. Let us denote by \mathfrak{I} its closure. We now proceed in three steps.

Step 1. - We have

$$
\begin{equation*}
D(\mathfrak{A})=W^{2,2}(H, \mu) \cap W_{A}^{1,2}(H, \mu) \subset D(গ \check{\varkappa}) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re \varphi=\mathfrak{A} \varphi-\langle D U, D \varphi\rangle, \quad \varphi \in D(\mathfrak{A}) \tag{3.8}
\end{equation*}
$$

Let in fact $\varphi \in D(\mathcal{G})$. Since $\delta_{A}(H)$ is a core for \mathfrak{G} there exists a sequence $\left\{\varphi_{n}\right\} \subset \delta_{A}(H)$ such that

$$
\varphi_{n} \rightarrow \varphi, \quad \mathfrak{A} \varphi_{n} \rightarrow \mathfrak{A} \varphi \quad \text { in } \quad L^{2}(H, \mu), \quad \text { and so in } L^{2}(H, v) .
$$

Recalling the well known estimate see e.g. [5],

$$
\int_{H}|x|^{2}|D \varphi(x)|^{2} \mu(d x) \leqslant C\|\varphi\|_{W^{2,2}(H, \mu)}^{2}, \quad \varphi \in W^{2,2}(H, \mu),
$$

we see that
$\left\langle D U, D \varphi_{n}\right\rangle \rightarrow\langle D U, D \varphi\rangle \quad$ in $\quad L^{2}(H, \mu), \quad$ and so in $\quad L^{2}(H, v)$.
Consequently $\mathscr{N}_{0} \varphi_{n} \rightarrow \mathcal{A} \varphi-\langle D U, D \varphi\rangle$, and the claim is proved.
STEP 2. - There exists $\lambda_{0}>0$ such that for all $\lambda \geqslant \lambda_{0}$ and all $f \in L^{2}(H, \mu)$, the equation

$$
\begin{equation*}
\lambda \varphi-\mathfrak{\Re \varphi} \varphi=\lambda \varphi-\mathfrak{A} \varphi+\langle D U, D \varphi\rangle=f \tag{3.9}
\end{equation*}
$$

has a unique solution $\varphi \in D(\mathcal{A})$.
In fact, setting $\lambda \varphi-\mathcal{A} \varphi=\psi$, equation (3.9) is equivalent to

$$
\begin{equation*}
\psi-T \psi=f \tag{3.10}
\end{equation*}
$$

where $T \psi=\langle D U, D R(\lambda, \mathfrak{G}) \psi\rangle$. Now, taking into account (2.7), we see that

$$
\|T \psi\|_{L^{2}(H, \mu)} \leqslant \kappa \sqrt{\frac{2}{\lambda}}\|\psi\|_{L^{2}(H, \mu)}
$$

and the conclusion follows with $\lambda_{0}=8 \kappa^{2}$.

Step 3. - Conclusion.
By step 2 we have

$$
\left(\lambda_{0}-\mathscr{\tau}\right)(D(\mathscr{\tau})) \supset L^{2}(H, \mu) .
$$

Since $L^{2}(H, \mu)$ is dense in $L^{2}(H, v)$ it follows that $\mathscr{\pi}$ is m-dissipative and so self-adjoint see e.g. [4, Corollaire II.9.3]. Now it follows by approximation that identities (3.3) and (3.4) hold for any $\varphi \in D(\mathscr{\tau})$. Then (3.5) and (3.6) follow easily.

4. - The general case.

We are given a mapping $U: H \rightarrow[0,+\infty]$ such that
Hypothesis 4.1. - (i) U is convex, lower semi-continuous, not identically $+\infty$.
(ii) There exists $p>2$ such that

$$
\int_{H}|D U(x)|^{p} v(d x)<+\infty,
$$

where $D U(x)$ is the sub-differential of $U(x), \nu(d x)=c e^{-2 U(x)} \mu(d x)$, and $c=\left[\int_{H} e^{-2 U(x)} \mu(d x)\right]^{-1}$.
(iii) There exists a sequence $\left\{U_{n}\right\}$ of functions fulfilling Hypothesis 3.1 such that $U_{n}(x) \uparrow U(x)$ and

$$
\lim _{n \rightarrow \infty} \int_{H}\left|D U(x)-D U_{n}(x)\right|^{p} v(d x)=0 .
$$

