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Minimizing p-Harmonic Maps at a Free Boundary.

FRANK DUZAAR - ANDREAS GASTEL

Sunto. — Studiamo le proprieta di regolarita delle mappe fra varieta di Riemann che
minimizzano la p-energia fra quelle che soddisfano una condizione di frontiera pa-
zialmente libera. Proviamo che tali mappe sono Hélder continue vicino alla fron-
tiera libera fuori di un insieme singolare, e otteniamo stime ottimali per la dimen-
stone di Hausdorff di questo insieme singolare..

1. — Introduction.

In this paper we investigate the regularity properties of maps u: M - N
between Riemannian manifolds which minimize locally the p-energy amongst
maps satisfying a partially free boundary condition #(2) c I'. The parameter
domain M for our maps is a compact connected Riemannian manifold of di-
mension m = 2, and the firee boundary X is a non-empty, relatively open subset
of OM. As target manifold N we have a compact Riemannian manifold of
dimension 7 =1 which we assume to be isometrically embedded in R"**
for some k=0. The supporting manifold I' for the free boundary values
is a closed submanifold of N of dimension d, 0 < d <n. We are then interest-
ed in mappings u:M—N of Sobolev class W'?(M,N):={ue
WhP(M, R"**): w(x) e N for almost all xe M } which minimize locally the
p-energy

E(u):f|Vu|pdvol

M

with respect to the free boundary condition w(X)cl’. Here |Vu|=
n+k 1/2

{ > | Vu! |2} . A map ue W-?(M, N) is termed to be locally p-energy
i=1

minimizing on M U X with respect to the free boundary condition u(2)c
if there exists an open covering X of M UZX such that E(u) < E(v) for
every ve WVP(M, N) which satisfies v(X)c I’ and which coincides with
u outside X, for some Xed. A point xeM UZ is called a regular point
of u if u coincides with a continuous function on a neighbourhood of
xin M U 2. The set of regular points is denoted by Reg u, and its complement
(M U X)\Reg u is termed the singular set Sing u. By the Sobolev embedding
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theorem regularity in the case p >m follows trivially. Therefore we restrict
ourselves to the case 1 <p <m. Our main result reads as follows.

THEOREM. — If ue WY P(M, N) is locally p-energy minimizing on MU X
with respect to the free boundary condition uw(X)cI, then

H —dim(Z N Sing u) <m — [p] -1,

where [pl:=max{leN: [ <p}. Moreover, X N Sing u is discrete in M U X if
m—1<p<m.

With regard to interior regularity the corresponding theorem was proved
by Schoen and Uhlenbeck [9] in the quadratic case p =2, and independently
by Fuchs [4], Hardt and Lin [5], and Luckhaus [7] in the general case 1 <p <
m. Regularity for minimizing maps at a general free boundary was considered
by Duzaar and Steffen [2], [3], and Hardt and Lin [6] in the case p = 2. Finally
in [1] the first author and Grotowski obtained an optimal partial regularity re-
sult when oI' # ¢ is allowed and p =2 (i.e. they studied a vectorvalued thin ob-
stacle problem).

2. — Notation and general assumptions.

First we describe our assumptions on the parameter domain MU X,
We assume that M U X is a connected Riemannian manifold with boundary
OM 2% # ¢ and interior M of dimension m = 2 and differentiability class 2. In-
troducing local coordinates around x,€ X we specialize the parameter domain
M to the unit upper half ball B " := {x e R™: |x| <1, ™ > 0} equipped with a
C1-Riemannian metric which is close to the Euclidean metric, and X to its
equatorial part D = {xe R™: |x| <1, 2™ =0}. Then, similarly to [2, section 1]
and [5, section 7], we may restrict ourselves to the situation where the metric
is in fact Euclidean.

Next, we specify the assumptions on the target manifold N and the sup-
porting manifold for the free boundary values I'. We assume that N is a com-
pact C2-submanifold of R*** that I' is a closed submanifold of N, and that I"
as a submanifold of R"** is of class C2. These assumptions imply that N ad-
mits a uniform tubular neighbourhood U,(N):={qe R™*%: dist(q, N) < o}
for some o >0, and that the associate nearest point map I7: U,(N)—N is
well-defined and Lipschitz continuous with Lipschitz constants satisfying

Lip(1T

Utg(N)) J, 1 as t l, 0.
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Similarly, the nearest point map onto I', which is Lipschitz continuous and
well-defined on U,(I') for some ¢ >0, is denoted by R and satisfies

Lip(RlUtg(r)) \I, 1 as t \J, 0.

