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The Ornstein-Uhlenbeck Generator Perturbed
by the Gradient of a Potential.

GIUSEPPE DA PRATO (1)

Sunto. – Si considera, in uno spazio di Hilbert H l’operatore lineare N0 W4
1/2 Tr [D 2 W]1 ax , ADWb2 aDU(x), DWb, dove A è un operatore negative autoag-
giiunto e U è un potenziale che soddisfa a opportune condizioni di integrabilità. Si
dimostra con un metodo analitico che N0 è essenzialmente autoaggiunto in uno
spazio L 2 (H , n) e si caratterizza il dominio della sua chiusura N come sottospazio
di W 2, 2 (H , n). Si studia inoltre la «spectral gap property» del semigruppo genera-
to da N.

1. – Introduction and setting of the problem.

Let H be a separable Hilbert space, A : D(A) %HKH a self-adjoint nega-
tive operator such that A 21 is of trace class. We denote by m the Gaussian mea-
sure of mean 0 and covariance operator Q42(1O2) A 21 . We are concerned
with the following linear operator on L 2 (H , m):

N0 W(x) 4
1

2
Tr [D 2 W]1 ax , ADWb2 aDU(x), DWb , W� EA (H) ,(1.1)

where U is a nonlinear real function in H , and EA (H) is the linear subspace of
L 2 (H , m) spanned by all exponential functions

c h (x) 4e ah , xb , x�H ,

where h�D(A). Notice that EA (H) is dense in L 2 (H , m).
The goal of this paper is to show that, under suitable assumptions, N0 is es-

sentially self-adjoint on the space L 2 (H , n), where n is the probability
measure

n(dx) 4ce 22U(x) m(dx), c4 ks
H

e 22U(x) m(dx)l21

.

This problem has a long story, see the recent paper [1] and the references
therein for an approach based on the theory of Dirichlet forms. Another ap-

(1) Partially supported by the Italian National Project MURST, Equazioni di Evolu-
zione e Applicazioni Fisico-Matematiche.
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proach consists in solving the differential stochastic equation

dX4 (AX2DU(X) ) dt1dW(t), X(0) 4x ,

where W is a cylindrical Wiener process on H , see e.g. [7], and then by identi-
fying the closure N of N0 with the infinitesimal generator of the transition
semigroup

Pt W(x) 4E[W(X(t , x))], W�L 2 (H , n) .

In this paper we follow a purely analytic approach, different of that based on
Dirichlet forms. The advantage is that we require weaker assumptions on U
and that we are able to characterize the domain of N as a subspace of the
Sobolev space W 2, 2 (H , n) instead of W 1, 2 (H , n), as in the case of Dirichlet
forms. Moreover we believe that similar ideas could be applied to more gener-
al situations when N0 is not symmetric.

Let us briefly explain our method. We first consider the linear opera-
tor

A0 W(x) 4
1

2
Tr [D 2 W]1 ax , ADWb , W� EA (H) .(1.2)

It well known see e.g. [7], that A0 is essentially self-adjoint. Moreover the
domain of the closure A of A0 is given by, see [5] and § 2 below,

D(A) 4 ]W�W 2, 2 (H , m): N(2A)1/2 DWN�L 2 (H ; m)( .(1.3)

We first study the operator N0 under the assumption that U is of class C 2

and DU and D 2 U are bounded, see § 3. In this case we prove that N0 is sym-
metric on L 2 (H , n) and the following identity holds for any W� EA (H),

(1.4)
1

2
s

H

Tr [ (D 2 W)2 ] dn1s
H

N(2A)1/2 DWN2 dn1s
H

aD 2 U DW , DWb dn4

2 s
H

(N0 W)2 dn .

Finally, denoting by N the closure of N0 , we show, by a simple perturbation
argument that for l 0 sufficiently large we have

(l 0 2 N) (D(N) )&L 2 (H , m) .
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Since L 2 (H , m) is dense on L 2 (H , n), it follows that N is m-dissipative see
e.g. [4, Corollaire II.9.3], and so it is self-adjoint.

