Bollettino

Unione Matematica Italiana

Frank Duzaar, Andreas Gastel

Minimizing p-harmonic maps at a free boundary

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 1-B (1998), n.2, p. 391-405.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1998_8_1B_2_391_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1998.

Minimizing p-Harmonic Maps at a Free Boundary.

Frank Duzaar - Andreas Gastel

Sunto. - Studiamo le proprietà di regolarità delle mappe fra varietà di Riemann che minimizzano la p-energia fra quelle che soddisfano una condizione di frontiera pazialmente libera. Proviamo che tali mappe sono Hölder continue vicino alla frontiera libera fuori di un insieme singolare, e otteniamo stime ottimali per la dimensione di Hausdorff di questo insieme singolare.

1. - Introduction.

In this paper we investigate the regularity properties of maps $u: M \rightarrow N$ between Riemannian manifolds which minimize locally the p-energy amongst maps satisfying a partially free boundary condition $u(\Sigma) \subset \Gamma$. The parameter domain M for our maps is a compact connected Riemannian manifold of dimension $m \geqslant 2$, and the free boundary Σ is a non-empty, relatively open subset of ∂M. As target manifold N we have a compact Riemannian manifold of dimension $n \geqslant 1$ which we assume to be isometrically embedded in \mathbb{R}^{n+k} for some $k \geqslant 0$. The supporting manifold Γ for the free boundary values is a closed submanifold of N of dimension $d, 0 \leqslant d \leqslant n$. We are then interested in mappings $u: M \rightarrow N$ of Sobolev class $W^{1, p}(M, N):=\{u \in$ $W^{1, p}\left(M, \mathbb{R}^{n+k}\right): u(x) \in N$ for almost all $\left.x \in M\right\}$ which minimize locally the p-energy

$$
E(u)=\int_{M}|\nabla u|^{p} d v o l
$$

with respect to the free boundary condition $u(\Sigma) \subset \Gamma$. Here $|\nabla u|=$ $\left\{\sum_{i=1}^{n+k}\left|\nabla u^{i}\right|^{2}\right\}^{1 / 2}$. A map $u \in W^{1, p}(M, N)$ is termed to be locally p-energy minimizing on $M \cup \Sigma$ with respect to the free boundary condition $u(\Sigma) \subset \Gamma$ if there exists an open covering \mathcal{X} of $M \cup \Sigma$ such that $E(u) \leqslant E(v)$ for every $v \in W^{1, p}(M, N)$ which satisfies $v(\Sigma) \subset \Gamma$ and which coincides with u outside X, for some $X \in \mathcal{X}$. A point $x \in M \cup \Sigma$ is called a regular point of u if u coincides with a continuous function on a neighbourhood of x in $M \cup \Sigma$. The set of regular points is denoted by Reg u, and its complement $(M \cup \Sigma) \backslash \operatorname{Reg} u$ is termed the singular set Sing u. By the Sobolev embedding
theorem regularity in the case $p>m$ follows trivially. Therefore we restrict ourselves to the case $1<p \leqslant m$. Our main result reads as follows.

Theorem. - If $u \in W^{1, p}(M, N)$ is locally p-energy minimizing on $M \cup \Sigma$ with respect to the free boundary condition $u(\Sigma) \subset \Gamma$, then

$$
\mathscr{H}-\operatorname{dim}(\Sigma \cap \operatorname{Sing} u) \leqslant m-[p]-1,
$$

where $[p]:=\max \{l \in \mathbb{N}: l \leqslant p\}$. Moreover, $\Sigma \cap \operatorname{Sing} u$ is discrete in $M \cup \Sigma$ if $m-1 \leqslant p<m$.

With regard to interior regularity the corresponding theorem was proved by Schoen and Uhlenbeck [9] in the quadratic case $p=2$, and independently by Fuchs [4], Hardt and Lin [5], and Luckhaus [7] in the general case $1<p \leqslant$ m. Regularity for minimizing maps at a general free boundary was considered by Duzaar and Steffen [2], [3], and Hardt and Lin [6] in the case $p=2$. Finally in [1] the first author and Grotowski obtained an optimal partial regularity result when $\partial \Gamma \neq \emptyset$ is allowed and $p=2$ (i.e. they studied a vectorvalued thin obstacle problem).

2. - Notation and general assumptions.

First we describe our assumptions on the parameter domain $M \cup \Sigma$. We assume that $M \cup \Sigma$ is a connected Riemannian manifold with boundary $\partial M \supseteq \Sigma \neq \emptyset$ and interior M of dimension $m \geqslant 2$ and differentiability class 2 . Introducing local coordinates around $x_{0} \in \Sigma$ we specialize the parameter domain M to the unit upper half ball $B^{+}:=\left\{x \in \mathbb{R}^{m}:|x|<1, x^{m}>0\right\}$ equipped with a C^{1}-Riemannian metric which is close to the Euclidean metric, and Σ to its equatorial part $D=\left\{x \in \mathbb{R}^{m}:|x|<1, x^{m}=0\right\}$. Then, similarly to [2, section 1] and [5, section 7], we may restrict ourselves to the situation where the metric is in fact Euclidean.

Next, we specify the assumptions on the target manifold N and the supporting manifold for the free boundary values Γ. We assume that N is a compact C^{2}-submanifold of \mathbb{R}^{n+k}, that Γ is a closed submanifold of N, and that Γ as a submanifold of \mathbb{R}^{n+k} is of class C^{2}. These assumptions imply that N admits a uniform tubular neighbourhood $\boldsymbol{U}_{\sigma}(N):=\left\{q \in \mathbb{R}^{n+k}: \operatorname{dist}(q, N)<\sigma\right\}$ for some $\sigma>0$, and that the associate nearest point map $\Pi: \boldsymbol{U}_{\sigma}(N) \rightarrow N$ is well-defined and Lipschitz continuous with Lipschitz constants satisfying

$$
\operatorname{Lip}\left(\left.\Pi\right|_{\boldsymbol{U}_{t_{Q}(N)}}\right) \downarrow 1 \quad \text { as } t \downarrow 0
$$

Similarly, the nearest point map onto Γ, which is Lipschitz continuous and well-defined on $\boldsymbol{U}_{\varrho}(\Gamma)$ for some $\varrho>0$, is denoted by R and satisfies

$$
\operatorname{Lip}\left(\left.R\right|_{\boldsymbol{U}_{t_{0}}(\Gamma)}\right) \downarrow 1 \quad \text { as } t \downarrow 0
$$

3. - Extension and compactness.