3. — Extension and compactness.
Throughout this section we use the notation [p]:=min{le N =: p <[}.

LEMMA 8.1 (extension). — For 1 <p <, ([p]—1)/p <pB <1, there exist
constants ¢, (m, B, p) and cy(m, p) such that whenever K >0, ¢€]0, 1[, 1 e
10, 11 and u,ve WHP(S ™, R"* %) with w(S*)c T and v(S*)c I satisfy

|u— o]

p
@) f|w|p+|w|p+ —dac" < K?
" £

S

and
(i) di=cie! PAWI-MPK <o,

then there exists an extension we WV P([0, AlxS ™, R*"**) such that
w(0, x) =u(x), wld, x) =v(x) for almost all xeS*, w(0,A]x3S*)cr,
and

P
3.1) f |Veo|Pd9C™ < ep(1 + LipR|Ud(r))p/1(1 + (%) )KP
[0, A1 xS

and

3.2)  dist(w(t, x), Imu UImv) <d for 3™ -almost-all (t, x)e[0,A]xS*.

Proor. - Like[DG] we assume A=3"" and decompose the unit cube
Q:=[-1,1]""1 in R™ ! into 3"™ Y cubes of edge length 2i. For
1=0, ..., m —1we denote by Q' the l-skeleton of this decomposition. @' is the
union of the closed I-cells @/. We define

Z:={xeQ: dist(x, 0Q) <1}

and observe that there exists a bi-Lipschitz homeomorphism (with bi-Lips-
chitz constants not depending on 1) ¢: Z—[0, 1] x S™ 2 such that for [ =
1, ...,m—-1

3.3) H(Q'NZ\3Q) =10, A1 x p(Q' 1N 3Q).
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The construction from [DG] yields a bi-Lipschitz homeomorphism y: @ —S *
(cf. (2.7) of [DG]) such that for =0, ..., m —1

|u—v]
p

P
(3.4) f |V |P + | Vo|? + dICt < cg(m)AL"mHIKD.

P(Q\3Q)

Interpolating linearly on [0, 1] X Y between « and v, i.e.
2(t, x) = (1 - t )u(ac)+ tv(m)
T A A
where Y:=y(QP171\8Q), we obtain ze W1 P([0, A] X Y, R*"*) satisfying

P
(3.5) J IVZI”df)C'P‘sc4<m>/1'p"m“(1+ (%) )Kp

[0, A1x ¥
and
|2(t, ©) — u(x) | < cs(m, B, p)et FLUA-MI K,
In particular
(3.6) dist(z(¢, ), Imu U Imo) < c5(m, B, p)e' P AUWI-mh g

for almost every (¢, x) e [0, A] X Y. (3.5) follows from (3.4), and (3.6) follows
from [Lu, proof of Lemma 1].

Our aim now is to deform z on a neighbourhood of [0, 1] X S * such that
the new mapping w will obey the free boundary condition w(t, x) e I' for x e
08 ™", te[0, A], in addition to (3.5) and (3.6).

Using the bi-Lipschitz homeomorphisms ¢ and v, we will work on [0, 4] X
S™~2% instead of a neighbourhood of 3S* in S *. We define

w0, A]xXS™ 2R"E L Gi=woy oY,
2:[0, A]X S™ T RYTE Di=vopog L.

From (3.3) and the definition of ¥ we infer v ~1(Y) = QP1-1\4Q, and there-
fore, using (3.3),

(Z Ny 1Y) =10, A1 x Q2N 3Q) =:[0, 1] x X.
We also define

200, AP X X>R"E, Zi=zo(d X (pop™).
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Then (3.4)-(3.6) directly imply

7— P
3.7 f |V77L|p+ |VQ~)|P+ |?/L p?)l dacl[ﬂ]]*ls%(m)lllp]]—pr’

[0, A1 x X

3.8) f |VZ|Pdoclil < c7(m)/1”p”‘m“(l + (i )p)Kp,
[0, AP x X A

and

3.9 dist(2(t, , ), Imu U Imv) < ¢5(m, B, p)el F2Wl-mr g

almost everywhere on [0, 1] X X.