We denote by v_{n} the measure $\nu_{n}(d x)=c_{n} e^{-2 U_{n}(x)} \mu(d x)$, where $c_{n}=$ $\left.{ }_{H}^{[} \int^{-2 U_{n}(x)} \mu(d x)\right]^{-1}$. We have the following continuous and dense inclusions

$$
L^{p}(H, \mu) \subset L^{p}\left(H, v_{n}\right) \subset L^{p}(H, v), \quad p>1,
$$

and, for all $\varphi \in L^{p}(H, \mu)$,

$$
\begin{equation*}
\int_{H}|\varphi|^{p} d \nu \leqslant \frac{c}{c_{n}} \int_{H}|\varphi|^{p} d v_{n} \leqslant c \int_{H}|\varphi|^{p} d \mu . \tag{4.1}
\end{equation*}
$$

We define a linear operator τ_{0} on $L^{2}(H, v)$ with domain $\delta_{A}(H)$ by setting

$$
\begin{equation*}
\mathscr{N}_{0} \varphi=\mathfrak{A} \varphi-\langle D U, D \varphi\rangle, \quad \varphi \in \delta_{A}(H) . \tag{4.2}
\end{equation*}
$$

This definition is meaningful in virtue of Hypothesis 4.1-(ii). We also set

$$
\begin{equation*}
\mathfrak{N}_{0, n} \varphi=\mathfrak{A} \varphi-\left\langle D U_{n}, D \varphi\right\rangle, \quad \varphi \in \mathcal{E}_{A}(H), \tag{4.3}
\end{equation*}
$$

and denote by \mathscr{N}_{n} the closure of $\mathscr{I}_{0, n}$ on $L^{2}\left(H, v_{n}\right)$. Clearly for any $\varphi \in \mathcal{E}_{A}(H)$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathscr{N}_{0, n} \varphi=\mathscr{N}_{0} \varphi \quad \text { in } \quad L^{2}(H, v) \tag{4.4}
\end{equation*}
$$

Proposition 4.2. - Let $\varphi, \psi \in \mathcal{E}_{A}(H)$. Then
(i) We have

$$
\int_{H} \mathscr{I}_{0} \varphi \psi d v=-\frac{1}{2} \int_{H}\langle D \varphi, D \psi\rangle d v
$$

so that \mathscr{N}_{0} is symmetric.
(ii) We have

$$
\begin{equation*}
\frac{1}{2} \int_{H} \operatorname{Tr}\left[\left(D^{2} \varphi\right)^{2}\right] d v+\int_{H}\left|(-A)^{1 / 2} D \varphi\right|^{2} d v \leqslant 2 \int_{H}\left(\mathscr{I}_{0} \varphi\right)^{2} d v \tag{4.6}
\end{equation*}
$$

Proof. - Let us prove (4.5). For any $\varphi, \psi \in \varepsilon_{A}(H)$ we have by (3.3)

$$
\int_{H} \mathfrak{N}_{0, n} \varphi \psi d v_{n}=-\frac{1}{2} \int_{H}\langle D \varphi, D \psi\rangle d v_{n}
$$

which is equivalent to

$$
c_{n} \int_{H} \mathscr{F}_{0, n} \varphi \psi e^{-2 U_{n}} d \mu=-c_{n} \frac{1}{2} \int_{H}\langle D \varphi, D \psi\rangle e^{-2 U_{n}} d \mu
$$

As $n \rightarrow \infty$, (4.5) follows.
Let us finally prove (4.6). For any $\varphi, \psi \in \delta_{A}(H)$ we have by (3.4), recalling that U_{n} is convex

$$
\frac{1}{2} \int_{H} \operatorname{Tr}\left[\left(D^{2} \varphi\right)^{2}\right] d v_{n}+\int_{H}\left|(-A)^{1 / 2} D \varphi\right|^{2} d v_{n} \leqslant 2 \int_{H}\left(\mathscr{N}_{0, n} \varphi\right)^{2} d v_{n}
$$

As $n \rightarrow \infty$, (4.6) follows.
We need now a technical lemma whose proof is given in Appendix A.

