Bollettino

Unione Matematica Italiana

Elena Rubei

Projective normality of abelian varieties with a line bundle of type $(2, \cdots)$

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 1-B (1998), n.2, p. 361-367.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1998_8_1B_2_361_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1998.

Projective Normality of Abelian Varieties with a Line Bundle of Type (2, ...).

Elena Rubei (*)

Sunto. - Sia X una varietà abeliana e L un fibrato in rette ampio di tipo $\left(2,2 d_{2}, \ldots, 2 d_{g}\right)$ su X; sia φ_{L} l'applicazione associata a L. In questo lavoro si dimostra il seguente fatto: se $d_{i} \leqslant 2$ per qualsiasi i, L non è mai normalmente generato (quindi, se φ_{L} è un embedding, $\varphi_{L}(X)$ non è proiettivamente normale); negli altri casi invece L è normalmente generato per $\left(X, c_{1}(L)\right)$ generico nello spazio dei moduli delle varietà abeliane polarizzate di tipo $\left(2,2 d_{2}, \ldots, 2 d_{g}\right)$.

1. - Introduction.

Let X be an abelian variety with an ample line bundle L of type $\left(\delta_{1}, \ldots, \delta_{g}\right)$, with $\delta_{i} \mid \delta_{i+1}$, and let φ_{L} be the associated rational map. In this paper we examine the problem whether $\varphi_{L}(X)$ is projectively normal in the case where $\delta_{1}=2$.

It is well known that if $\delta_{1} \geqslant 3, \varphi_{L}$ is an embedding and $\varphi_{L}(X)$ is projectively normal (see Theorem 7.3.1 in [L-B]).

Besides, in [Laz], Lazarsfeld proved that, if X is an abelian surface, L is of type $(1, d),|L|$ has not fixed components and φ_{L} is birational onto its image, then $\varphi_{L}(X)$ is projectively normal for d odd $\geqslant 7$ and d even $\geqslant 14$.

Here we examine the case of an abelian variety with an ample line bundle L of type $\left(2,2 d_{2}, \ldots, 2 d_{g}\right)$; we know that in this case there exists an ample line bundle M, of type $\left(1, d_{2}, \ldots, d_{g}\right.$), s.t. $L=M^{2}$ (see for instance [L-B] Lemma 2.5.6). We prove the following fact: if $d_{i} \leqslant 2$ for every i, then L is never normally generated (thus, if φ_{L} is an embedding ${ }^{(1)}, \varphi_{L}(X)$ is not projectively normal); otherwise (that is $\exists i$ s.t. $d_{i}>2$) L is normally generated for generic $\left(X, c_{1}(L)\right)$ in the moduli space of polarized abelian varieties of type $\left(2,2 d_{2}, \ldots, 2 d_{g}\right)$.
(*) This research was carried through in the realm of the AGE Project HCMERBCHRXCT940557 and of the 40% MURST Program «Geometria algebrica».
${ }^{\left({ }^{1}\right)}$ We recall the following Ohbuchi's theorem (see [Oh1]): let M be an ample line bundle on an abelian variety $X ; M^{2}$ is very ample iff (X, M) is not isomorphic to the product of two abelian varieties with line bundles $\left(X_{i}, M_{i}\right), i=1,2$, with $\operatorname{dim} X_{1}>0$ and $h^{0}\left(X_{1}, M_{1}\right)=1$.

Notations and definitions. - We collect here some notations and standard definitions we will use in all the paper.