In § 4 we consider a more general case when

s
H

NDU(x)Np n(dx) E1Q .(1.5)

This condition is similar to assumptions (5) and (6) in [1], that however are re-
quired to hold for all p . Under this assumption we can again show that N0 is
symmetric, that an estimate similar to identity (1.4) holds and that for all lD

0, (l2 N) (D(N) ) contains the closure on L 2 (H , n) of W 1, 2p/(p22) (H , m), that
is dense in L 2 (H , n). This implies, by the previous argument, that N is self-ad-
joint on L 2 (H , n). In order to prove the above inclusion we need some a-priori
estimates on W 1, 2p/(p22) (H , m), that are proved in Appendix A.

Finally § 5 is devoted to ergodicity and spectral gap for the semigroup e tN .
Here we generalize to the situation when (1.5) holds, some previous results
due to [2], [1], and [7].

2. – Notation and preliminary results.

We are given a separable Hilbert space H , (norm N QN , inner product aQ , Qb),
and a linear operator A : D(A) %HKH . We assume

HYPOTHESIS 2.1. – (i) A is self-adjoint and there exists vD0 such
that

aAx , xb G2 vNxN2 , x�D(A) .(2.1)

(ii) A 21 is of trace-class.

There exists a complete orthonormal system ]ek ( in H and a sequence of
positive numbers ]m k ( such that

Aek 42 m k ek , k�N .(2.2)

We denote by m the Gaussian measure on (H , B(H) ) (2) with mean 0 and
covariance operator Q42 (1O2) A 21 , and we set l k 41O2m k , k�N .

(2) B(H) is the s-algebra of all Borel subsets of H .
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We consider the Ornstein-Uhlenbeck semigroup Rt , tF0, defined by

Rt W(x) 4s
H

W(y) N(e tA x , Qt )(dy) , W�L 2 (H , m) ,(2.3)

where

Qt 4
1

2
A 21 (e 2 tA 21) , tF0 .(2.4)

One can show, see [7], that Rt , tF0, is a strongly continuous contraction
semigroup on L 2 (H , m), having as infinitesimal generator A the closure of the
linear operator A0 defined as

A0 W(x) 4
1

2
Tr [D 2 W(x) ]1 ax , ADW(x)b , W� EA (H) ,(2.5)

where

EA (H) 4span ]xKe ah , xb , h�D(A)( .(2.6)

We finally recall two identities, valid for any W , c� EA (H), that we shall
use later, see [5] and the references therein

s
H

AW(x) W(x) m(dx) 42
1

2
s

H

NDW(x)N2 m(dx) ,(2.7)

1

2
s

H

Tr [ (D 2 W)2 ] m(dx)1s
H

N(2A)1/2 DW(x)N2 m(dx)42 s
H

NAW(x)N2 m(dx) .(2.8)

The following result is an easy consequence of estimates (2.7) and (2.8),
see [5].

PROPOSITION 2.2. – We have

(i) D((2A)1/2 )4W 1, 2 (H , m) (3);

(ii) D(A) 4 ]W�W 2, 2 (H , m): N(2A)1/2 DWN�L 2 (H ; m)( (4).

(3) W 1, 2 (H , m) is the space of all W�L 2 (H ; m) such that !
k41

Q

s
H

NDk W(x)N2 m(dx) E
1Q , where Dk is the derivative in the direction ek .

(4) W 2, 2 (H , m) is the space of all W�W 1, 2 (H ; m) such that !
h , k41

Q

s
H

NDh Dk W(x)N2 Q
m(dx) E1Q .
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Moreover, for all lD0, W�D(A), we have, setting f4lW2 A ,

VWVL 2 (H , m) G
1

l
V f VL 2 (H , m) ,(2.9)

VDWVL 2 (H , m) Go 2

l
V f VL 2 (H , m) ,(2.10)

VTr [ (D 2 W)2 ]VL 1 (H , m) G4V f VL 2 (H , m) ,(2.11)

V(2A)1/2 DWVL 2 (H , m) G2V f VL 2 (H , m) .(2.12)

In the following we shall write

D(A) 4W 2, 2 (H , m)OW 1, 2
A (H , m) ,

where

WA
1, 2 (H , m) 4 ]W�L 2 (H , m): N(2A)1/2 DWN�L 2 (H ; m)( .

3. – The case when U is regular.

We are given here a mapping U : HKR such that

HYPOTHESIS 3.1. – (i) U is nonnegative and twice Gateaux differen-
tiable.