Throughout this section we use the notation $\llbracket p \rrbracket:=\min \{l \in \mathbb{N}=: p \leqslant l\}$.
Lemma 3.1 (extension). - For $1<p<\infty,(\llbracket p \rrbracket-1) / p<\beta<1$, there exist constants $c_{1}(m, \beta, p)$ and $c_{2}(m, p)$ such that whenever $\left.K>0, \varepsilon \in\right] 0,1[, \lambda \in$]0,1] and $u, v \in W^{1, p}\left(S^{+}, \mathbb{R}^{n+k}\right)$ with $u\left(S^{+}\right) \subset \Gamma$ and $v\left(S^{+}\right) \subset \Gamma$ satisfy

$$
\text { (i) } \int_{S^{+}}|\nabla u|^{p}+|\nabla v|^{p}+\frac{|u-v|^{p}}{\varepsilon^{p}} d \mathcal{H}^{m-1} \leqslant K^{p}
$$

and
(ii) $d:=c_{1} \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K<\varrho$,
then there exists an extension $w \in W^{1, p}\left([0, \lambda] \times S^{+}, \mathbb{R}^{n+k}\right)$ such that $w(0, x)=u(x), w(\lambda, x)=v(x)$ for almost all $x \in S^{+}, w\left([0, \lambda] \times \partial S^{+}\right) \subset \Gamma$, and

$$
\begin{equation*}
\int_{[0, \lambda] \times S^{+}}|\nabla w|^{p} d \mathcal{H}^{m} \leqslant c_{2}\left(1+\left.\operatorname{Lip} R\right|_{U_{d}(\Gamma)}\right)^{p} \lambda\left(1+\left(\frac{\varepsilon}{\lambda}\right)^{p}\right) K^{p} \tag{3.1}
\end{equation*}
$$

and
(3.2) $\operatorname{dist}(w(t, x), \operatorname{Im} u \cup \operatorname{Im} v) \leqslant d \quad$ for \mathcal{H}^{m}-almost-all $(t, x) \in[0, \lambda] \times S^{+}$.

Proof. - Like [DG] we assume $\lambda=3^{-v}$ and decompose the unit cube $Q:=[-1,1]^{m-1}$ in \mathbb{R}^{m-1} into $3^{\nu(m-1)}$ cubes of edge length 2λ. For $l=0, \ldots, m-1$ we denote by Q^{l} the l-skeleton of this decomposition. Q^{l} is the union of the closed l-cells Q_{i}^{l}. We define

$$
Z:=\{x \in Q: \operatorname{dist}(x, \partial Q) \leqslant \lambda\}
$$

and observe that there exists a bi-Lipschitz homeomorphism (with bi-Lipschitz constants not depending on $\lambda) \phi: Z \rightarrow[0, \lambda] \times S^{m-2}$ such that for $l=$ $1, \ldots, m-1$

$$
\begin{equation*}
\left.\left.\phi\left(Q^{l} \cap Z \backslash \partial Q\right)=\right] 0, \lambda\right] \times \phi\left(Q^{l-1} \cap \partial Q\right) . \tag{3.3}
\end{equation*}
$$

The construction from [DG] yields a bi-Lipschitz homeomorphism $\psi: Q \rightarrow S^{+}$ (cf. (2.7) of [DG]) such that for $l=0, \ldots, m-1$

$$
\begin{equation*}
\int_{\psi\left(Q^{l} \backslash \partial Q\right)}|\nabla u|^{p}+|\nabla v|^{p}+\frac{|u-v|^{p}}{\varepsilon^{p}} d \mathcal{C}^{l} \leqslant c_{3}(m) \lambda^{l-m+1} K^{p} . \tag{3.4}
\end{equation*}
$$

Interpolating linearly on $[0, \lambda] \times Y$ between u and v, i.e.

$$
z(t, x):=\left(1-\frac{t}{\lambda}\right) u(x)+\frac{t}{\lambda} v(x)
$$

where $Y:=\psi\left(Q^{\llbracket p \rrbracket-1} \backslash \partial Q\right)$, we obtain $z \in W^{1, p}\left([0, \lambda] \times \bar{Y}, \mathbb{R}^{n+k}\right)$ satisfying

$$
\begin{equation*}
\int_{[0, \lambda] \times Y}|\nabla z|^{p} d \mathscr{C} \mathcal{C}^{\llbracket p \rrbracket} \leqslant c_{4}(m) \lambda^{\llbracket p \rrbracket-m+1}\left(1+\left(\frac{\varepsilon}{\lambda}\right)^{p}\right) K^{p} \tag{3.5}
\end{equation*}
$$

and

$$
|z(t, x)-u(x)| \leqslant c_{5}(m, \beta, p) \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K
$$

In particular

$$
\begin{equation*}
\operatorname{dist}(z(t, x), \operatorname{Im} u \cup \operatorname{Im} v) \leqslant c_{5}(m, \beta, p) \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K \tag{3.6}
\end{equation*}
$$

for almost every $(t, x) \in[0, \lambda] \times Y$. (3.5) follows from (3.4), and (3.6) follows from [Lu, proof of Lemma 1].

Our aim now is to deform z on a neighbourhood of $[0, \lambda] \times \partial S^{+}$such that the new mapping w will obey the free boundary condition $w(t, x) \in \Gamma$ for $x \in$ $\partial S^{+}, t \in[0, \lambda]$, in addition to (3.5) and (3.6).