Lemma 4.3. - Let $\varphi \in \delta_{A}(H), \lambda>0, p \geqslant 2$, and $f=\lambda \varphi-\mathfrak{N}_{0} \varphi$. The following estimate holds

$$
\begin{equation*}
\|\varphi\|_{W^{1, p}\left(H, v_{n}\right)} \leqslant \frac{1}{\lambda}\|f\|_{W^{1, p}\left(H, v_{n}\right)} \tag{4.7}
\end{equation*}
$$

Now we can prove the result

Theorem 4.4. - Assume that Hypotheses 2.1 and 4.1 hold. Then the operator \mathfrak{N}_{0}, defined by (4.3) is essentially self-adjoint. Denoting by \mathfrak{I} its closure we have

$$
\begin{equation*}
D\left((-গ \tau)^{1 / 2}\right)=W^{1,2}(H, v) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
D(\mathscr{T}) \subset\left\{\varphi \in W^{2,2}(H, v):\left|(-A)^{1 / 2} D \varphi\right| \in L^{2}(H, v)\right\} . \tag{4.9}
\end{equation*}
$$

Moreover the measure v is invariant for the semigroup $e^{t \tau \pi}$.
Proof. - We set $q=2 p /(p-2)$. By proceding as in the proof of Step 1 of Theorem 3.4 we see that $W^{1, q}(H, \mu) \subset D(\mathscr{T})$. Now let $f \in W^{1, q}(H, \mu)$. Then for any $n \in \mathbb{N}$ there exists $\varphi_{n} \in D\left(\mathscr{N}_{n}\right)$ such that

$$
\begin{equation*}
\lambda \varphi_{n}-\mathcal{A} \varphi_{n}+\left\langle D U_{n}, D \varphi_{n}\right\rangle=f \tag{4.10}
\end{equation*}
$$

Moreover, by Lemma 4.3 we have

$$
\left\|\varphi_{n}\right\|_{W^{1, q}\left(H, v_{n}\right)} \leqslant \frac{c^{1 / q}}{\lambda}\|f\|_{W^{1, q}\left(H, v_{n}\right)} .
$$

It follows

$$
\begin{aligned}
&\left\|\varphi_{n}\right\|_{W^{1, q}(H, v)} \leqslant\left(\frac{c}{c_{n}}\right)^{1 / q}\left\|\varphi_{n}\right\|_{W^{1, q}\left(H, v_{n}\right)} \leqslant \\
& \frac{1}{\lambda}\left(\frac{c}{c_{n}}\right)^{1 / q}\|f\|_{W^{1, q}\left(H, v_{n}\right)} \leqslant \frac{1}{\lambda} c^{1 / q}\|f\|_{W^{1, q}(H, v)}
\end{aligned}
$$

Thus we have proved that

$$
\begin{equation*}
\left\|\varphi_{n}\right\|_{W^{1, q}(H, v)} \leqslant \frac{c^{1 / q}}{\lambda}\|f\|_{W^{1, q}(H, \mu)} \tag{4.11}
\end{equation*}
$$

Now we can conclude the proof. We have

$$
\begin{equation*}
\lambda \varphi_{n}-\mathfrak{N}_{0} \varphi_{n}=f+\left\langle D U-D U_{n}, D \varphi_{n}\right\rangle \tag{4.12}
\end{equation*}
$$

But

$$
\begin{aligned}
& \int_{H}\left|\left\langle D U-D U_{n}, D \varphi_{n}\right\rangle\right|^{2} d v \leqslant \int_{H}\left|D U-D U_{n}\right|^{2}\left|D \varphi_{n}\right|^{2} d v \leqslant \\
&\left(\int_{H}\left|D U-D U_{n}\right|^{p} d v\right)^{2 / p}\left(\int_{H}\left|D \varphi_{n}\right|^{q} d v\right)^{2 / q} \leqslant \\
& \frac{1}{\lambda} c^{1 / p}\left(\int_{H}\left|D U-D U_{n}\right|^{p} d v\right)^{2 p}\|f\|_{W^{1, q}(H, \mu)}
\end{aligned}
$$