(ii) There exists kD0 such that

sup
x�H

NDU(x)N1sup
x�H

VD 2 U(x)VGk .

We define a linear operator

N0 W4 AW2 aDU(x), DWb , W� EA (H) ,(3.1)

and a measure n on (H , B(H) ) , by setting

n(dx) 4ce 22U(x) m(dx) ,

where c4 k s
H

e 22U(x) m(dx)l21
.

Our goal is to prove that N0 is essentially self-adjoint. To do this we will
prove that N0 is symmetric and that for some l 0 D0 the set

(l 0 2 N) (D(N) ) ,

where N is the closure of N0 , is dense on L 2 (H , m). This will imply that N is
m-dissipative, and thus self-adjoint, see [4].
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To carry out this program we need some preliminary results: an integra-
tion by parts formula, and some a-priori estimates.

LEMMA 3.2. – Assume that Hypotheses 2.1, and 3.1 hold. Let W , c� EA (H),
and let h�N . Then we have

s
H

[Dh Wc1W Dh c] dn4s
H

g xh

l h

12Dh Uh Wc dn ,(3.2)

where xh 4 ax , eh b and Dh denotes the derivative in the direction eh .

PROOF. – We recall a well known formula, see e.g. [3], [8],

s
H

[Dh ab1aDh b] dm4s
H

xh

l h

ab dm , a , b� EA (H) .

Using this formula we find

s
H

Dh Wc dn4cs
H

Dh Wc e 22U dm4

2cs
H

W Dh (ce 22U ) dm1s
H

xh

l h

Wc e 22U dm4

2s
H

W Dh c dn12 s
H

Wc Dh U dn1s
H

xh

l h

Wc dn . r

PROPOSITION 3.3. – Let W , c� EA (H). Then

(i) We have

s
H

N0 Wc dn42
1

2
s

H

aDW , Dcb dn ,(3.3)

so that N0 is symmetric.

(ii) We have

(3.4)
1

2
s

H

Tr [ (D 2 W)2 ] dn1s
H

N(2A)1/2 DWN2 dn1s
H

aD 2 U DW , DWb dn4

2 s
H

(N0 W)2 dn .
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PROOF. – We first compute, following [8],

s
H

aAx , DWb c dn42
1

2
!
h41

Q

s
H

xh

l h

Dh Wc dn .

By (3.19) we have

s
H

aAx , DWb c dn4

2
1

2
!
h41

Q

s
H

[D 2
h Wc1Dh W Dh c] dn1 !

h41

Q

s
H

Dh U Dh Wc dn4

2
1

2
s

H

Tr [D 2 W] c dn2
1

2
aDW , Dcb dn1s

H

aDU , DWb c dn .

Now (3.3) follows easily. Let us prove (3.4). Set AW4 f, and

N0 W4
1

2
!
k41

Q

D 2
k W2 !

k41

Q

m k xk Dk W2 !
k41

Q

Dk U Dk W4 f .

Differentiating with respect to eh gives

N0 Dh W2m h Dh W2 !
k41

Q

Dh Dk UDk W4Dh f .

Multiplying both sides for Dh W , integrating in H with respect to n , and taking
into account (3.19), we find

1

2
s

H

NDDh WN2 dn1s
H

m h NDh WN2 dn1 !
k41

Q

s
H

Dh Dk U Dh W Dk W dn4

2s
H

Dh f Dh W dn4s
H

D 2
h Wf dn2s

H

xh

l h

Dh Wf dn22 s
H

Dh U Dh Wf dn ,

where we have used again the integration by parts formula (3.2). Summing up
on h gives (3.4). r

We are now able to prove the main result of this section.

THEOREM 3.4. – Assume that Hypotheses 2.1 and 3.1 hold. Then the opera-
tor N0 , defined by (3.1) is essentially self-adjoint. Denoting by N its closure
we have

D((2N)1/2 )4W 1, 2 (H , n) ,(3.5)
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and

D(N) 4 ]W�W 2, 2 (H , n): N(2A)1/2 DWN�L 2 (H , n)( .(3.6)

Moreover the measure n is invariant for the semigroup e tN .

PROOF. – We first notice that, since N0 is symmetric by (3.3), then it is clos-
able. Let us denote by N its closure. We now proceed in three steps.