Using the bi-Lipschitz homeomorphisms ϕ and ψ, we will work on [0, $\lambda] \times$ S^{m-2} instead of a neighbourhood of ∂S^{+}in S^{+}. We define

$$
\begin{array}{ll}
\tilde{u}:[0, \lambda] \times S^{m-2} \rightarrow \mathbb{R}^{n+k}, & \tilde{u}:=u \circ \psi \circ \phi^{-1}, \\
\tilde{v}:[0, \lambda] \times S^{m-2} \rightarrow \mathbb{R}^{n+k}, & \tilde{v}:=v \circ \psi \circ \phi^{-1} .
\end{array}
$$

From (3.3) and the definition of Y we infer $\psi^{-1}(Y)=Q^{\llbracket p \rrbracket-1} \backslash \partial Q$, and therefore, using (3.3),

$$
\varphi\left(Z \cap \psi^{-1}(\bar{Y})\right)=[0, \lambda] \times \phi\left(Q^{\llbracket p \rrbracket-2} \cap \partial Q\right)=:[0, \lambda] \times X
$$

We also define

$$
\tilde{z}:[0, \lambda]^{2} \times X \rightarrow \mathbb{R}^{n+k}, \quad \tilde{z}:=z \circ\left(\mathrm{id} \times\left(\psi \circ \varphi^{-1}\right)\right)
$$

Then (3.4)-(3.6) directly imply

$$
\int_{[0, \lambda] \times X}|\nabla \tilde{u}|^{p}+|\nabla \tilde{v}|^{p}+\frac{|\tilde{u}-\tilde{v}|^{p}}{\varepsilon^{p}} d \mathcal{C} \begin{gather*}
\llbracket p \rrbracket-1 \tag{3.7}
\end{gather*} c_{6}(m) \lambda^{\llbracket p \rrbracket-m} K^{p},
$$

$$
\begin{equation*}
\int_{[0, \lambda]^{2} \times X}|\nabla \tilde{z}|^{p} d \mathscr{C} \mathcal{C}^{\llbracket p \rrbracket} \leqslant c_{7}(m) \lambda^{\llbracket p \rrbracket-m+1}\left(1+\left(\frac{\varepsilon}{\lambda}\right)^{p}\right) K^{p}, \tag{3.8}
\end{equation*}
$$

and
(3.9) $\quad \operatorname{dist}(\tilde{z}(t, r, x), \operatorname{Im} u \cup \operatorname{Im} v) \leqslant c_{5}(m, \beta, p) \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K$ almost everywhere on $[0, \lambda]^{2} \times X$.

For $s>0$ we now define

$$
\begin{aligned}
a(t) & :=\frac{\lambda}{2}-\left|t-\frac{\lambda}{2}\right| \quad \text { for } 0 \leqslant t \leqslant \lambda, \\
A_{s} & :=\{(t, s a(t)): 0 \leqslant t \leqslant \lambda\}, \\
D_{s} & :=\{(t, r): 0 \leqslant t \leqslant \lambda, 0 \leqslant r \leqslant s a(t)\} .
\end{aligned}
$$

By the coarea formula we have

$$
\int_{D_{\sigma} \times X}|\nabla \tilde{z}|^{p} d \mathscr{C} \mathcal{C}^{\llbracket p \rrbracket}=\int_{0}^{\sigma} \int_{A_{s} \times X} \frac{a(t)}{\sqrt{1+s^{2}}}|\nabla \tilde{z}|^{p} d \mathcal{H}^{\llbracket p \rrbracket-1} d s .
$$

Therefore for each $\sigma \in] 0,2]$ there exists $s \in[\sigma / 2, \sigma]$ such that

$$
\begin{align*}
& \int_{A_{s} \times X} \frac{a(t)}{\sqrt{1+s^{2}}}|\nabla \tilde{z}|^{p} d \mathscr{C} \mathscr{C}^{\llbracket p \rrbracket-1} \leqslant \frac{2}{\sigma_{D_{\sigma} \times X}} \int|\nabla \tilde{z}|^{p} d \mathscr{H} \mathbb{C}^{\llbracket p \rrbracket} \leqslant \tag{3.10}\\
& c_{8}(m) \sigma^{-1} \lambda^{\llbracket p \rrbracket-m+1}\left(1+\left(\frac{\varepsilon}{\lambda}\right)^{p}\right) K^{p},
\end{align*}
$$

the last inequality following from (3.8).
Let $\mu:=1-(\llbracket p \rrbracket-1) / p, \delta:=\min \left\{\lambda, \varepsilon^{(1-\beta) / \mu}\right\}$, and $\left.\left.r \in\right] 0, \delta\right]$. Then, for $x \in$ X the Sobolev inequality and (3.7) imply
(3.11) $|\tilde{u}(r, x)-\tilde{u}(0, x)| \leqslant c_{9}(m, p) r^{\mu}\left(\int_{[0, \lambda] \times X}|\nabla \tilde{u}|^{p} d \mathcal{H}^{\llbracket p \rrbracket-1}\right)^{1 / p} \leqslant$

$$
c_{10}(m, p) r^{\mu} \lambda^{(\llbracket p \rrbracket-m) / p} K,
$$

Note that $r^{\mu} \leqslant \varepsilon^{1-\beta}$ and $\delta \leqslant \lambda$. Then from (3.11) we infer

$$
\begin{equation*}
|\tilde{u}(r, x)-\tilde{u}(0, x)| \leqslant c_{10}(m, p) \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K \tag{3.12}
\end{equation*}
$$

Recalling (3.9) and the definition of \tilde{u} we obtain for $(t, r, x) \in[0, \lambda]^{2} \times X$

$$
\begin{equation*}
|\tilde{z}(t, r, x)-\tilde{u}(r, x)| \leqslant c_{5}(m, \beta, p) \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K \tag{3.13}
\end{equation*}
$$

Combining (3.12), (3.13), and assumption (ii) we infer for any $(t, r, x) \in$ $[0, \lambda] \times[0, \sigma] \times X$

$$
\begin{equation*}
\operatorname{dist}(\tilde{z}(t, r, x), \Gamma) \leqslant c_{1}(m, \beta, p) \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K=d<\varrho, \tag{3.14}
\end{equation*}
$$

which, of course, yields that $R(\tilde{z}(t, r, x))$ is well-defined for all specified arguments (t, r, x).