- $\boldsymbol{X}, \boldsymbol{V}, \boldsymbol{\Lambda} ; X$ is a complex torus equal to V / Λ where V is a complex vector space and Λ a lattice in V.
- \boldsymbol{X}_{n} is the set of n-torsion points of X.
- φ_{L} is the rational map associated to a line bundle L on X.
- \boldsymbol{t}_{x} is the translation on X by the point x.
- $\widehat{\boldsymbol{X}}$ is the dual complex torus of X.
- ϕ_{L} is the homomorphism $X \rightarrow \widehat{X}, x \mapsto t_{x}^{*} L \otimes L^{-1}$, where L is a line bundle on X.
- $\boldsymbol{K}(\boldsymbol{L})$ is the kernel of ϕ_{L}; it does depend only on H, the first Chern class of L, thus we denote $K(L)$ also as $K(H)$; if L is nondegenerate then $K(L)$ is a finite group isomorphic to $\left(\boldsymbol{Z} / d_{1} \oplus \ldots \oplus \boldsymbol{Z} / d_{g}\right)^{2}$ with $d_{i} \mid d_{i+1}$; we say that L is of type $\left(d_{1}, \ldots, d_{g}\right)$.
- $\boldsymbol{\Lambda}(\boldsymbol{L})$ or $\boldsymbol{\Lambda}(\boldsymbol{H})=\{v \in V \mid \operatorname{Im} H(v, \Lambda) \subset \boldsymbol{Z}\}$ where L is a line bundle and H its first Chern class; (we recall that $K(H)=\Lambda(H) / \Lambda)$.
- [$\boldsymbol{y}]$ means the class in X of a point $y \in V$.
- Suppose H is a non degenerate hermitian form on $V, E=\operatorname{Im} H$ and $E(\Lambda, \Lambda) \subset \boldsymbol{Z}$.

A direct sum decomposition $\Lambda=\Lambda_{1} \oplus \Lambda_{2}$ is called a decomposition for H (or for E) if Λ_{1} and Λ_{2} are isotropic with respect to E; a real vector space decomposition $V=V_{1} \oplus V_{2}$, with V_{1} and V_{2} real vector subspaces of V, is called a decomposition for H (or for E) if $\left(V_{1} \cap \Lambda\right) \oplus\left(V_{2} \cap \Lambda\right)$ is a decomposition of Λ for H.

Choose a decomposition of V for $H: V=V_{1} \oplus V_{2}$. Let L_{0} be the unique line bundle with Chern class H and semicharacter $\chi_{0}: V \rightarrow \boldsymbol{C}_{1}, \chi_{0}(v)=e^{\pi i E\left(v_{1}, v_{2}\right)}$, where $v=v_{1}+v_{2}$ and $v_{i} \in V_{i}$. For every L with Chern class H there is a point $c \in V$, uniquely determined up to translation by elements of $\Lambda(H)$, s.t. $L=t_{[c]}^{*} L_{0}$ (see [L-B]) Lemma 3.1.2); c is called the characteristic of L with respect to the chosen decomposition.

Besides we denote $\boldsymbol{\Lambda}(\boldsymbol{L})_{i}=\Lambda(L) \cap V_{i}$ and $\boldsymbol{K}(\boldsymbol{L})_{i}=\Lambda(L)_{i} / \Lambda$.

- A line bundle L on X is called symmetric if $(-1)_{X}^{*}(L) \simeq L$, where $(-1)_{X}$ is the multiplication by -1 on X. A line bundle L with $c_{1}(L)=H$ is symmetric if and only if the characteristic of L with respect to some decomposition of V for H is in $(1 / 2) \Lambda(H)$ (see [L-B], Chapter $4, \S 6$ and $\S 7$, for a reference on symmetric bundles).

Let $\pi: L \rightarrow X$ be a symmetric line bundle on X. A biholomorphic map $f: L \rightarrow L$ is called isomorphism of L over $(-1)_{X}$ if $\pi \circ f=(-1)_{X} \circ \pi$ and the induced map from the fibre of L over x to the fibre over $-x$ is \boldsymbol{C}-linear $\forall x \in X$.

The isomorphism f is called normalized if the induced map on the fibre of L over 0 is the identity. For any symmetric line bundle there is a unique normalized isomorphism $(-1)_{L}: L \rightarrow L$ over $(-1)_{X}$ (see [L-B] Lemma 4.6.3); it induces an involution on $H^{0}(L)$.

In [N-R] Nagaraj and Ramanan gave the following definition: an ample symmetric line bundle L of type $(1, \ldots, 1,2, \ldots, 2)$ on an abelian variety is said strongly symmetric if $(-1)_{L}$ acts on $H^{0}(L)$ as Identity or as -Identity.

- A line bundle L on X is called normally generated if it is very ample and $\varphi_{L}(X)$ is projectively normal. We have that L is normally generated iff it is ample and the natural maps $S^{n} H^{0}(X, L) \rightarrow H^{0}\left(X, L^{n}\right)$ are surjective for all $n \geqslant 2$ (see [L-B], Chapter 7, §3 and [M], p.38).

2. - The main result.

Before to state the theorem we quote some propositions of [B-L-R], which will be useful to prove the theorem, and we make some remarks.