Consequently

$$
\lim _{n \rightarrow \infty}\left\langle D U-D U_{n}, D \varphi_{n}\right\rangle=0 \quad \text { in } L^{2}(H, v)
$$

and so $(\lambda-\vartheta \tau)(D(\vartheta \tau))$ contains the closure on $L^{2}(H, v)$ of $W^{1, q}(H, \mu)$. Since $W^{1, q}(H, \mu)$ is dense on $L^{2}(H, v)$. As in the proof of Theorem 3.4 this implies that \mathscr{T} is self-adjoint.

Remark 4.5. - If $D^{2} U(x)$ exists for v almost $x \in H$ and it is Borel, then we have the following characterization of $D(\Im \tau)$:
(4.13) $\quad D(\Re)=$

$$
\left\{\varphi \in W^{2,2}(H, v):\left|(-A)^{1 / 2} D \varphi\right| \in L^{2}(H, v),\left\langle D^{2} U D \varphi, D \varphi\right\rangle \in L^{1}(H, v)\right\}
$$

Example 4.6. - Let $H=L^{2}(0, \pi), A x=D_{\xi}^{2} x, x \in D(A)=H^{2}(0, \pi) \cap$ $H_{0}^{1}(0, \pi)$. Set moreover

$$
e_{k}(\xi)=\sqrt{\frac{2}{\pi}} \sin k \xi, \quad f_{k}(\xi)=\sqrt{\frac{2}{\pi}} \cos k \xi, \quad k \in \mathbb{N},
$$

and denote by T the isometry on H :

$$
T\left(\sum_{k=1}^{\infty} x_{k} e_{k}\right)=\left(\sum_{k=1}^{\infty} x_{k} f_{k}\right), \quad x \in H, \quad x_{k}=\left\langle x, e_{k}\right\rangle
$$

Let moreover Q be the trace class operator on H such that $Q e_{k}=\left(1 / 2 k^{2}\right) e_{k}$, $k \in \mathbb{N}$, and let $\mu=\mathfrak{\tau}(0, Q)$.

Let finally

$$
U(x)= \begin{cases}\frac{1}{4}\left\langle x^{4}, 1\right\rangle & \text { if } x \in L^{4}(0, \pi) \\ +\infty & \text { if } x \notin L^{4}(0, \pi)\end{cases}
$$

Then we have

$$
D U(x)=-x^{3} \quad \text { if } x \in L^{6}(0, \pi) .
$$

It is easy to check that for all $x \in H$,

$$
x(\xi)=\left\langle Q^{-1 / 2} x, T^{*} \chi_{[0, \xi]}\right\rangle, \quad \xi \in[0, \pi] .
$$

For any $m \geqslant 1$ there exists a constant $C_{m}>0$ such that

$$
\begin{aligned}
& \int_{H}|D U(x)|^{2 m} \mu(d x)=\int_{H}\left(\int_{0}^{\pi}|x(\xi)|^{6 m} d \xi\right) \mu(d x)= \\
& =\int_{0}^{\pi}\left[\int_{H}\left|\left\langle Q^{-1 / 2} x, T^{*} \chi_{[0, \xi]}\right\rangle\right|^{6 m} \mu(d x)\right] d \xi=C_{m} \int_{0}^{\pi}\left|T^{*} \chi_{[0, \xi]}\right|_{H}^{6 m} d \xi=C_{m} \int_{0}^{\pi} \xi^{3 m} d \xi .
\end{aligned}
$$

Thus all assumptions of Theorem 4.4 are fulfilled.

5. - Ergodicity and spectral gap.

We set $P_{t} \varphi=e^{t \tau} \varphi$, for all $\varphi \in L^{2}(H, v)$, where \mathscr{T} is the self-adjoint operator defined in Theorem 4.4. We first prove that v is ergodic and strongly mixing.