We now let $\sigma:=2 \delta / \lambda$ (such that $(\lambda / 2) \sigma=\delta$) and choose an $s \in[\sigma / 2, \sigma]$ according to (3.10). In view of the inclusion $D_{s} \subset[0, \lambda] \times[0, s(\lambda / 2)] \subset[0, \lambda] \times$ $[0, \delta]$ we can define $\tilde{w} \in W^{1, p}\left([0, \lambda]^{2} \times X, \mathbb{R}^{n-k}\right)$ by
$\widetilde{w}(t, r, x):= \begin{cases}R(\tilde{z}(t, s a(t), x)) & \text { on }[0, \lambda] \times\{0\} \times X, \\ \tilde{z}(t, r, x) & \text { on }\left([0, \lambda]^{2} \backslash D_{s} \cup A_{s}\right) \times=X, \\ \frac{r}{s a(t)} R(\tilde{z}(t, s a(t), x))+\left(1-\frac{r}{s a(t)}\right) \tilde{z}(t, s a(t), x) \\ & \text { on } D_{s} \times X .\end{cases}$
On $D_{s} \times X$ we compute $\frac{\partial}{\partial t} \tilde{w}, \frac{\partial}{\partial r} \tilde{w}$, and $\nabla_{x} \tilde{w}$ and get, using $0 \leqslant r \leqslant s a(t)$ and $\left|a^{\prime}\right| \equiv 1$,
$\left|\frac{\partial}{\partial t} \widetilde{w}(t, r, x)\right| \leqslant \frac{1}{a(t)}|R(\tilde{z}(t, s a(t), x))-\tilde{z}(t, s a(t), x)|+$

$$
\left|\frac{\partial}{\partial t} R(\tilde{z}(t, s a(t), x))\right|+\left|\frac{\partial}{\partial t} \tilde{z}(t, s a(t), x)\right|
$$

$$
\left|\frac{\partial}{\partial r} \tilde{w}(t, r, x)\right|=\frac{1}{s a(t)}|R(\tilde{z}(t, s a(t), x))-\tilde{z}(t, s a(t), x)|
$$

$$
\left|\nabla_{x} \widetilde{w}(t, r, x)\right| \leqslant\left|\nabla_{x} R(\tilde{z}(t, s a(t), x))\right|+\left|\nabla_{x} \tilde{z}(t, s a(t), x)\right|
$$

These inequalities together imply
(3.15) $|\nabla \widetilde{w}(t, r, x)|^{p} \leqslant$
$c_{11}(p)\left\{\frac{1}{(s a(t))^{p}} \operatorname{dist}(\tilde{z}(t, s a(t), x), \Gamma)^{p}+\left(1+\left.\operatorname{Lip} R\right|_{U_{d}(\Gamma)}\right)^{p}\left|\nabla_{(t, x)} \tilde{z}(t, s a(t), x)\right|^{p}\right\}$.
To estimate the first summand in the right hand side of (3.15) we observe that $\operatorname{dist}(\tilde{z}(t, s a(t), x), \Gamma) \leqslant|\tilde{z}(t, s a(t), x)-\tilde{u}(0, x)| \leqslant$

$$
\begin{aligned}
& \frac{t}{\lambda}|\tilde{u}(s a(t), x)-\tilde{v}(s a(t), x)|+\int_{0}^{s a(t)}\left|\frac{\partial}{\partial r} \tilde{u}(r, x)\right| d r \leqslant \\
& \frac{t}{\lambda}|\tilde{u}(s a(t), x)-\tilde{v}(s a(t), x)|=(s a(t))^{1-1 / p}\left(\int_{0}^{s a(t)}\left|\frac{\partial}{\partial r} \tilde{u}(r, x)\right|^{p} d r\right)^{1 / p}
\end{aligned}
$$

The same estimate with $\tilde{u}(0, x)$ replaced by $\tilde{v}(0, x)$ shows $\operatorname{dist}(\tilde{z}(t, s a(t), x), \Gamma) \leqslant$

$$
\frac{\lambda-t}{\lambda}|\tilde{u}(s a(t), x)-\tilde{v}(s a(t), x)|+(s a(t))^{1-1 / p}\left(\int_{0}^{s a(t)}\left|\frac{\partial}{\partial r} \tilde{v}(r, x)\right|^{p} d r\right)^{1 / p}
$$

Both inequalities together with the definition of $a(t)$ imply for $t \in[0, \lambda], x \in X$,
(3.16) $\quad \operatorname{dist}(\tilde{z}(t, s a(t), x), \Gamma)^{p} \leqslant c_{12}(p)\left\{\frac{a(t)^{p}}{\lambda^{p}}|\tilde{u}(s a(t), x)-\tilde{v}(s a(t), x)|^{p}+\right.$

$$
\left.(s a(t))^{p-1} \int_{0}^{s a(t)}\left|\frac{\partial}{\partial r} \tilde{u}(r, x)\right|^{p}+\left|\frac{\partial}{\partial r} \tilde{v}(r, x)\right|^{p} d r\right\}
$$

Integrating (3.16) over $D_{s} \times X$ we obtain, using (3.7),
(3.17) $\int_{D_{s} \times X}(s a(t))^{-p} \operatorname{dist}(\tilde{z}(t, s a(t), x), \Gamma)^{p} d \mathcal{H}^{\llbracket p \rrbracket}(t, r, x) \leqslant$
$c_{12}(p)\left\{s^{-p} \lambda^{1-p} \int_{[0, \lambda] \times X}|\tilde{u}-\tilde{v}|^{p} d \mathscr{\mathcal { C }}{ }^{\llbracket p \rrbracket-1}+\lambda \int_{[0, \lambda] \times X}|\nabla \tilde{u}|^{p}+|\nabla \tilde{v}|^{p} d \mathcal{C}^{\llbracket p \rrbracket-1}\right\} \leqslant$
$c_{12}(p) c_{6}(m) \lambda^{\llbracket p \rrbracket-m+1}\left(1+\frac{\varepsilon^{p}}{s^{p} \lambda^{p}}\right) K^{p} \leqslant$
$c_{13}(m, p) \lambda^{\llbracket p \rrbracket-m+1}\left(1+\max \left\{\varepsilon^{p(1-(1-\beta) / \mu)},\left(\frac{\varepsilon}{\lambda}\right)^{p}\right\}\right) K^{p}$,
the last estimate following from $s \geqslant \sigma / 2=\delta / \lambda=\min \left\{1, \lambda^{-1} \varepsilon^{(1-\beta) / \mu}\right\}$. Since $\beta>(\llbracket p \rrbracket-1) / p$ (by assumption) we have $\varepsilon^{p(1-(1-\beta) / \mu)}<1$, and from (3.17) we derive

$$
\begin{align*}
& \int_{D_{s} \times X} \frac{\operatorname{dist}(\tilde{z}(t, s a(t), x), \Gamma)^{p}}{s a(t)^{p}} d \mathcal{C}^{\llbracket p \rrbracket}(t, r, x) \leqslant \tag{3.18}\\
& \\
& \quad 2 c_{13}(m, p) \lambda^{\llbracket p \rrbracket-m+1} K^{p}\left(1+\left(\frac{\varepsilon}{\lambda}\right)^{p}\right) .
\end{align*}
$$