We quote the following facts and lemmas from [B-L-R].
A polarized abelian variety (X, M) of type $\left(d_{1}, \ldots, d_{g}\right)$ admits an isogeny onto a principally polarized abelian variety $\pi:(X, M) \rightarrow(Y, P)$ s.t. $\pi^{*} P=M$
 The isogeny π determines the subgroup $Z:=\phi_{P}^{-1}(\operatorname{ker} \widehat{\pi}) \simeq \bigoplus_{i=1}^{g} \boldsymbol{Z} / d_{i}$ in $\xlongequal{i=1}$. Conversely any subgroup Z of a principally polarized abelian variety (Y, P) determines an isogeny $\pi: X \rightarrow Y:$ the dual of the isogeny $Y \simeq \widehat{Y} \rightarrow \widehat{X}:=Y / Z$.

Lemma 1 (Lemma 1.1 in [B-L-R]). - Let Z be a cyclic subgroup of order d of a principally polarized abelian variety (Y, P) and $\pi: X \rightarrow Y$ the associated isogeny. Then $M=\pi^{*}(P)$ is of type $(1, \ldots, 1, d)$.

Lemma 2 (part a) of Lemma (1.2) in [B-L-R]). - Let $\pi:(X, M) \rightarrow(Y, P)$ be an isogeny onto a principally polarized abelian variety (Y, P) associated to a finite subgroup $Z \subset Y$. There is a canonical decomposition

$$
H^{0}(M) \simeq \bigoplus_{z \in Z} H^{0}\left(t_{z}^{*} P\right)
$$

induced by the embeddings $\pi^{*}: H^{0}\left(t_{z}^{*} P\right) \rightarrow H^{0}(M)$.
We recall also that if M is an ample line bundle then M^{2} is normally generated if and only if the map $H^{0}\left(M^{2}\right) \otimes H^{0}\left(M^{2}\right) \rightarrow H^{0}\left(M^{4}\right)$ is surjective (see [Ko] or [L-B], Chapter 7, §3).

We finish these preliminaries stating the following two remarks:

Remark 1. - Let X be an abelian variety of dimension g with an ample line bundle L of type $\left(d_{1}, \ldots, d_{g}\right)$; if $d_{1} \cdot \ldots \cdot d_{g}<2^{g+1}-1$, then L is not normal$l y$ generated.

In fact, if we call $d=d_{1} \cdot \ldots \cdot d_{g}$, we have $\operatorname{dim} S^{2} H^{0}(L)=(d(d+1)) / 2$ and $\operatorname{dim} H^{0}\left(L^{2}\right)=2^{g} d$, thus $\operatorname{dim} S^{2} H^{0}(L)<\operatorname{dim} H^{0}\left(L^{2}\right)$ if $d<2^{g+1}-1$.

Remark 2. - If a polarized abelian variety (X, M) is a product of two polarized abelian varieties $\left(X_{1}, M_{1}\right)$ and $\left(X_{2}, M_{2}\right)$, then M^{2} is normally generated if and only if M_{i}^{2} is normally generated for $i=1,2$.

In fact, if (X, M) is isomorphic to $\left(X_{1} \times X_{2}, p_{1}^{*} M_{1} \otimes p_{2}^{*} M_{2}\right)$, where $p_{i}: X_{1} \times X_{2} \rightarrow X_{i}, i=1,2$, are the obvious projections, we have that $H^{0}\left(X_{1} \otimes X_{2}\right.$, $\left.p_{1}^{*} E_{1} \otimes p_{2}^{*} E_{2}\right) \simeq H^{0}\left(X_{1}, E_{1}\right) \otimes H^{0}\left(X_{2}, E_{2}\right)$ for any line bundle E_{i} on X_{i}.