For this we need a lemma.
Lemma 5.1. - For any $\varphi \in W^{1,2}(H, v)$ we have

$$
\begin{equation*}
\left.\left\|D P_{t} \varphi\right\|_{L^{2}(H, v)}^{2} \leqslant e^{-2 \omega t}\|D \varphi\|_{L^{2}(H, v)}^{2}{ }^{5}\right) . \tag{5.1}
\end{equation*}
$$

$\left.{ }^{(5}\right)$ Recall that $\langle A x, x\rangle \leqslant-\omega|x|^{2}, x \in D(A)$.

Proof. - It is enough to show (5.1) for all $\varphi \in \mathcal{E}_{A}(H)$. In this case we have

$$
\frac{d}{d t} D_{h} u(t, x)=9 \tau D_{h} u(t, x)-\mu_{h} D_{h} u(t, x)+\sum_{k=1}^{\infty} D_{h} D_{k} U D_{h} u(t, x)
$$

from which

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{H}\left|D_{h} u(t, x)\right|^{2} d v=-\frac{1}{2} \int_{H}\left|D D_{h} u(t, x)\right|^{2} d v- \\
&-\mu_{h} \int_{H}\left|D_{h} u(t, x)\right|^{2} d v+\sum_{k=1}^{\infty} \int_{H} D_{h} D_{k} U(x) D_{k} u(t, x) d v
\end{aligned}
$$

Summing up on h it follows

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{H}|D u(t, x)|^{2} d v+ & \frac{1}{2} \int_{H} \operatorname{Tr}\left[\left(D^{2} u(t, x)\right)^{2}\right] d v \leqslant \\
& -\omega \int_{H}|D u(t, x)|^{2} d v+\int_{H}\left\langle D^{2} U(x) u(t, x), u(t, x)\right\rangle d v
\end{aligned}
$$

and the conclusion follows.
Theorem 5.2. - Assume that Hypotheses 2.1 and 4.1 hold. Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{t} \varphi(x)=\int_{H} \varphi(y) v(d y) \tag{5.2}
\end{equation*}
$$

Proof. - It is enough to prove (5.2) for $\varphi \in \delta_{A}(H)$. In this case, setting $u(t, x)=P_{t} \varphi(x)$ we have

$$
\begin{equation*}
u(t, x)=e^{t \mathfrak{a}} \varphi(x)-\int_{H} e^{(t-s) \mathfrak{a}}\langle D U(x), D u(s, x)\rangle d s \tag{5.3}
\end{equation*}
$$

In virtue of (5.1) we can pass to the limit as $t \rightarrow+\infty$ in (5.3). Recalling that

$$
\lim _{t \rightarrow \infty} e^{t a} \varphi(x)=\int_{H} \varphi(y) \mu(d y)
$$

we find

$$
\lim _{t \rightarrow \infty} u(t, x)=\int_{H} \varphi(y) \mu(d y)-\int_{0}^{+\infty} d s \int_{H}\langle D U(x), D u(s, y)\rangle \mu(d y) .
$$

Now the conclusion follows from the Von Neumann ergodic theorem.
To prove spectral gap we need a Poincaré inequality.
Proposition 5.3. - For any $\varphi \in W^{1,2}(H, v)$ we have

$$
\begin{equation*}
\int_{H}|\varphi-\bar{\varphi}|^{2} d \nu \leqslant \frac{1}{2 \omega} \int_{H}|D \varphi|^{2} d v, \tag{5.4}
\end{equation*}
$$

where

$$
\bar{\varphi}=\int_{H} \varphi(y) v(d y) .
$$

Proof. - It is enough to prove (5.2) for $\varphi \in \delta_{A}(H)$. In this case we have

$$
\frac{1}{2} \frac{d}{d t} \int_{H}\left|P_{t} \varphi\right|^{2} d v=\int_{H} \Re P_{t} \varphi P_{t} \varphi d v=-\frac{1}{2} \int_{H}\left|D P_{t} \varphi\right|^{2} d \nu .
$$

By Lemma 5.1 it follows

$$
\frac{1}{2} \frac{d}{d t} \int_{H}\left|P_{t} \varphi\right|^{2} d v \geqslant-\frac{1}{2} e^{-2 \omega t} \int_{H}|D \varphi|^{2} d \nu .
$$