STEP 1. – We have

D(A) 4W 2, 2 (H , m)OW 1, 2
A (H , m) %D(N) ,(3.7)

and

NW4 AW2 aDU , DWb , W�D(A) .(3.8)

Let in fact W�D(A). Since EA (H) is a core for A there exists a sequence
]W n ( % EA (H) such that

W n KW , AW n K AW in L 2 (H , m), and so in L 2 (H , n) .

Recalling the well known estimate see e.g. [5],

s
H

NxN2 NDW(x)N2 m(dx) GCVWV

2
W 2, 2 (H , m) , W�W 2, 2 (H , m) ,

we see that

aDU , DW n b K aDU , DWb in L 2 (H , m) , and so in L 2 (H , n) .

Consequently N0 W n K AW2 aDU , DWb, and the claim is proved.

STEP 2. – There exists l 0 D0 such that for all lFl 0 and all f�L 2 (H , m),
the equation

lW2 NW4lW2 AW1 aDU , DWb 4 f ,(3.9)

has a unique solution W�D(A).
In fact, setting lW2 AW4c , equation (3.9) is equivalent to

c2Tc4 f ,(3.10)

where Tc4 aDU , DR(l , A) cb. Now, taking into account (2.7), we see
that

VTcVL 2 (H , m) Gko 2

l
VcVL 2 (H , m) ,

and the conclusion follows with l 0 48k 2 .
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STEP 3. – Conclusion.
By step 2 we have

(l 0 2 N) (D(N) )&L 2 (H , m) .

Since L 2 (H , m) is dense in L 2 (H , n) it follows that N is m-dissipative and so
self-adjoint see e.g. [4, Corollaire II.9.3]. Now it follows by approximation that
identities (3.3) and (3.4) hold for any W�D(N). Then (3.5) and (3.6) follow
easily. r

4. – The general case.

We are given a mapping U : HK [0 , 1Q] such that

HYPOTHESIS 4.1. – (i) U is convex, lower semi-continuous, not identically
1Q .

(ii) There exists pD2 such that

s
H

NDU(x)Np n(dx) E1Q ,

where DU(x) is the sub-differential of U(x), n(dx) 4ce 22U(x) m(dx), and
c4 [ s

H
e 22U(x) m(dx) ]21 .

(iii) There exists a sequence ]Un ( of functions fulfilling Hypothesis 3.1
such that Un (x) HU(x) and

lim
nKQ

s
H

NDU(x)2DUn (x)Np n(dx) 40 .

We denote by n n the measure n n (dx) 4cn e 22Un (x) m(dx), where cn 4

[ s
H

e 22Un (x) m(dx) ]21 . We have the following continuous and dense inclu-

sions

L p (H , m) %L p (H , n n ) %L p (H , n) , pD1 ,

and, for all W�L p (H , m),

s
H

NWNp dnG
c

cn

s
H

NWNp dn n Gcs
H

NWNp dm .(4.1)

We define a linear operator N0 on L 2 (H , n) with domain EA (H) by
setting

N0 W4 AW2 aDU , DWb , W� EA (H) .(4.2)
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This definition is meaningful in virtue of Hypothesis 4.1-(ii). We also
set

N0, n W4 AW2 aDUn , DWb , W� EA (H) ,(4.3)

and denote by Nn the closure of N0, n on L 2 (H , n n ). Clearly for any W� EA (H)
we have

lim
nKQ

N0, n W4 N0 W in L 2 (H , n) .(4.4)

PROPOSITION 4.2. – Let W , c� EA (H). Then

(i) We have

s
H

N0 Wc dn42
1

2
s

H

aDW , Dcb dn ,

so that N0 is symmetric.

(ii) We have

1

2
s

H

Tr [ (D 2 W)2 ] dn1s
H

N(2A)1/2 DWN2 dnG2 s
H

(N0 W)2 dn .(4.6)

PROOF. – Let us prove (4.5). For any W , c� EA (H) we have by (3.3)

s
H

N0, n Wc dn n 42
1

2
s

H

aDW , Dcb dn n ,

which is equivalent to

cns
H

N0, n Wc e 22Un dm42 cn
1

2
s

H

aDW , Dcb e 22Un dm .