Now, we estimate the integral of the second summand of the right hand side of (3.15). Using (3.10) we find

$$
\begin{equation*}
\int_{D_{s} \times X}\left|\nabla_{(t, x)} \tilde{z}(t, s a(t), x)\right|^{p} d \mathscr{H}^{\llbracket p \rrbracket} \leqslant \tag{3.19}
\end{equation*}
$$

$$
\begin{aligned}
& 2^{p / 2} s \int_{X} \int_{0}^{\lambda} \frac{a(t)}{\sqrt{1+s^{2}}}|\nabla \tilde{z}|^{p}(t, s a(t), x) \sqrt{1+s^{2}} d t d \mathscr{\mathcal { C } ^ { \llbracket p \rrbracket - 2 } x =} \\
& 2^{p / 2} s \int_{A_{s} \times X} \frac{a(t)}{\sqrt{1+s^{2}}}|\nabla \tilde{z}|^{p} d \mathscr{\mathcal { C } ^ { \llbracket p \rrbracket - 1 } \leqslant c _ { 1 4 } (m , p) \frac { s } { \sigma } \lambda ^ { \llbracket p \rrbracket - m + 1 } (1 + (\frac { \varepsilon } { \lambda }) ^ { p }) K ^ { p } \leqslant} \\
& c_{14}(m, p) \lambda^{\llbracket p \rrbracket-m+1}\left(1+\left(\frac{\varepsilon}{\lambda}\right)^{p}\right) K^{p} .
\end{aligned}
$$

Combining (3.15), (3.18), and (3.19) we finally arrive at
(3.20) $\int_{D_{s} \times X}|\nabla \widetilde{w}|^{p} d \mathcal{\mathcal { C } ^ { \llbracket p \rrbracket } \leqslant c _ { 1 5 } (m , p) (1 + \operatorname { L i p } R _ { | U _ { d } (\Gamma) }) ^ { p } \lambda ^ { \llbracket p \rrbracket - m + 1 } (1 + (\frac { \varepsilon } { \lambda }) ^ { p }) K ^ { p } . ~ . ~ . ~ . ~}$

Now, we define $w \in W^{1, p}\left([0, \lambda] \times \bar{Y}, \mathbb{R}^{n+k}\right)$ compatible with the free boundary condition by

$$
w:= \begin{cases}\tilde{w} \circ\left(i d \times\left(\phi \circ \psi^{-1}\right)\right) & \text { on }[0, \lambda] \times \bar{Y} \cap \psi(Z), \\ z & \text { on }[0, \lambda] \times Y \backslash \psi(Z)\end{cases}
$$

The estimates (3.5), (3.8), and (3.20) yield

$$
\begin{equation*}
\int_{[0, \lambda] \times Y}|\nabla w|^{p} d \mathscr{H}^{\llbracket p \rrbracket} \leqslant c_{16}(m, p) \lambda^{\llbracket p \rrbracket-m+1}\left(1+\left(\frac{\varepsilon}{\lambda}\right)^{p}\right) K^{p}, \tag{3.21}
\end{equation*}
$$

and from (3.6), (3.9) and (3.14) we obtain

$$
\begin{equation*}
\operatorname{dist}(w(t, x), \operatorname{Im} u \cup \operatorname{Im} v) \leqslant c_{17}(m, \beta, p) \varepsilon^{1-\beta} \lambda^{(\llbracket p \rrbracket-m) / p} K \tag{3.22}
\end{equation*}
$$

for almost all $(t, x) \in[0, \lambda] \times \bar{Y}$. The inductive procedure of homogeneous extension from [Lu] together with the modifications described in [DG] can now be used to construct the map $w \in W^{1, p}\left([0, \lambda] \times S^{+}, \mathbb{R}^{n+k}\right)$ satisfying the assertions of the lemma.

We apply the extension lemma to prove the following compactness theorem for p-energy minimizing maps at a free boundary.

Theorem 3.2 (compactness). - Suppose Γ_{i}, N_{i}, and $u_{i} \in W^{1, p}\left(B^{+}, N_{i}\right)$ with $u_{i}(D) \subset \Gamma_{i}, i \in \mathbb{N} \cup\{\infty\}$, satisfy:
(i) N_{i} admits a Lipschitz neighbourhood retraction $\Pi_{i}: \boldsymbol{U}_{\sigma_{i}}\left(N_{i}\right) \rightarrow N_{i}$ which satisfies $\lim _{\sigma \rightarrow 0} \operatorname{Lip}\left(\left.\Pi_{i}\right|_{U_{\sigma}\left(N_{i}\right)}\right)=1$;
(ii) Γ_{i} admits a Lipschitz neighbourhood retraction $R_{i}: \boldsymbol{U}_{\varrho_{i}}\left(\Gamma_{i}\right) \rightarrow \Gamma_{i}$ for which
$\liminf _{i \rightarrow \infty} \varrho_{i}>0 \quad$ and $\quad \liminf _{i \rightarrow \infty} \operatorname{Lip}\left(\left.R_{i}\right|_{\boldsymbol{U}_{t}\left(\Gamma_{i}\right)}\right)<\infty \quad$ for some $t>0$;
(iii) each $v \in W^{1, p}\left(B^{+}, \mathbb{R}^{n+k}\right)$ with $v\left(B^{+}\right) \subset N_{\infty}$ and $v(D) \subset \Gamma_{\infty}$ is the $W^{1, p}$-limit of maps $v_{i} \in W^{1, p}\left(B^{+}, \mathbb{R}^{n+k}\right)$ with $v_{i}\left(B^{+}\right) \subset N_{i}$ and $v_{i}(D) \subset \Gamma_{i}$; and
(iv) the u_{i} are p-energy minimizing maps from B^{+}into N_{i} with respect to the free boundary condition $u_{i}(D) \subset \Gamma_{i}$ for $i \in \mathbb{N}$ and converge weakly in $W^{1, p}\left(B^{+}, \mathbb{R}^{n+k}\right)$ to u_{∞}.