Integrating in t we have

$$
\int_{H}\left|P_{t} \varphi\right|^{2} d v \geqslant \int_{H} \varphi^{2} d v-\frac{1}{2 \omega}\left(1-e^{-2 \omega t}\right) \int_{H}|D \varphi|^{2} d v .
$$

Letting n tend to ∞ it follows by Theorem 5.3

$$
(\bar{\varphi})^{2} \geqslant \int_{H} \varphi^{2} d v-\frac{1}{2 \omega} \int_{H}|D \varphi|^{2} d v,
$$

that it is equivalent to (5.4).
We can now prove the result
Theorem 5.4. - Assume that Hypotheses 2.1 and 4.1 hold. Then we have

$$
\begin{equation*}
\int_{H}\left|P_{t} \varphi(x)-\bar{\varphi}\right|^{2} d \nu \leqslant C e^{-2 \omega t} \int_{H}|\varphi|^{2} d \nu . \tag{5.5}
\end{equation*}
$$

Proof. - By (5.4) it follows

$$
\int_{H}\left|P_{t} \varphi-\bar{\varphi}\right|^{2} d v \leqslant \frac{1}{2 \omega} \int_{H}\left|D P_{t} \varphi\right|^{2} d v
$$

Moreover by (5.1) we have

$$
\int_{H}\left|P_{t} \varphi-\bar{\varphi}\right|^{2} d v \leqslant \frac{e^{-2 \omega t}}{2 \omega} \int_{H}|D \varphi|^{2} d v
$$

Thus for any $\varepsilon>0$ it follows

$$
\int_{H}\left|P_{t+\varepsilon} \varphi-\bar{\varphi}\right|^{2} d v \leqslant \frac{e^{-2 \omega t}}{2 \omega} \int_{H}\left|D P_{\varepsilon} \varphi\right|^{2} d v \leqslant \frac{e^{-2 \omega t}}{\varepsilon \omega e_{H}} \int_{H}|D \varphi|^{2} d v
$$

since

$$
\int_{H}\left|D P_{\varepsilon} \varphi\right|^{2} d v=2 \int_{H}\left|(-গ \tau)^{1 / 2} P_{\varepsilon} \varphi\right|^{2} d v \leqslant \frac{2}{\varepsilon e} \int_{H}|D \varphi|^{2} d v
$$

The conclusion follows.

A. $-L^{p}$ estimates.

We assume here that Hypotheses 2.1 and 3.1 hold, and consider the equation

$$
\begin{equation*}
\lambda \varphi-\mathfrak{\tau} \varphi=\lambda \varphi-\mathfrak{a} \varphi+\langle D U, D \varphi\rangle=f \tag{A.1}
\end{equation*}
$$

where $\mathfrak{\tau}$ is defined by (3.1), $\lambda>0$, and $f \in L^{2}(H, v)$.
Proposition A.1. - For all $\varphi \in \delta_{A}(H)$ and $p \geqslant 2$, the following identity holds.
(A.2)

$$
\lambda \int_{H}|\varphi|^{p} d v+\frac{p-1}{2} \int_{H}|D \varphi|^{2}|\varphi|^{p-2} d v=\int_{H} f|\varphi|^{p-2} \varphi d v .
$$

Moreover

$$
\begin{equation*}
\|\varphi\|_{L^{p}(H, v)} \leqslant \frac{1}{\lambda}\|f\|_{L^{p}(H, v)} . \tag{A.3}
\end{equation*}
$$