As nKQ , (4.5) follows.
Let us finally prove (4.6). For any W , c� EA (H) we have by (3.4), recalling

that Un is convex

1

2
s

H

Tr [ (D 2 W)2 ] dn n 1s
H

N(2A)1/2 DWN2 dn n G2 s
H

(N0, n W)2 dn n .

As nKQ , (4.6) follows. r

We need now a technical lemma whose proof is given in Appendix A.
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LEMMA 4.3. – Let W� EA (H), lD0, pF2, and f4lW2 N0 W . The following
estimate holds

VWVW 1, p (H , n n ) G
1

l
V f VW 1, p (H , n n ) .(4.7)

Now we can prove the result

THEOREM 4.4. – Assume that Hypotheses 2.1 and 4.1 hold. Then the opera-
tor N0 , defined by (4.3) is essentially self-adjoint. Denoting by N its closure
we have

D((2N)1/2 )4W 1, 2 (H , n) ,(4.8)

and

D(N) % ]W�W 2, 2 (H , n): N(2A)1/2 DWN�L 2 (H , n)( .(4.9)

Moreover the measure n is invariant for the semigroup e tN .

PROOF. – We set q42pO(p22). By proceding as in the proof of Step 1 of
Theorem 3.4 we see that W 1, q (H , m) %D(N). Now let f�W 1, q (H , m). Then for
any n�N there exists W n �D(Nn ) such that

lW n 2 AW n 1 aDUn , DW n b 4 f .(4.10)

Moreover, by Lemma 4.3 we have

VW n VW 1, q (H , n n ) G
c 1/q

l
V f VW 1, q (H , n n ) .

It follows

VW n VW 1, q (H , n) Gg c

cn
h1/q

VW n VW 1, q (H , n n ) G

1

l
g c

cn
h1/q

V f VW 1, q (H , n n ) G
1

l
c 1/q

V f VW 1, q (H , n) .

Thus we have proved that

VW n VW 1, q (H , n) G
c 1/q

l
V f VW 1, q (H , m) .(4.11)
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Now we can conclude the proof. We have

lW n 2 N0 W n 4 f1 aDU2DUn , DW n b .(4.12)

But

s
H

NaDU2DUn , DW n bN2 dnGs
H

NDU2DUnN2 NDW n N2 dnG

gs
H

NDU2DUnNp dnh2/pgs
H

NDW nNq dnh2/q

G

1

l
c 1/pgs

H

NDU2DUnNp dnh2p

V f VW 1, q (H , m) .

Consequently

lim
nKQ

aDU2DUn , DW n b 40 in L 2 (H , n) ,

and so (l2 N) (D(N) ) contains the closure on L 2 (H , n) of W 1, q (H , m). Since
W 1, q (H , m) is dense on L 2 (H , n). As in the proof of Theorem 3.4 this implies
that N is self-adjoint. r

REMARK 4.5. – If D 2 U(x) exists for n almost x�H and it is Borel, then we
have the following characterization of D(N):

(4.13) D(N) 4

]W�W 2, 2 (H , n): N(2A)1/2 DWN�L 2 (H , n), aD 2 U DW , DWb �L 1 (H , n)( .

EXAMPLE 4.6. – Let H4L 2 (0 , p), Ax4D 2
j x , x�D(A) 4H 2 (0 , p)O

H 1
0 (0 , p). Set moreover

ek (j) 4o 2

p
sin kj , fk (j) 4o 2

p
cos kj , k�N ,
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and denote by T the isometry on H :

T g !
k41

Q

xk ekh4g !
k41

Q

xk fkh , x�H , xk 4 ax , ek b .

Let moreover Q be the trace class operator on H such that Qek 4 (1O2k 2 ) ek ,
k�N , and let m4 N(0 , Q).

Let finally

U(x) 4

.
/
´

1

4
ax 4 , 1 b

1Q

if x�L 4 (0 , p) ,

if x�L 4 (0 , p) .

Then we have

DU(x) 42 x 3 if x�L 6 (0 , p) .

It is easy to check that for all x�H,

x(j) 4 aQ 21/2 x , T * x
[0 , j]

b , j� [0 , p] .

For any mF1 there exists a constant Cm D0 such that

s
H

NDU(x)N2m m(dx) 4s
H

us
0

p

Nx(j)N6m djv m(dx) 4

4s
0

p

ks
H

NaQ 21/2 x , T * x
[0 , j]

bN6m m(dx)l dj4Cms
0

p

NT * x [0 , j] NH
6m dj4Cms

0

p

j 3m dj .