Thus we have the following commutative diagram:

$$
\begin{gathered}
H^{0}\left(p_{1}^{*} M_{1}^{2} \otimes p_{2}^{*} M_{2}^{2}\right) \otimes H^{0}\left(p_{1}^{*} M_{1}^{2} \otimes p_{2}^{*} M_{2}^{2}\right) \rightarrow H^{0}\left(p_{1}^{*} M_{1}^{4} \otimes p_{2}^{*} M_{2}^{4}\right) \\
\mid \text { | } \\
\left(H^{0}\left(M_{1}^{2}\right) \otimes H^{0}\left(M_{2}^{2}\right)\right) \otimes\left(H^{0}\left(M_{1}^{2}\right) \otimes H^{0}\left(M_{2}^{2}\right)\right) \rightarrow\left(H^{0}\left(M_{1}^{4}\right) \otimes H^{0}\left(M_{2}^{4}\right)\right)
\end{gathered}
$$

The map of the first row is surjective if and only if the maps $H^{0}\left(M_{i}^{2}\right) \otimes H^{0}\left(M_{i}^{2}\right) \rightarrow H^{0}\left(M_{i}^{4}\right)$ for $i=1,2$ are surjective.

Theorem. - Fix $d_{2}, \ldots, d_{g} \in \boldsymbol{N}$ with $1 \leqslant d_{2} \leqslant \ldots \leqslant d_{g}$.
Let X be an abelian variety of dimension g and M an ample line bundle on X of type $\left(1, d_{2}, \ldots, d_{g}\right)$; set $L=M^{2}$

If $d_{i} \leqslant 2$ for every i, then L is never normally generated (thus, if φ_{L} is an embedding, $\varphi_{L}(X)$ is not projectively normal).

Otherwise (that is $\exists i$ s.t. $d_{i}>2$) L is normally generated for generic $\left(X, c_{1}(L)\right)$ in the moduli space of polarized abelian varieties of type $\left(2,2 d_{2}, \ldots, 2 d_{g}\right)$.

Proof. - Observe that L is normally generated if and only if L^{\prime} is normally generated where L^{\prime} is a line bundle with the same Chern class of L, that is it is obtained from L by a translation.

As we already recalled, L is normally generated if and only if the multiplication map $H^{0}\left(M^{2}\right) \otimes H^{0}\left(M^{2}\right) \rightarrow H^{0}\left(M^{4}\right)$ is surjective ([Ko] or Chapter 7, §3 in [L-B]).

By one of Ohbuchi's theorems ([Oh2] or Chapter 7, §2 in [L-B]) this is equivalent, once a decomposition of V for $c_{1}(M)$ is fixed, to see that $|M|$ has no base point in $t_{[c]}^{*} K\left(M^{2}\right)$ where $c \in V$ is the characteristic of M.

- Case M is of type $(1, \ldots, 1): \varphi_{L}(X)$ is not an embedding (see, for instance, [L-B], Chapter 4, §8).
- Case M is of type ($1, \ldots, 1,2, \ldots, 2$), (more precisely M is of type $\left(d_{1}, \ldots, d_{g}\right)$ with $d_{i}=1$ for $i=1, \ldots, s, d_{g}=2$ for $\left.i=s+1, \ldots, g, 1 \leqslant s<g\right): L$ is never normally generated.

We can suppose the characteristic of M is zero with respect to some decomposition of V for $c_{1}(M)$.

We state that there is a base point of $|M|$ belonging to X_{2}. Obviously it suffices to consider the case of type $(1,2, \ldots, 2$), i.e. $s=1$ (in fact in general we can find an isogeny $\pi:\left(X^{\prime}, M^{\prime}\right) \rightarrow(X, M)$ with $\left(X^{\prime}, M^{\prime}\right)$ of type $(1,2, \ldots, 2)$ and $M^{\prime}=\pi^{*} M$ and if the statement is true for $\left(X^{\prime}, M^{\prime}\right)$ then it is true for (X, M)). One easily sees (for example using the inverse formula [L-B] 4.6.4) that the line bundle M is strongly symmetric since its characteristic is zero. By [N-R] Proposition 2.7, the base locus of an indecomposable strongly symmetric line bundle of type $(1,2, \ldots, 2)$ is not empty and is contained in the set of 2 torsion points. Thus there is a base point of $|M|$ in X_{2}.

Since $X_{2} \subset K\left(M^{2}\right)$, Ohbuchi's theorem ([Oh2] or 7.3 .1 [L-B]) yields the result.

- Case M is of type $(1, \ldots, 1, d), d \geqslant 3: L$ is normally generated for generic ($X, c_{1}(L)$) in the moduli space of polarized abelian varieties of this type.