Then u_{∞} is p-energy minimizing in $W^{1, p}\left(B^{+}, N_{\infty}\right)$ subject to the free boundary condition $u_{\infty}(D) \subset \Gamma_{\infty}$, and $u_{i} \rightarrow u_{\infty}$ strongly in $W^{1, p}\left(B_{\sigma}^{+}, \mathbb{R}^{n+k}\right)$ for any $0<\sigma<1$.

The assertions of the compactness theorem follow from our extension lemma using a direct adaptation of the arguments from [7, p. 357 ff] to the free boundary situation considered here. One merely has to replace balls B_{σ} and spheres S_{σ} by half-balls B_{σ}^{+}and hemi-spheres S_{σ}^{+}before applying the extension lemma.

Corollary 3.3. - Suppose $\left(u_{i}\right)_{i \in \mathbb{N}} \subset W^{1, p}\left(B^{+}, N\right)$ is a sequence of p energy minimizing maps subject to the free boundary condition $u_{i}(D) \subset \Gamma$, and

$$
\sup _{i \in \mathbb{N}_{B^{+}}} \int\left|\nabla u_{i}\right|^{p} d x<\infty
$$

Then there exists a subsequence $\left(u_{i}\right)$ and a map $u \in W^{1, p}(B+, N)$ which
is p-energy minimizing w.r.t. the free boundary condition $u(D) \subset \Gamma$ such that u_{i} converges strongly in $W^{1, p}\left(B_{\sigma}^{+}, \mathbb{R}^{n+k}\right)$ to u for any $0<\sigma<1$.

4. - An ε-regularity theorem.

Our line of reasoning follows exactly to that of [1, Section 3] which, of course, is based on [7, Proposition 1] (see also [11, Theorem 10.3]). One merely has to replace the scaled 2-energy $\sigma^{2-m} \int_{B_{\sigma}^{+}(a)}|\nabla u|^{2} d x$ by $\sigma^{p-m} \int_{B_{\sigma}^{+}(a)}|\nabla u|^{p} d x$ for half-balls $B_{\sigma}^{+}(a):=\left\{x \in \mathbb{R}^{m}:|x-a|<\sigma, x^{m}>0\right\} \subset B^{+}$centered at $a \in D$ by the scaled p-energy $\sigma^{p-m} \int_{B_{\sigma}^{+}(a)}|\nabla u|^{p} d x$, and, instead of [1, Lemma 3.1], to
use:

Lemma 4.1. - Let $\xi \in W^{1, p}\left(B^{+}, \mathbb{R}^{n}\right)$ be p-energy minimizing with respect to the free boundary condition $\xi(D) \subset \mathbb{R}^{d} \times\{0\} \subset \mathbb{R}^{n}$. Then, for any $0<\sigma<1$ we have

$$
\int_{B_{\sigma}^{+}}|\nabla \xi|^{p} d x \leqslant c \sigma_{B^{+}} \int_{B^{+}}|\nabla \xi|^{p} d x
$$

where c is a constant depending on m, n and p only.
Proof. - For $j=1, \ldots, d$ we define $\tilde{\xi}^{j}$ to be the extension of ξ^{j} to B by even reflection (across D). Moreover, for $j=d+1, \ldots, n$ we let $\tilde{\xi} j$ to be the extension of ξ^{j} to B by odd reflection. Then it is easy to check that $\tilde{\xi}:=\left(\tilde{\xi}^{1}, \ldots, \tilde{\xi}^{d}\right)$ is weakly p-harmonic on B, i.e. for any $\phi \in C_{0}^{1}\left(B, \mathbb{R}^{n}\right)$ we have

$$
\int_{B}|\nabla \tilde{\xi}|^{p-2} \nabla \tilde{\xi} \cdot \phi d x=0 .
$$

Hence, from [12, Theorem 3.2] we infer

$$
\int_{B_{\sigma}}|\nabla \tilde{\xi}|^{p} d x \leqslant c(m, n, p) \sigma^{m} \int_{B}|\nabla \tilde{\xi}|^{p} d x
$$

which clearly yields the corresponding estimate for ξ on B_{σ}^{+}.
As in the case $p=2$ [1, Theorem 3.4] (see also [2, Theorem 5.2], [6, Theorem $3.4]$) we can now state an ε-regularity theorem for minimizing p-harmonic maps at a free boundary.

Theorem 4.2. - Given N and Γ satisfying the assumptions given in section 2 , and $\alpha \in] 0,1\left[\right.$, there exist constants C and ε_{0} depending on α, m, n, p, N and Γ only such that every map $u \in W^{1, p}\left(B^{+}, N\right)$ which is p-energy minimizing w.r.t. the free boundary condition $u(D) \subset \Gamma$ and which has small scaled p-energy

$$
\varepsilon^{p}:=\sigma^{p-m} \int_{B_{\sigma}^{+}\left(x_{0}\right)}|\nabla u|^{p} d x \leqslant \varepsilon_{0}^{p}
$$

for some half-ball $B_{\sigma}^{+}\left(x_{0}\right) \subset B^{+}, x_{0} \in D,\left|x_{0}\right| \leqslant 1 / 2$, satisfies

$$
r^{p-m} \int_{B_{r}^{+}\left(x_{1}\right)}|\nabla u|^{p} d x \leqslant C \varepsilon^{p}\left(\frac{r}{\sigma}\right)^{p \alpha}
$$

for all $x_{1} \in B_{\sigma / 2}^{+}\left(x_{0}\right) \cap D, 0<r \leqslant \sigma / 2$.

Combining Theorem 4.2 with the corresponding interior result [4], [5], [7] we see that p-energy minimizing maps at a free boundary are Hölder continuous with exponent α for all $0<\alpha<1$ on $B_{1 / 4}^{+}$provided $\int_{B^{+}}|\nabla u|^{p} d x \leqslant \varepsilon_{1}^{p}$ where $\varepsilon_{1}>0$ is a constant depending on α, n, m, p, N and $\Gamma{ }^{B}$ only. (Note that we also have to use the monotonicity formula Lemma 5.1.)

5. - Partial regularity.