Thus all assumptions of Theorem 4.4 are fulfilled.

5. – Ergodicity and spectral gap.

We set Pt W4e tN W , for all W�L 2 (H , n), where N is the self-adjoint opera-
tor defined in Theorem 4.4. We first prove that n is ergodic and strongly
mixing.

For this we need a lemma.

LEMMA 5.1. – For any W�W 1, 2 (H , n) we have

VDPt WV

2
L 2 (H , n) Ge 22vt

VDWV

2
L 2 (H , n) (5) .(5.1)

(5) Recall that aAx , xb G2 vNxN2 , x�D(A).



G. DA PRATO514

PROOF. – It is enough to show (5.1) for all W� EA (H). In this case we
have

d

dt
Dh u(t , x) 4 NDh u(t , x)2m h Dh u(t , x)1 !

k41

Q

Dh Dk U Dh u(t , x) ,

from which

1

2

d

dt
s

H

NDh u(t , x)N2 dn42
1

2
s

H

NDDh u(t , x)N2 dn2

2m hs
H

NDh u(t , x)N2 dn1 !
k41

Q

s
H

Dh Dk U(x) Dk u(t , x) dn .

Summing up on h it follows

1

2

d

dt
s

H

NDu(t , x)N2 dn1
1

2
s

H

Tr [(D 2 u(t , x) )2 ] dnG

2vs
H

NDu(t , x)N2 dn1s
H

aD 2 U(x) u(t , x), u(t , x)b dn ,

and the conclusion follows. r

THEOREM 5.2. – Assume that Hypotheses 2.1 and 4.1 hold. Then we
have

lim
nKQ

Pt W(x) 4s
H

W(y) n(dy) .(5.2)

PROOF. – It is enough to prove (5.2) for W� EA (H). In this case, setting
u(t , x) 4Pt W(x) we have

u(t , x) 4e tA W(x)2s
H

e (t2s) A aDU(x), Du(s , x)b ds .(5.3)

In virtue of (5.1) we can pass to the limit as tK1Q in (5.3). Recalling
that

lim
tKQ

e tA W(x) 4s
H

W(y) m(dy) ,

we find

lim
tKQ

u(t , x) 4s
H

W(y) m(dy)2 s
0

1Q

dss
H

aDU(x), Du(s , y)b m(dy) .
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Now the conclusion follows from the Von Neumann ergodic theorem. r

To prove spectral gap we need a Poincaré inequality.

PROPOSITION 5.3. – For any W�W 1, 2 (H , n) we have

s
H

NW2WN2 dnG
1

2v
s

H

NDWN2 dn ,(5.4)

where

W 4s
H

W(y) n(dy) .

PROOF. – It is enough to prove (5.2) for W� EA (H). In this case we
have

1

2

d

dt
s

H

NPt WN2 dn4s
H

NPt W Pt W dn42
1

2
s

H

NDPt WN2 dn .

By Lemma 5.1 it follows

1

2

d

dt
s

H

NPt WN2 dnF2
1

2
e 22vts

H

NDWN2 dn .

Integrating in t we have

s
H

NPt WN2 dnFs
H

W 2 dn2
1

2v
(12e 22vt )s

H

NDWN2 dn .

Letting n tend to Q it follows by Theorem 5.3

(W)2 Fs
H

W 2 dn2
1

2v
s

H

NDWN2 dn ,

that it is equivalent to (5.4). r

We can now prove the result

THEOREM 5.4. – Assume that Hypotheses 2.1 and 4.1 hold. Then we
have

s
H

NPt W(x)2WN2 dnGCe 22vts
H

NWN2 dn .(5.5)
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PROOF. – By (5.4) it follows

s
H

NPt W2WN2 dnG
1

2v
s

H

NDPt WN2 dn .

Moreover by (5.1) we have

s
H

NPt W2WN2 dnG
e 22vt

2v
s

H

NDWN2 dn .

Thus for any eD0 it follows

s
H

NPt1e W2WN2 dnG
e 22vt

2v
s

H

NDPe WN2 dnG
e 22vt

eve
s

H

NDWN2 dn ,

since

s
H

NDPe WN2 dn42 s
H

N(2N)1/2 Pe WN2 dnG
2

ee
s

H

NDWN2 dn .