We have only to exhibit an example of abelian variety (X, L) of this type s.t. L is normally generated. In fact: consider the moduli space of polarized abelian varieties $\left(X, c_{1}(L)\right)$ of fixed type $\left(2,2 d_{2}, \ldots, 2 d_{g}\right)$; the subset of the ones s.t. L is not normally generated is a closed subset, because L is not normally generated if and only if $|M|$ has base point in $t_{[0]}^{*} K\left(M^{2}\right)$, where $c \in V$ is the characteristic of M.

We apply the quoted lemmas of [B-L-R]. The example we exhibit is the same of [B-L-R], Theorem 1c). Let us call (Y, P) a product of g principally polarized elliptic curves of characteristic zero (fixed a decomposition of the lattices) $\left(E_{1}, P_{1}\right) \times \ldots \times\left(E_{g}, P_{g}\right)$ with $P_{i}=\left(Q_{i}\right)$; let $\underline{Q}=\left(Q_{1}, \ldots, Q_{g}\right)$; observe that $Q \in Y_{2}$. Let us consider in Y an element $\left(z_{1}, \ldots, z_{g}\right)$ with $z_{i} \neq 0$ of order d for every i. Let Z be the subgroup of Y generated by $\left(z_{1}, \ldots, z_{g}\right)$; let (X, M) and $\pi: X \rightarrow Y$ be respectively the polarized abelian variety of type $(1,, \ldots, 1, d)$ and the isogeny determined by Z. Observe that if we take a decomposition of the lattice of X compatible with the chosen decomposition of the lattice of Y (see [L-B] p. 160), 0 is a characteristic of M.

The base locus of $|M|$ is the inverse image by π of the base locus of $\underset{z \in Z}{ } H^{0}\left(t_{z}^{*} P\right)$.

The base locus of $\oplus_{z \in Z} H^{0}\left(t_{z}^{*} P\right)$ is the empty set if $d>g$; while, if $g=d$, it is the following set:

$$
\left\{\underline{Q}+\left(\sigma(1) z_{1}, \sigma(2) z_{2}, \ldots, \sigma(d) z_{d}\right) \mid \sigma \in S_{d}\right\}
$$

and, more generally, if $g \geqslant d$, it is:

$$
\begin{aligned}
& \left\{\underline{Q}+\left(x_{1}, \ldots, x_{i_{1}-1}, \sigma(1) z_{i_{1}}, x_{i_{1}+1}, \ldots, x_{i_{2}-1}, \sigma(2) z_{i_{2}}, x_{i_{2}+1}, \ldots, x_{i_{d}-1}\right.\right. \\
& \left.\left.\sigma(d) z_{i_{d}}, x_{i_{d}+1}, \ldots, x_{g}\right) \mid i_{1}, \ldots, i_{d} \in\{1, \ldots, g\}, i_{1}<i_{2}<\ldots<i_{d}, \sigma \in S_{d}, x_{k} \in E_{k}\right\} .
\end{aligned}
$$

Observe that $K(M)=\pi^{-1}(Z)$.
Since
$2\left(x_{1}, \ldots, x_{i_{1}-1}, \sigma(1) z_{i_{1}}, x_{i_{1}+1}, \ldots, x_{i_{2}-1}, \sigma(2) z_{i_{2}}, x_{i_{2}+1}, \ldots, x_{i_{d}-1}\right.$,

$$
\left.\sigma(d) z_{i_{d}}, x_{i_{d}+1}, \ldots, x_{g}\right) \notin Z
$$

for all $i_{1}, \ldots, i_{d} \in\{1, \ldots, g\}$, with $i_{1}<i_{2}<\ldots<i_{d}, \sigma \in S_{d}, x_{k} \in E_{k}$, we conclude that there is no base point of $|M|$ in $K\left(M^{2}\right)$.

- Case M is of type $\left(1, \ldots, 1,2, \ldots, 2, d_{k+1}, \ldots d_{g}\right), d_{i} \geqslant 3$, for $i>k, k<$ g, (more precisely, let the type of M be $\left(d_{1}, \ldots, d_{g}\right)$ with $d_{i}=1$ for $i=1, \ldots, s$, $d_{i}=2$ for $i=s+1, \ldots, k, d_{i} \geqslant 3$, for $\left.i=k+1, \ldots, g, k<g, s \geqslant 1\right)$: L is normally generated for generic $\left(X, c_{1}(L)\right)$ in the moduli space of polarized abelian varieties of this type.