We begin this section by deriving a monotonicity formula for maps $u \in W^{1, p}\left(B^{+}, N\right)$ which minimize the p-energy subject to the free boundary condition $u(D) \subset \Gamma$ (cf.[8], [9], [4], [5], [7] for the interior case, and [2], [6], [1] for the case $p=2$ at the free boundary). Given $\phi \in C_{0}^{1}\left(B, \mathbb{R}^{m}\right)$ satisfying $\left.\phi^{m}\right|_{D}=0$ we define X_{t} to be the solution of $\dot{X}_{t}=\phi \circ X_{t}$ with initial condition $X_{0}=\mathrm{id}$. Then $u_{t}:=u \circ X_{t}$ is an admissible variation for u, and the minimizing property of u yields

$$
0=\left.\frac{d}{d t} E\left(u_{t}\right)\right|_{0}=\int_{B^{+}} \sum_{i, j=1}^{m}\left(|\nabla u|^{p} \delta_{i j}-p \nabla_{i} u \cdot \nabla_{j} u|\nabla u|^{p-2}\right) \nabla_{i} \varphi^{j} d x .
$$

Then, exactly as in [1, Theorem 4.1] we prove

Theorem 5.1. - Let $a \in B^{+} \cup D$ and $0<r<\sigma<1-|a|$ be given. Then, any map $u \in W^{1, p}\left(B^{+}, N\right)$ minimizing the p-energy w.r.t. the free boundary
condition $u(D) \subset \Gamma$ satisfies:
(5.1) $\quad \sigma^{p-m}\left[\int_{B_{\sigma}^{+}(a)}|\nabla u|^{p} d x+\int_{B_{\sigma}^{+}\left(a^{*}\right)}|\nabla u|^{p} d x\right]-$
$-r^{p-m}\left[\int_{B_{r}^{+}(a)}|\nabla u|^{p} d x+\int_{B_{r}^{+}\left(a^{*}\right)}|\nabla u|^{p} d x\right]=$
$p\left[\int_{B_{\sigma}^{+}(a) \backslash B_{r}^{+}(a)} R^{p-m}|\nabla u|^{p-2}\left|\frac{\partial u}{\partial R}\right|^{2} d x+\int_{B_{\sigma}^{+}\left(a^{*}\right) \backslash B_{r}^{+}\left(a^{*}\right)}\left(R^{*}\right)^{p-m}|\nabla u|^{p-2}\left|\frac{\partial u}{\partial R^{*}}\right|^{2} d x\right]$,
where $a^{*}=\left(a^{1}, \ldots, a^{m-1},-a^{m}\right), R=|x-a|$, and $R^{*}=\left|x-a^{*}\right|$. In particular,

$$
r^{p-m}\left[\int_{B_{r}^{+}(a)}|\nabla u|^{p} d x+\int_{B_{r}^{+}\left(a^{*}\right)}|\nabla u|^{p} d x\right]
$$

is monotone non-decreasing on $] 0,1-|a|[$.
As a first consequence of the monotonicity formula we observe that the density function

$$
\Theta_{u}(a):=\lim _{r \rightarrow 0} r^{p-m}\left[\int_{B_{r}^{+}(a)}|\nabla u|^{p} d x+\int_{B_{r}^{+}\left(a^{*}\right)}|\nabla u|^{p} d x\right]
$$

is well defined for $a \in B^{+} \cup D$. Note that

$$
\Theta_{u}(a)= \begin{cases}\lim _{r \rightarrow 0} r^{p-m} \int_{B_{r}(a)}|\nabla u|^{p} d x & \text { for } a \in B^{+}, \\ 2 \lim _{r \rightarrow 0} r^{p-m} \int_{B_{r}^{+}(a)}|\nabla u|^{p} d x & \text { for } a \in D .\end{cases}
$$

Theorem 5.2. - Suppose that $u_{j} \in W^{1, p}\left(B^{+}, N\right), j \in \mathbb{N}$, is p-energy minimizing subject to the free boundary condition $u_{j}(D) \subset \Gamma$. Suppose also that $u_{j} \rightarrow u$ strongly in $L^{p}\left(B^{+}, \mathbb{R}^{n+k}\right)$ and that

$$
\sup _{j \in \mathbb{N}_{B^{+}}} \int\left|\nabla u_{j}\right|^{p} d x<\infty
$$

Then for $a \in B^{+} \cup D, a_{j} \rightarrow a$ implies

$$
\Theta_{u}(\alpha) \geqslant \limsup _{j \rightarrow \infty} \Theta_{u_{j}}\left(a_{j}\right)
$$

i.e. the density function is jointly upper semicontinuous.

Proof. - In view of Corollary 3.3 we have $u_{j} \rightarrow u$ strongly in $W^{1, p}\left(B_{\sigma}^{+}, \mathbb{R}^{n+k}\right)$ for any $0<\sigma<1$. For $a \in D$ consider $r, \varepsilon>0$ such that $r+$ $\varepsilon<1-|a|$. From (5.1) we infer

$$
\Theta_{u_{j}}\left(a_{j}\right) \leqslant r^{p-m}\left[\int_{B_{r}^{+}\left(a_{j}\right)}\left|\nabla u_{j}\right|^{p} d x+\int_{B_{r}^{+}\left(a_{j}^{*}\right)}\left|\nabla u_{j}\right|^{p} d x\right] \leqslant 2 r^{p-m} \int_{B_{r^{+}+\varepsilon}^{+}(a)}\left|\nabla u_{j}\right|^{p} d x
$$

for any j such that $\left|a-a_{j}\right|<\varepsilon$. Now, the strong $W^{1, p}$-convergence of u_{j} on $B_{r+\varepsilon}^{+}(a)$ yields

$$
\limsup _{j \rightarrow \infty} \Theta_{u_{j}}\left(a_{j}\right) \leqslant 2 r^{p-m} \int_{B_{r+\varepsilon}^{+}(a)}|\nabla u|^{p} d x
$$

Letting first ε and then r tend to zero, the assertion follows. The case $a \in B^{+}$ follows similarly.