Proof. - We have

$$
\begin{aligned}
& \int_{H}\langle A x, D \varphi\rangle|\varphi|^{p-2} \varphi d v=-\frac{1}{2} \sum_{h=1}^{\infty} \int_{H} \frac{x_{h}}{\lambda_{h}} D_{h} \varphi|\varphi|^{p-2} \varphi d v= \\
& \quad-\frac{1}{2} \sum_{h=1}^{\infty} \int_{H} D_{h}^{2} \varphi|\varphi|^{p-2} d v-\frac{p-1}{2} \sum_{h=1}^{\infty} \int_{H}\left|D_{h} \varphi\right|^{2}|\varphi|^{p-2} d v+ \\
& \sum_{h=1}^{\infty} \int_{H} D_{h} U D_{h} \varphi|\varphi|^{p-2} \varphi d v= \\
& \quad-\frac{1}{2} \int_{H} \operatorname{Tr}\left[D^{2} \varphi\right]|\varphi|^{p-2} \varphi d v-\frac{p-1}{2} \int_{H}|D \varphi|^{2}|\varphi|^{p-2} d v+ \\
& \int_{H}\langle D U, D \varphi\rangle|\varphi|^{p-2} \varphi d v .
\end{aligned}
$$

Now the conclusion follows easily.
Lemma A.2. - Let $\varphi, \psi_{1}, \ldots, \psi_{n} \in \mathcal{E}_{A}(H)$. Then we have
(A.4)

$$
\begin{aligned}
\int_{H} & \mathscr{\tau} \varphi \psi_{1}^{2}, \ldots, \psi_{n}^{2} d v
\end{aligned}=-\frac{1}{2} \int_{H}|D \varphi|^{2} \psi_{1}^{2}, \ldots, \psi_{n}^{2} d v-\quad .
$$

Proof. - We have

$$
\begin{aligned}
& \int_{H}\langle A x, D \varphi\rangle \varphi \psi_{1}^{2}, \ldots, \psi_{n}^{2} d v=-\frac{1}{2} \sum_{h=1}^{\infty} \int_{H} \frac{x_{h}}{\lambda_{h}} D_{h} \varphi \varphi \psi_{1}^{2}, \ldots, \psi_{n}^{2} d v- \\
& \frac{1}{2} \sum_{h=1}^{n} \int_{H} D_{h}^{2} \varphi \varphi \psi_{1}^{2}, \ldots, \psi_{k-1}^{2} \psi_{k}^{2}, \ldots, \psi_{n}^{2} d v- \\
& \frac{1}{2} \sum_{h=1}^{\infty} \int_{H}\left|D_{h} \varphi\right|^{2} \varphi \psi_{1}^{2}, \ldots, \psi_{k-1}^{2} \psi_{k}^{2}, \ldots, \psi_{n}^{2} d v- \\
& \sum_{h=1}^{\infty} \sum_{k=1}^{n} \int_{H} D_{h} \varphi \varphi D_{h} \psi_{k} \psi_{k} \psi_{1}^{2}, \ldots, \psi_{k-1}^{2} \psi_{k}^{2}, \ldots, \psi_{n}^{2} d v+ \\
& \sum_{h=1}^{\infty} \int_{H} D_{h} U D_{h} \varphi \varphi \psi_{1}^{2}, \ldots, \psi_{n}^{2} d v .
\end{aligned}
$$

Proposition A.3. $-\operatorname{Let} \varphi \in \mathcal{E}_{A}(H), \lambda>0, \lambda \varphi-গ \tau \varphi=f$. Then the following identity holds
(A.5) $\quad \lambda \int_{H}|D \varphi|^{2 m} d v+\frac{1}{2} \int_{H} \operatorname{Tr}\left[\left(D^{2} \varphi\right)^{2}\right]|D \varphi|^{2 m-2} d v+$

$$
\begin{aligned}
& (m-1) \int_{H}\left\langle\left(D^{2} \varphi\right)^{2} D \varphi, D \varphi\right\rangle|D \varphi|^{2 m-1} d v+\int_{H}\left|(-A)^{1 / 2} D \varphi\right|^{2}|D \varphi|^{2 m-2} d v+ \\
& \left.\int_{H}\left|\left\langle D^{2} U D \varphi, D \varphi\right\rangle\right| D \varphi\right|^{2 m-2} d v=\int_{H}\langle D \varphi, D \psi\rangle|D \varphi|^{2 m-2} d v
\end{aligned}
$$

Moreover

$$
\begin{equation*}
\|D \varphi\|_{L^{p}(H, \mu)} \leqslant \frac{1}{\lambda}\|D f\|_{L^{p}(H, \mu)} \tag{A.6}
\end{equation*}
$$