For s >0 we now define

a(t) =

Do | >
[\

—‘t— ‘ for 0 st<A4,
A, ={{t, sat)): 0<t<A},
D, :={t,r):0=<t<A,0<r<sat)}.
By the coarea formula we have

’ t
f |V5|pdgfﬂpﬂzf f Lwﬂpd%ﬂpﬂflds_

D,xX 0 A, xX \/l—l—s2

Therefore for each o€]0, 2] there exists se[0/2, o] such that

a(t . 2 .
(3.10) fszwd:)cﬂpﬂ—ls— f |VZ|Pdact <
A4,xX \/1+s? Op,xX

p
wema-i-w (1 () ),

the last inequality following from (3.8).
Let u:=1— ([p]l—1)/p, 6:=min{a, ¢* P} and r€]0, 6]. Then, for xe
X the Sobolev inequality and (3.7) imply

1p
(.11 | aulr, x) — w0, x) | < co(m, p)r”( f |V77L|"df}C“”]]1) <
[0, 1% X

cao(m, pyrt 2R,
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Note that r* <e!~# and 6 <A. Then from (3.11) we infer

(3.12) | (r, ) — (0, x) | < cyo(m, p)et FAUI=mh K

Recalling (3.9) and the definition of % we obtain for (¢, », ) e [0, AP x X
(38.13) | 2(t, v, ®) — U(r, x) | <cs(m, B, p)el A U-mip g

Combining (3.12), (3.13), and assumption (ii) we infer for any (¢, r, x)e
[0, A1 X [0, o] XX

(3.14) dist(2(t, r, x), D) < c,(m, B, p)el PAWI"MWP K =d<p,

which, of course, yields that R(Z(¢, r, x)) is well-defined for all specified argu-
ments (¢, r, x).

We now let 0:=206/4 (such that (1/2)0 = 0) and choose an s e [0/2, o] ac-
cording to (3.10). In view of the inclusion D c [0, A] X [0, s(4/2)]c [0, A] X
[0, 0] we can define we WV P([0, A]? x X, R" %) by

(R(Z(t, sa(t), x)) on [0, ] x {0} x X,
2(15,7", 90) on ([09/1]2\D5UA5)X:X7
w(t, r, x):=J

) ~ 7
——R(z(t, sa(t), x)) + (1 - sa(t)

sa(t) )Z(t, sa(t), x)

on D, x X.

. 9 . ~ .
On D, X X we compute — w, — w, and V,w and get, using 0 < r < sa(t) and
|a/ | =1 ot or

o . 1 . .
‘ a—tw(t, roe) | < Py |R(Z(t, sa(t), x)) — 2(t, sa(t), x)| +
iR(,%(t sa(t), x)) | + 3,%(15 sa(t), x)
at b b at b b b
d - 1 . .
‘ —w(t, r,x) | = ——|R(2(, sa(t), x)) — 2(t, sat), x)|,
or sa(t)

|V 0, v, 2) | < |V.R(E(, sat), ©)| + |V,.2(E, sa(t), x)| .
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These inequalities together imply

3.15) | Vint, r, x) [P <

c11(p) ;diSt(é(t, sa(t), »), [P+ (1+ LipR|y,ir))" |V, 02 (¢, sa(t), 2)|” .
(sa(t))? '

To estimate the first summand in the right hand side of (3.15) we observe that
dist(2(t, sa(t), x), I') < | 2(¢, sa(t), x) — (0, x) | <
sa(t)

% | %(sa(t), ®) —v(sa(t), x)| + Of ‘ % alr, x) | dr<

sa(t) 1/p
b~ ~ 1-1/ J - b
n | w(sa(t), ®) —v(sa(t), ®)| = (sa(t))' ~ P 5 wr,x) | dr| .
B i/
The same estimate with %(0, x) replaced by 2(0, x) shows

dist(3(¢, sa(t), x), I') <

sa(t) 1/p
? | % (sa(t), x) — v(salt), x)| + (sa(t))ll/p( f ‘ 83 (r, x) pdr) .
0 /y.