Next we discuss tangent maps at the free boundary. For $a \in D, 0<r \leqslant$ $r_{0}<1-|a|$ we define the rescaled map

$$
u_{a, r}(x):=u(a+r x) \quad \text { for } x \in B_{r / r_{0}}^{+} .
$$

Then, the monotonicity formula and Corollary 3.3 provide as in [10, Section 3] (see also [1, Section 4]) that a sequence $\left(u_{a, r_{i}}\right)_{i \in \mathbb{N}}, r_{i} \rightarrow 0$, converges strongly in $W^{1, p}\left(B_{\sigma}^{+}, \mathbb{R}^{n+k}\right)$ for any $\left.\sigma \in\right] 0, \infty\left[\right.$ to a map $\varphi: \mathbb{R}_{+}^{m} \rightarrow N$ which is p-energy minimizing w.r.t. the free boundary condition $\varphi=\left(\mathbb{R}^{m-1} \times\{0\}\right) \subset \Gamma$. Any such map is called a (free boundary) tangent map to u at a.

We now follow the arguments of [10, Section 3] almost verbatim. First we deduce the following important properties of tangent maps at the free boundary:

$$
\begin{equation*}
\Theta_{\phi}(0) \equiv 2 r^{p-m} \int_{B_{r}^{+}}|\nabla \varphi|^{p} d x=\Theta_{u}(a) \text { for all } r>0 \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\varphi \text { is homogeneous of degree zero; } \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
a \in \operatorname{Reg} u \Rightarrow u \text { has a constant tangent map at } a \text {; and } \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } a \in B^{+} \cup D \text { we have: } \Theta_{u}(\alpha)=0 \Leftrightarrow a \in \operatorname{Reg} u \text {. } \tag{5.5}
\end{equation*}
$$

Theorem 5.3. $-\mathcal{C}^{m-p}(\operatorname{Sing}(u))=0$, in particular $\operatorname{Sing}(u)=\emptyset$ for $p=m$.
Next we consider homogeneous degree zero maps $\phi: \mathbb{R}_{+}^{m} \rightarrow N$ which minimize locally the p-energy subject to the free boundary condition $\phi\left(\mathbb{R}^{m-1} \times\right.$ $\{0\}) \subset \Gamma$. Then:
(5.6) $\quad \Theta_{\varphi}(\cdot)$ achieves its maximum at 0 ;
(5.7) $\varphi \circ \tau_{a}=\varphi$ for any $a \in \mathcal{S}(\phi):=\left\{b \in \mathbb{R}^{m-1} \times\{0\}: \Theta_{\phi}(b)=\Theta_{\phi}(a)\right\}$;
(5.8) $\quad S(\varphi)$ is a linear subspace of $\mathbb{R}^{m-1} \times\{0\}$;
(5.9) if $\operatorname{dim} S(\varphi)=m-[p]+1$ then $\varphi \equiv$ const; and
(5.10) $S(\varphi) \subset \operatorname{Sing}(\varphi)$ if φ is non-constant.

Here $\tau_{a}(x):=x+a$ for $x \in \mathbb{R}^{m}$. Finally, we return to the situation of $u \in$ $W^{1, p}\left(B^{+}, N\right)$ being p-energy minimizing w.r.t. $u(D) \subset \Gamma$. For $j=0, \ldots, m-$ [p] we define:

$$
s_{j}:=\{a \in \operatorname{Sing} u \cap D: \operatorname{dim} s(\phi) \leqslant j \text { for every tangent map } \varphi \text { to } u \text { at } a\} .
$$

Theorem 5.4.

(i) $S_{0} \subset S_{1} \subset \ldots S_{m-[p]-1} \subset S_{m-[p]}=\operatorname{Sing} \cap D$;
(ii) for each $\lambda>0, s_{0} \cap\left\{b: \Theta_{u}(b)=\lambda\right\}$ is discrete; and
(iii) for $j=0, \ldots, m-[p]-1$ we have $\mathcal{H}-\operatorname{dim} s_{j} \leqslant j$.

As an immediate consequence of Theorem 5.4, (iii) and the corresponding interior regularity result of [4], [5], [7] we obtain

Theorem 5.5. - Let $u \in W^{1, p}\left(B_{+}, N\right)$ be p-energy minimizing with respect to the free boundary condition $u(D) \subset \Gamma$. Then

$$
\mathscr{H}-\operatorname{dim}(\operatorname{Sin} g u) \leqslant m-[p]-1 \quad \text { if } 1<p<m-1
$$

In the case $m-1 \leqslant p<m$, $\operatorname{Sing} u \cap\left(D \cup B^{+}\right)$consists of isolated points.

REFERENCES

[1] F. Duzaar - J. F. Grotowski, Energy minimizing harmonic maps with an obstacle at the free boundary, Manuscripta Math., 83 (1994), 291-314.
[2] F. Duzaar - K. Steffen, A partial regularity theorem for harmonic maps at a free boundary, Asymptotic Anal., 2 (1989), 299-343.
[3] F. Duzaar - K. Steffen, An optimal estimate for the singular set of a harmonic map in the free boundary, J. Reine Angew. Math., 401 (1989), 157-187.
[4] M. Fuchs, p-harmonic obstacle problems. Part I: Partial regularity theory, Ann. Mat. Pura Appl. (4), 156 (1990), 127-158.
[5] R. Hardt - F. H. Lin, Maps minimizing the L^{p}-norm of the gradient, Comm. Pure Appl. Math., 40 (1987), 555-588.
[6] R. Hardt - F. H. Lin, Partially constrained boundary conditions with energy minimizing mappings, Comm. Pure Appl. Math., 42 (1989), 309-334.
[7] S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J., 37 (1988), 349-367.
[8] P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math., 43 (1983), 131-156.
[9] R. Schoen - K. Uhlenbeck, A regularity theorem for harmonic maps, J. Differential Geom., 17 (1982), 307-335.
[10] L. Simon, Singularities of geometrical variational problems, Regional Geometry Institute Lecture Notes, Utah (1992).
[11] K. Steffen, An introduction to harmonic mappings, Lecture Notes, SFB 256 Universität Bonn, Vorlesungsreihe, 18 (1991).
[12] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Mat., 138 (1977), 219-240.

F. Duzaar: Mathematisches Institut der Humboldt-Universität zu Berlin Unter den Linden 6, D-10099 Berlin, Germany

A. Gastel: Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1, D-40225 Düsseldorf, Germany

[^0]
[^0]: Pervenuta in Redazione
 il 9 maggio 1996