Proof. - For any $h \in \mathbb{N}$ we have

$$
\lambda D_{h} \varphi-\Upsilon \tau D_{h} \varphi+\mu_{h} D_{h} \varphi+\sum_{k=1}^{\infty} D_{h} D_{k} U D_{k} \varphi=D_{h} \varphi
$$

Multiplying both sides for

$$
D_{h} \varphi\left(D_{\alpha_{1}} \varphi\right)^{2} \ldots\left(D_{\alpha_{m-1}} \varphi\right)^{2}
$$

and using Lemma A. 2 we obtain

$$
\begin{aligned}
& \lambda \int_{H}\left|D_{h} \varphi\right|^{2}\left|D_{\alpha_{1}} \varphi\right|^{2} \ldots\left|D_{\alpha_{m-1}} \varphi\right|^{2} d v+\frac{1}{2} \int_{H}\left|D D_{h} \varphi\right|^{2}\left|D_{\alpha_{1}} \varphi\right|^{2} \ldots\left|D_{\alpha_{m-1}} \varphi\right|^{2} d v+ \\
& \sum_{j=1}^{m-1} \int_{H}\left\langle D D_{h} \varphi, D D_{\alpha_{j}} \varphi\right\rangle D_{h} \varphi D_{\alpha_{j}} \varphi\left(D_{\alpha_{1}} \varphi\right)^{2} \ldots\left(D_{\alpha_{j-1}} \varphi\right)^{2}\left(D_{\alpha_{j+1}} \varphi\right)^{2} \ldots\left(D_{\alpha_{m-1}} \varphi\right)^{2} d v+ \\
& \mu_{h} \int_{H}\left|D_{h} \varphi\right|^{2}\left|D_{\alpha_{1}} \varphi\right|^{2} \ldots\left|D_{\alpha_{m-1}} \varphi\right|^{2} d v+ \\
& \sum_{k=1}^{m-1} \int_{H} D_{h} D_{k} U D_{k} \varphi D_{h} \varphi\left|D_{\alpha_{1}} \varphi\right|^{2} \ldots\left|D_{\alpha_{m-1}} \varphi\right|^{2} d v= \\
& \int_{H} D_{h} f D_{h} \varphi\left|D_{\alpha_{1}} \varphi\right|^{2} \ldots\left|D_{\alpha_{m-1}} \varphi\right|^{2} d v .
\end{aligned}
$$

Now identity (A.4) follows summing up on $h, \alpha_{1}, \ldots, \alpha_{m-1}$. Finally (A.5) follows from the Hölder estimate.

REFERENCES

[1] S. Albeverio - V. I. Bogachev - M. Röckner, Dirichlet operators via stochastic analysis, J. Functional Analysis, 128, n. 1 (1995), 102-138.
[2] D. Bakry - M. Emery, Diffusions hypercontractives, Séminaire de Probabilitées XIX, Lecture Notes in Math. 1123 (1985), 177-206.
[3] V. I. Bogachev - M. Röckner M. - B. Schmuland B., Generalized Mehler semigroups and applications, Probability and Related Fields, 114 (1996) 193-225.
[4] G. Da Prato, Applications croissantes et équations d'évolutions dans les espaces de Banach, Academic Press, 1976.
[5] G. Da Prato, Regularity results for Kolmogorov equations on $L^{2}(H, \mu)$ spaces and applications, Ukr. Mat. J., 49, n. 3 (1997), 448-457.
[6] G. Da Prato, Characterization of the domain of an elliptic operator of infinitely many variables in $L^{2}(\mu)$ spaces, Rend. Mat. Acc. Lincei, s. 9, 8 (1997), 101105.
[7] G. Da Prato - J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, 1996.
[8] M. Fuhrman, Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces, Studia Mathematica, 115 (1995), 53-71.
[9] Z. M. Ma - Rockner M., Introduction to the Theory of (Non Symmetric) Dirichlet Forms, Springer-Verlag, 1992.

Giuseppe da Prato: Scuola Normale Superiore di Pisa, Pisa, Italy

Pervenuta in Redazione

il 7 gennaio 1998