Both inequalities together with the definition of a(t) imply for te[0, 1], xe X,

Y4
(3.16)  dist(z(¢, sa(t), x), [P < clg(p)[ a/(l_tp) | % (sa(t), ©) — D(sa(t), ©)|? +

P
dr].

sa(t)

(sa(t)y ! f

0

d . P J .
—ur,x) | + | —=or @
pm (r, x) aT( )

Integrating (3.16) over D, X X we obtain, using (3.7),

3.17) f (sa(t)) P dist(Z (¢, sa(t), x), TP doctPl(t, r, x) <

Dyx X
[0, A1 x X [0, 2]xX

C1z(p)[8_”/11”’ f |4 —0|Pdocti=1+ f |V [P+ |V1N)|Pd3(-[[p]]—1]s

cP

sPAP

Clz(p)CG(m)l[[p]]m+l(l+ )K”S

p
ci3(m p)ﬂp“m“(l—kmax{s”(l(1/3>/") (i) })Kp
b b A’ )
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the last estimate following from s=0/2 =9/A=min{1, 1 'e? P}  Since
B> (pl—1)/p (by assumption) we have "'~ 1 ~A/W <1 and from (3.17) we
derive

f dist(z(t, sa(t), x), I')"

3.18
G189 Dyx X sa(t)”’

daclPl(t, r, x) <

p
2c13(m, p)/l”””‘m“Kp(l - (%) )

Now, we estimate the integral of the second summand of the right hand side
of (3.15). Using (3.10) we find

(3'19) f | V(t, x)%(t’ SCL(t), 90) |p doc [rl <
Dyx X

A
2p/zsffﬂ |VZ|P(t, sa(t), ©)\/1 + s%dtdoct) -2 =
X0 \1+s?

alt P
o2 f LW%V{ZS}C“’HISCM(m,p)i}.“’]m“(l—l— (f) )Kl’s
A XX 1+s2 o A

P
cu(m, p)/l“p]]""”(l + (%) )K”.
Combining (3.15), (3.18), and (3.19) we finally arrive at

P
(3.20) f|V@|pdf>f’”p”<cls(m,p)(1+LipRUd<r>)’7/1“’”_m+l(1+(%) )Kp'

Dyx X

Now, we define we W' ?([0,A]xY, R"**) compatible with the free
boundary condition by

{@7} o(id X (poy 1)) on [0, ] XY Ny(Z),
wi=

2 on [0, 4] X Y\y(2).
The estimates (3.5), (38.8), and (3.20) yield

P
(3.21) f |V |? dactPl < ¢4 (m, p)/‘Llp]—m+1(l n (%) )Kp,

[0,A]xY

and from (3.6), (3.9) and (3.14) we obtain

(3.22) dist(w(t, ), Imu U Imv) < ¢jz(m, B, p)e! FAIPI-mh g
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for almost all (¢, ) € [0, 1] x Y. The inductive procedure of homogeneous ex-
tension from [Lu] together with the modifications described in [DG] can now
be used to construct the map we WV P([0, 1] x S ©, R*"*) satisfying the as-
sertions of the lemma. =

We apply the extension lemma to prove the following compactness theorem
for p-energy minimizing maps at a free boundary.

THEOREM 3.2 (compactness). — Suppose I';, N;, and u;e WH?(B*, N;)
with w;(D)c Ty, te NU { « }, satisfy:

(i) N; admits a Lipschitz neighbourhood retraction II;: U, (N;) =N,
which satisfies lirr}) Lip(11; |y, ;) = 1;

(i) I'; admits a Lipschitz neighbourhood vetraction R;: U, (I';) =T,
for which

liminfo; >0 and  lminfLip(R; |y,r)) < ©  for some ¢t >0;

(iii) each ve WHP(B ™, R"**) with v(B*)c N, and v(D)cT . is the
Wb Plimit of maps v;e WHP(B Y, R* %) with v;(B*)cN; and v;(D)cT;;
and

(iv) the u; are p-energy minimizing maps from B ™" into N; with respect
to the free boundary condition w;(D)cI’; for 1e N and converge weakly in
WLP(BY R" ) to u.,.

Then w. is p-energy minimizing in W»P?(B*, N, ) subject to the free
boundary condition u.,(D)cT ., and u;—>u, strongly in WhP(B,, R**F)
for any 0 <o <1.

The assertions of the compactness theorem follow from our extension lem-
ma using a direct adaptation of the arguments from [7, p.357 ff] to the free
boundary situation considered here. One merely has to replace balls B, and
spheres S, by half-balls B, and hemi-spheres S,” before applying the exten-
sion lemma.