The conclusion follows. r

A. – L p estimates.

We assume here that Hypotheses 2.1 and 3.1 hold, and consider the
equation

lW2 NW4lW2 AW1 aDU , DWb 4 f ,(A.1)

where N is defined by (3.1), lD0, and f�L 2 (H , n).

PROPOSITION A.1. – For all W� EA (H) and pF2, the following identity
holds.

ls
H

NWNp dn1
p21

2
s

H

NDWN2 NWNp22 dn4s
H

fNWNp22 W dn .(A.2)

Moreover

VWVL p (H , n) G
1

l
V f VL p (H , n) .(A.3)
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PROOF. – We have

s
H

aAx , DWbNWNp22 Wdn42
1

2
!
h41

Q

s
H

xh

l h

Dh WNWNp22 W dn4

2
1

2
!
h41

Q

s
H

D 2
h WNWNp22 dn2

p21

2
!
h41

Q

s
H

NDh WN2 NWNp22 dn1

!
h41

Q

s
H

Dh U Dh WNWNp22 W dn4

2
1

2
s

H

Tr [D 2 W]NWNp22 W dn2
p21

2
s

H

NDWN2 NWNp22 dn1

s
H

aDU , DWbNWNp22 W dn .

Now the conclusion follows easily. r

LEMMA A.2. – Let W , c 1 , R , c n � EA (H). Then we have

(A.4) s
H

NWc 2
1 , R , c 2

n dn42
1

2
s

H

NDWN2 c 2
1 , R , c 2

n dn2

!
k41

n

s
H

aDW , Dc k b Wckc 2
1 , R , c k21

2 c k
2 , R , c 2

n dn .

PROOF. – We have

s
H

aAx , DWb Wc 2
1 , R , c 2

n dn42
1

2
!
h41

Q

s
H

xh

l h

Dh WWc 2
1 , R , c 2

n dn2

1

2
!
h41

n

s
H

D 2
h WWc 2

1 , R , c k21
2 c k

2 , R , c 2
n dn2

1

2
!
h41

Q

s
H

NDh WN2 Wc 2
1 , R , c k21

2 c k
2 , R , c 2

n dn2

!
h41

Q

!
k41

n

s
H

Dh WWDh c k c k c 2
1 , R , c k21

2 c k
2 , R , c 2

n dn1

!
h41

Q

s
H

Dh UDh WWc 2
1 , R , c 2

n dn . r
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PROPOSITION A.3. – Let W� EA (H), lD0, lW2 NW4 f . Then the following
identity holds

(A.5) ls
H

NDWN2m dn1
1

2
s

H

Tr [ (D 2 W)2 ]NDWN2m22 dn1

(m21)s
H

a(D 2 W)2 DW , DWbNDWN2m21 dn1s
H

N(2A)1/2 DWN2 NDWN2m22 dn1

s
H

NaD 2 UDW , DWbNDWN2m22 dn4s
H

aDW , DcbNDWN2m22 dn .

Moreover

VDWVL p (H , m) G
1

l
VDf VL p (H , m) .(A.6)

PROOF. – For any h�N we have

lDh W2 NDh W1m h Dh W1 !
k41

Q

Dh Dk UDk W4Dh W .

Multiplying both sides for

Dh W(Da 1
W)2

R (Da m21
W)2 ,

and using Lemma A.2 we obtain

ls
H

NDh WN2 NDa 1
WN2

RNDa m21
WN2 dn1

1

2
s

H

NDDh WN2 NDa 1
WN2

RNDa m21
WN2 dn1

!
j41

m21

s
H

aDDh W , DDa j
WbDh WDa j

W(Da 1
W)2

R (Da j21
W)2 (Da j11

W)2
R (Da m21

W)2 dn1

m hs
H

NDh WN2 NDa 1
WN2

RNDa m21
WN2 dn1

!
k41

m21

s
H

Dh Dk UDk WDh WNDa 1
WN2

RNDa m21
WN2 dn4

s
H

Dh fDh WNDa 1
WN2

RNDa m21
WN2 dn .

Now identity (A.4) follows summing up on h , a 1 , R , a m21 . Finally (A.5)
follows from the Hölder estimate. r
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