We have only to exhibit an example of abelian variety (X, L) of this type s.t. L is normally generated:
consider (X, M) equal to the product of some polarized abelian varieties $\left(X_{j}, M_{j}\right)$:
$\left(X_{1}, M_{1}\right)$ of dimension $s+1$ and of type $\left(1, \ldots, 1, d_{k+1}\right)$ s.t. M_{1}^{2} is normally generated,
(X_{j}, M_{j}) elliptic curves of type (2) for $j=2, \ldots, k-s+1$,
$\left(X_{j}, M_{j}\right)$ elliptic curves of type $\left(d_{j+s}\right)$ for $j=k-s+2, \ldots, g-s$;
by Remark 2, our example is s.t. L is normally generated, thus we conclude. Q.E.D.

Remark 3. - Observe that if X is an abelian surface the proof of the result is more simple; in fact, if M is of type $(1, d)$ and $|M|$ has not fixed components, we have:
if $d \geqslant 3,|M|$ has no base point, by Lemma 1.2 in Chapter 10 in [L-B]; thus $L=M^{2}$ is normally generated; suppose $d=2$; we can suppose the characteristic of M equal to 0 ; by Lemma 1.2 in Chapter 10 in [L-B] $|M|$ has exactly four base points; in [L-B], Chapter 10, Example 1.4, Lange and Birkenhake remarked that these points belong to $K\left(M^{2}\right)$: in fact let b be a base point of $|M|$; also $-b$ is a base point of $|M|$ (since M is symmetric since the characteristic of M is 0); but $K(M)$ has the same cardinality of the set of base points and acts on the set of base points by translations, thus it acts transitively on the set of base points; thus $2 b \in K(M)$; thus $b \in K\left(M^{2}\right)$, thus L is not normally generated.

We can apply the same argument whenever the dimension of the base locus of $|M|$ is zero and the cardinality of the base locus of $|M|$ is equal to the cardinality of $K(M)$. For instance suppose X is a threefold and M is of type $(1,1,3)$ and the dimension of the base locus of $|M|$ is zero. $|M|$ has at most $M^{3}=18$ base points (exactly 18 if counted with multiplicity). Since $K(M)$ acts on the set of base points by translations, $\# K(M)=9$ must divide the cardinality of the set of base points. Then the cardinality of the set of base points of $|M|$ must be either 9 or 18 . In the first case there is only one orbit of $K(M)$ and we have at once that L is not normally generated; while in the second case there are two orbits of $K(M)$: only if each orbit is symmetric we can conclude at once that L is not normally generated.

Acknowledgements. - I want to thank prof. F. Catanese for suggesting me this problem and for some helpful discussions. I wish to thank also the referee for suggesting me to shorten the proof of the main theorem using the paper [N-R].

REFERENCES

[B-L-R] Ch. Birkenhake - H. Lange - S. Ramanan, Primitive line bundles on abelian threefolds, Manuscripta Math., 81 (1993), 299-310.
[Ko] S. Koizumi, Theta relations and projective normality of abelian varieties, Amer. J. Math., 98 (1976), pp. 865-889.
[L-B] H. Lange - Ch. Birkenhake, Complex Abelian Varieties, Springer-Verlag, 1992.
[Laz] R. Lazarsfeld, Projectivité normale des surfaces abéliannes, redigé par 0. Debarre, prépublication n. 14 Europroj - C.I.M.P.A., Nice, 1990.
[M] D. Mumford, Varieties defined by quadratic equations, in Questioni sulle varietà algebriche, Corsi C.I.M.E., Edizioni Cremonese, Roma, 1969, 29-100.
[N-R] D. S. Nagaraj - S. Ramanan, Polarizations of type ($1,2, \ldots, 2$) on abelian varieties, Duke Math. J., 80 (1995), 157-194.
[Oh1] A. Ohbuchi, Some remarks on ample line bundles on abelian varieties, Manuscripta Math., 57 (1987), 225-238.
[Oh2] A. Ohbuchi, A note on the normal generation of ample line bundles on abelian varieties, Proc. Japan Acad. Ser. A Math. Sci., 64 (1988), 119-120.

Via IV Novembre n. 5-57025 Piombino (LI).
e-mail address: rubei@gauss.dm.unipi.it

Pervenuta in Redazione
il 27 giugno 1996, e, in forma rivista, il 22 novembre 1996.