COROLLARY 3.3. — Suppose (u;);cxCWHP(B*, N) is a sequence of p-
energy manimizing maps subject to the free boundary condition w;(D)c T,
and

sup f |V, |Pde < oo

iENB+

Then there exists a subsequence (u;) and a map we WHP(B +, N) which
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18 p-energy minimizing w.r.t. the free boundary condition w(D)c Il such
that w; converges strongly in WhP(B,", R""*) to u for any 0 <o<1.

4. — An e-regularity theorem.

Our line of reasoning follows exactly to that of[1, Section 3] which, of
course, is based on [7, Proposition 1] (see also [11, Theorem 10.3]). One merely

has to replace the scaled 2-energy o®~ " f |Vu|?de by of ~™ f | Vu|? da
Bs (a) BS (@)
for half-balls B,  (a):= {xeR": [t —a| <o,x™>0}cB" centered at ae D

by the scaled p-energy o? " f |Va|? dee, and, instead of [1, Lemma 3.1], to
use: B, (a)

LEMMA 4.1. — Let Ee WHP (BT, R") be p-energy minimizing with respect
to the free boundary condition E&D)cR?x {0} cR™. Then, for any 0 <o <1
we have

f |V§|pdacSco”f |VE|P de,
B, B*

where ¢ 1s a constant depending on m, n and p only.

PrOOF. — Forj =1, ..., d we define & to be the extension of £/ to B by even
reflection (across D). Moreover, for j=d + 1, ..., n we let & to be the exten-
sion of £/ to B by odd reflection. Then it is easy to check that & := (£}, ..., &%) is
weakly p-harmonic on B, i.e. for any ¢ € C{(B, R") we have

f |[VE|P 2V E-pda =0.

B

Hence, from [12, Theorem 3.2] we infer
f |V.§ |Pde < c(m, n, p)omf |V§ |P da
B, B

which clearly yields the corresponding estimate for £ on B,/. =

As in the case p = 2[1, Theorem 3.4] (see also [2, Theorem 5.2], [6, Theorem
3.4]) we can now state an e-regularity theorem for minimizing p-harmonic
maps at a free boundary.
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THEOREM 4.2. — Given N and I satisfying the asswmptions given in sec-
tion 2, and a €]0, 1[, there exist constants C and ¢, depending on a, m, n, p,
N and T only such that every map we WV P(B ™", N) which is p-energy mini-
mizing w.r.t. the free boundary condition w(D)cI and which has small
scaled p-energy

ep:=a”_mf |V |P doe < €f)
B, ()

for some half-ball B, (xy))cB ™, xyeD, |x,| <1/2, satisfies

pa
rp-m f |Vu|pdste”(1)
o

Bt (1)

for all x1€Byp(xg) ND, 0<r<o/2. W

Combining Theorem 4.2 with the corresponding interior result [4], [5], [7]
we see that p-energy minimizing maps at a free boundary are Holder continu-
ous with exponent a for all 0 < a <1 on By, provided | |Vu|?dx <& where

+

€1 > 01is a constant depending on «, n, m, p, N and I" only. (Note that we also
have to use the monotonicity formula Lemma 5.1.)

5. — Partial regularity.

We begin this section by deriving a monotonicity formula for maps
ue WL ?(B*, N) which minimize the p-energy subject to the free boundary
condition w(D) c I" (cf.[8], [9], [4], [5], [7] for the interior case, and [2], [6], [1]
for the case p=2 at the free boundary). Given ¢ e C{ (B, R™) satisfying

o™ | p =0 we define X, to be the solution of X, = ¢ o X, with initial condition
=1id. Then u; := u o X; is an admissible variation for %, and the minimizing
property of u yields

f S (|Vu|p(§y pViu-Viu|Vu|P ")V, ¢’ du.

B+ ih,j=1

0= —E(ut

Then, exactly as in[1, Theorem 4.1] we prove

THEOREM 5.1. — Let aeB*UD and 0 <r<o<1- |a| be given. Then,
any map ue WHP(B ™", N) minimizing the p-energy w.r.t. the free boundary
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condition uw(D)c I satisfies:

(5.1) a”’”[ f |V |P doe + f |Vu|pd90]—

B, (@) B, (a*)

—7'?"’”[ f |V |? doc + f |Vu|7’dx]=

B, (@) B (a™)

2
da+ f (R*pP™ | Vuu |2

Bs (@®)\B,* (a*)

p f RP~™|Vy|P~2
B (@)\By" (@)

2
*dac,

where a* = (a', ...,a™ ', —a™), R=|x—al|, and R* = |x—a*|. In par-
ticular,

r”m[ f |V |P doe + f |Vu|”dac]

B," () B,* (a*)

ts monotone non-decreasing on 10,1 — |a|[. =

As a first consequence of the monotonicity formula we observe that the
density function

i p—m P »
0,): }11)1})1” [ f |V |P doe + f | Vau | dac]

B,* () B! (a*)

is well defined for a e B* U D. Note that

lim»? =" f | Vu|? da for aeB ",
0 B
0,(a)=

2 limrP—™ f |Vu|Pdxe for aeD.

r—0
B/ ()

THEOREM 5.2. — Suppose that ujer”’(B *,N), jeN, is p-energy mini-
mizing subject to the free boundary condition u;(D)cI'. Suppose also that
w;—u strongly in LP(B*, R"**) and that

sup f |V |Pdoe < oo
jENB*
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Then for ae B UD, a;—a tmplies

0 ,(a) = limsup @uj(aj),

j—> o

1.e. the density function is jointly upper semicontinuous.

Proor. — In view of Corollary 3.3 we have u;—wu strongly in
WL P(B, , R"**) for any 0 <o < 1. For aeD consider r, ¢ >0 such that » +
e<1-|a|. From (5.1) we infer

@uf(aj)Srp*m f | Vi | dee + f |V |Pda | <2rP7™ f | Vi, |P de
B, (a)) B/ (af") B/ ()

for any j such that |a —a; | <e. Now, the strong W' -convergence of u; on
B/, .(a) yields

limsup @, (a;) < 277" ™ f |V |P dee.

e B o(a)

Letting first ¢ and then r tend to zero, the assertion follows. The case aeB *
follows similarly. m

Next we discuss tangent maps at the free boundary. For aeD, 0 <r<
79<1— |a| we define the rescaled map

Uq, (@) :=u(a +rx) for xeB,.

Then, the monotonicity formula and Corollary 3.3 provide as in [10, Section 3]
(see also [1, Section 4]) that a sequence (u,, ,,);cxn, 7;—0, converges strongly
in WhP(B,", R***) for any o]0, o[ to a map ¢: R” — N which is p-energy
minimizing w.r.t. the free boundary condition ¢ = (R~ x {0})c I". Any such
map is called a (free boundary) tangent map to u at a.

We now follow the arguments of [10, Section 3] almost verbatim. First we
deduce the following important properties of tangent maps at the free
boundary:

(5.2) @(,,(0)527‘7’*’”1‘ |Vo|Pde =6 ,(a) forall »r>0;
B

(5.3) @ is homogeneous of degree zero;

(5.4) a € Regu=>u has a constant tangent map at a; and

(5.5) for ae B* UD we have: 0,(a) =0<a<cRegu.
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THEOREM 5.3. — 9™ ~?(Sing(u)) =0, in particular Sing(u) = 0 for p =m.

Next we consider homogeneous degree zero maps ¢: R — N which mini-
mize locally the p—energy subject to the free boundary condition ¢(R™ ! x
{0})cTI. Then:

(5.6) O ,(-) achieves its maximum at 0;

(5.7 @ot,=¢ for any aeS(p)={beR" 'x{0}:0,0)=06 ,a)};
(5.8) S(¢@) is a linear subspace of R™ *x {0};

(5.9) if dimS(gp)=m —[p]+1 then ¢ =const; and

(5.10)  S(¢)cSing(ep) if ¢ is non-constant.

Here 7,(x):=2+ a for xeR™. Finally, we return to the situation of ue
WL P(B™*, N) being p-energy minimizing w.r.t.u(D)cI. For j=0, ..., m —
[p] we define:

S;:= {a eSingu N D: dims(¢) <j for every tangent map ¢ to u at a}.

THEOREM 5.4.
(1) SC8C... Sy p1-1CSu—p=Sing N D;
(i) for each >0, SyN {b: ©,(b) =1} is discrete; and
(i) for j=0, ..., m — [p]l—1 we have I — dims; <j.
As an immediate consequence of Theorem 5.4, (iii) and the corresponding

interior regularity result of [4], [5], [7] we obtain

THEOREM 5.5. — Let ue Wh?(B,, N) be p-energy minimizing with respect
to the free boundary condition w(D)cI'. Then

H —dim(Singu) <sm —[pl—-1 fl<p<m-—1.

In the case m—1<p<m, SinguN (DUB™) consists of isolated points. m
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